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Abstract. In this article, Monotone iterative technique coupled with the method of lower and upper
solutions is employed to discuss the existence and uniqueness of mild solution to an impulsive Riemann-
Liouville fractional differential equation. The results are obtained using the concept of measure of noncom-
pactness, semigroup theory and generalized Gronwall inequality for fractional differential equations. At
last, an example is given to illustrate the applications of the main results.

1. Introduction

Fractional differential equations are generalizations of ordinary differential equations to an arbitrary
order. Due to the nonlocal property fractional differential operators provide an appropriate tool for the
description of hereditary properties of various materials and have lots of applications in science and
engineering[4, 5, 17, 23]. Motivated by these facts, research in this area has grown significantly in the past
few years and solutions of fractional differential equations in analytical and numerical senses have been
discussed in large scale. For more details on fractional differential equations and applications, we refer the
reader to the books [1, 11, 16, 30] and papers [7, 8, 15, 19, 33, 34, 37–41].

In recent years, the theory of impulsive differential equations has become an important area of investi-
gation as it provide understanding of mathematical models to simulate the dynamics of processes in which
sudden and discontinuous jumps occurs. Such processes are naturally observed in mechanics, electrical
engineering, medicine, biology, ecology, etc. For a good introduction and applications to such equations
we refer the reader to the books [20, 32] and papers [13, 21, 22, 40] and referencer therein.

On the other hand, the monotone iterative technique and its associated method of lower and upper
solutions for nonlinear differential equations have been given considerable attention in recent years. In
monotone iterative technique, starting from a pair of ordered lower and upper solutions, two monotone
sequences are constructed such that they uniformly converge to the extremal solutions of the given problem
in a closed set generated by upper and lower solutions. There has been a significant theoretical development
in monotone iterative technique in recent years see [8, 10, 15, 18, 27–29, 35, 40, 41]. For details on upper and
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lower solutions of fractional differential equations see [2, 24–26, 31] and paper cited therein.
In [33] Lakshmikantham and Vatsala discussed the monotone iterative technique for the differential equation{

LDqu(t) = f (t,u), t ∈ (0,T];
u(0) = u0,

(1)

where LDq is the Riemann-Liouville fractional derivative of order 0 < q < 1. They prove some comparison
results and global existence of solutions of (1). Later on, in [38] Shuqin discussed the monotone iterative
method for the following initial value problem involving Riemann-Liouville fractional derivative{

LDqu(t) = f (t,u), t ∈ (0,T];
t1−αu(t)|t=0 = u0,

(2)

where 0 < T < ∞, and LDq is Riemann-Liouville fractional derivative of order 0 < q < 1. In [7] Wang studied
monotone iterative technique for boundary value problems of a nonlinear fractional differential equation
with deviating arguments. Recently in [39] authors studied (2) with a new condition on the nonlinear term
f to guarantee the existence of solution of (2).
Motivated by the above work, this paper is concerned with the existence results for the following impulsive
Riemann-Liouville fractional differential equations

LDq
t u(t) = Ax(t) + F(t,u(t)), t ∈ J = [0, a], t , ti;

∆I1−q
ti

u(ti) = Gi(ti,u(ti)), i = 1, 2, . . .m;
I1−q
t u(0) = u0,

(3)

where LDq
t denotes the Riemann-Liouville fractional derivative of order q ∈ (0, 1]. A is a closed densely

defined linear operator which generates a strongly continuous semigroup {T(t)}t>0 of bounded linear op-
erators on a Banach space X and there exists M > 1 such that supt∈J ‖T(t)‖ 6 M. F : J × X → X and
Gi : J × X → X are given function to be specified later. 0 = t0 < t1 < · · · < tm < tm+1 = a are im-
pulsive points. ∆I1−q

ti
u(ti) represent the jump of u(t) at t = ti i.e. ∆I1−q

ti
u(ti) = I1−q

t+
i

u(t+
i ) − I1−q

t−i
u(t−i ) =

Γ(q)[limt→t+
i
(t − ti)1−qu(t) − limt→t−k

(t − ti)1−qu(t)](See [1, Lemma 3.2, Chapter 3]) where I1−q
t+
i

u(t+
i ) and I1−q

t−i
u(t−i )

represent the right and left limits of I1−q
t u(t) at t = ti respectively.

Monotone iterative technique for Riemann-Liouville fractional differential equations have been studied
by many authors (see [6], [25] [33], [38], [39]) but a new semigroup theoretical approach to find the existence
of solution to such problems has been introduced in this paper. Moreover, Most of the existing articles
are only devoted to study the monotone iterative technique for Riemann-Liouville fractional differential
equation, up until now monotone iterative technique for impulsive Riemann-Liouville fractional differential
equation, has not been considered in the literature. Motivated by these facts, in this paper a new monotone
iterative method has been established to find the existence and uniqueness of mild solutions to impulsive
Riemann-Liouville fractional differential equations, which will provide an effective way to deal with such
problems. The rest of the paper is organized as follows: In Section 2, we have some basic definitions,
notations and lemmas which will be used later in this paper. In Section 3, we study the existence and
uniqueness of extremal mild solution to the given system (3). At the end, in Section 4, we discuss an
example to illustrate our results.

2. Preliminaries

Let X be an ordered Banach space with norm ‖ · ‖. Define a partial order 6 in X with respect to positive
coneP = {u ∈ X : u > δ}(δ is the zero element of X). Here u 6 v if and only if v−u ∈ P. We symbolize u < v to
indicate u 6 v but u , v. Let AC(J,X) be the space of all absolutely continuous functions on J. Let C(J,X) be
the Banach space of all continuous X-valued functions on interval J with the norm ‖u‖C = sup{‖u(t)‖ : t ∈ J}.



R. Chaudhary, D. N. Pandey / Filomat 32:9 (2018), 3381–3395 3383

Let C1−q(J,X) = {u : t1−qu(t) ∈ C(J,X)} with the norm ‖u‖C1−q = sup{t1−q
‖u(t)‖ : t ∈ J}. For investigation of

impulsive conditions, consider the piecewise continuous Banach space PC1−q(J,X) = {u : (t − ti)1−qu(t) ∈
C((ti, ti+1],X) and limt→t+

i
(t − ti)1−qu(t) exists, i = 0, 1, 2, . . . ,m}, with the norm

‖u‖PC1−q = max{ sup
t∈(ti,ti+1]

(t − ti)1−q
‖u(t)‖ : i = 0, 1, 2, . . . ,m}.

Definition 2.1. Let X be an ordered Banach space with zero element δ. A cone P ⊂ X is called normal if there exists
a real number N > 0 such that for all u, v ∈ X

δ 6 u 6 v⇒ ‖u‖ 6 N‖v‖.

The smallest positive number N satisfying the above condition is called the normal constant of P.

Definition 2.2. Let X be an ordered Banach space. A coneP ⊂ X is called regular if every increasing sequence which
is bounded from above is convergent i.e. if {un} be a sequence such that

u1 6 u2 6 · · · 6 un 6 · · · 6 v.

for some v ∈ X, then there is u ∈ X with ‖un − u‖ → 0 as n → ∞. Equivalently, a cone P ⊂ X is called regular if
every decreasing sequence which is bounded from below is convergent. Clearly, a regular cone is a normal cone.

Definition 2.3. [30] The fractional integral of order q for a function F is defined by

Iq
t F(t) =

1
Γ(q)

∫ t

0
(t − s)q−1F(s)ds, t > 0, q > 0.

provided the right hand side is pointwise defined on [0,∞). Here Γ is the gamma function.

Definition 2.4. [1] The Riemaan-Liouville fractional derivative of order q for a function F is defined by

LDq
t F(t) =

1
Γ(n − q)

( d
dt

)n ∫ t

0
(t − s)n−q−1F(s)ds,

provided the right hand side is pointwise defined on [0,∞). Here n − 1 < q < n, n = [q] + 1 and [q] denotes the
integral part of the real number q.

Lemma 2.5. [1] Let q ∈ (0, 1]. If u ∈ PC1−q(J,X) and I1−q
t u(t) ∈ AC(J,X), then

Iq
t Dq

t u(t) =


u(t) − I1−q

t u(t)|t=0
tq−1

Γ(q) , t ∈ [0, t1];

u(t) −
i∑

j=1

∆I1−q
t u(ti)
Γ(q)

(t − t j)q−1
− I1−q

t u(t)|t=0
tq−1

Γ(q)
, t ∈ (ti, ti+1].

where ∆I1−q
t u(ti) = I1−q

t u(t+
i ) − I1−q

t u(t−i ), i = 1, 2, . . . ,m.

Using the idea of [40], [41], we adopt the following definition of mild solution of (3).

Definition 2.6. A function u ∈ PC1−q(J,X) is called a mild solution of (3) if u satisfies the following integral equation

u(t) =


tq−1Tq(t)u0 +

∫ t

0 (t − s)q−1Tq(t − s)F(s,u(s))ds, t ∈ [0, t1];

tq−1Tq(t)u0 +

i∑
j=1

Tq(t − t j)(t − t j)q−1G j(t j,u(t j))

+
∫ t

0 (t − s)q−1Tq(t − s)F(s,u(s))ds, t ∈ (ti, ti+1], i = 1, 2, . . . ,m.
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where

Tq(t) = q
∫
∞

0
θζq(θ)T(tqθ)dθ,

ζq(θ) =
1
q
θ−1− 1

qψq(θ−
1
q ),

ψq(θ) =
1
π

∞∑
n=1

(−1)n−1θ−nq−1 Γ(nq + 1)
n!

sin(nπq), 0 < θ < ∞.

ζq is a probability density function defined on (0,∞) i.e., ζq(θ) > 0 and
∫
∞

0 ζq(θ)dθ = 1.

Lemma 2.7. [37] The operator {Tq(t), t > 0} is a bounded linear operator such that

(i) ‖Tq(t)z‖ 6 M
Γ(q)‖z‖, for any z ∈ X.

(ii) The operator {Tq(t), t > 0} is strongly continuous i.e. for every z ∈ X and 0 < t′ < t′′ 6 a, we have

‖Tq(t′′)z − Tq(t′)z‖ → 0, as t′′ → t′;

(iii) If T(t) is compact, then Tq(t) is also compact operator for every t > 0.

Definition 2.8. A function u ∈ PC1−q(J,X) is called a lower solution of (3) if it satisfies the following inequality
LDq

t u(t) 6 Au(t) + F(t,u(t)), t ∈ J = (0, a], t , ti;
∆I1−q

ti
u(ti) 6 Gi(ti,u(ti)), i = 1, 2, . . .m;

I1−q
t u(0) 6 u0,

If all the inequalities are reversed, it is called an upper solution of (3).

Definition 2.9. A C0− semigroup {T(t)}t>0 in X is called a positive semigroup, if T(t)x > δ holds for all x > δ and
t > 0.

Let α(·) denote the Kuratowski measure of noncompactness of the bounded set. For details of definition
and properties of the measure of noncompactness, see [9, 14]. The following lemmas will be used in the
proof of main results.

Lemma 2.10. [12] For any B ⊂ PC(J,X), set B(t) = {b(t) : b ∈ B}. If B is bounded in C(J,X), then B(t) is bounded
in X and α(B) = sup

t∈J
α(B(t)).

Lemma 2.11. [9] If {bn}
∞

n=1 ⊂ L1(J,X) and there exists an c ∈ L1(J,X) such that ‖bn(t)‖ 6 c(t), a.e. t ∈ J, then
α({bn(t)}∞n=1) is integrable and

α
({ ∫ t

0
bn(s)ds

}∞
n=1

)
6 2

∫ t

0
α({bn(s)}∞n=1ds.

Lemma 2.12. [3] If B is bounded subset of X, then there exists {bn}
∞

n=1 ⊂ B, such that α(B) 6 2α({bn}
∞

n=1).

Lemma 2.13. [36](Generalized Gronwall inequality for fractional differential equation)Suppose a > 0, β > 0, c(t)
and z(t) be the nonnegative locally integrable functions on 0 6 t < T < +∞ with

z(t) 6 c(t) + a
∫ t

0
(t − s)β−1z(s)ds,

then

z(t) 6 c(t) +

∫ t

0

[ ∞∑
n=1

(aΓ(β))n

Γ(nβ)
(t − s)nβ−1c(s)

]
ds, 0 6 t < T.
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Evidently, PC1−q(J,X) is also an ordered Banach space with partial order 6 reduced by a positive cone
P̄ = {u ∈ PC1−q(J,X) : u(t) > δ, t ∈ J}with normal constant N. For x, y ∈ PC1−q(J,X) with x 6 y we denote the
ordered interval [x, y] = {u ∈ PC1−q(J,X), x 6 u 6 y} in PC1−q(J,X) and [x(t), y(t)] = {u ∈ X, x(t) 6 u(t) 6 y(t)}
in X.

3. Main Results

To prove our results, we will require the following assumptions:

(i) The function F(t, ·) : X → X is continuous for a.e. t ∈ J and for all v ∈ X, the function F(·, v) : J → X is
strongly measurable.

(ii) For any upper and lower solutions x0, y0 ∈ PC1−q(J,X) with x0 6 y0 of the system (3), the function
F(t, ·) : X→ X satisfies

F(t, v1) 6 F(t, v2),

for any t ∈ J. Where v1, v2 ∈ X with x0 6 v1 6 v2 6 y0.

(iii) The function Gi : J ×X→ X is increasing, continuous and compact and there exists a positive constant
L′ > 0 such that

‖Gi(t1, v1) − Gi(t2, v2)‖ 6 L′[|t1 − t2| + ‖v1 − v2‖],

for all t1, t2 ∈ J, v1, v2 ∈ X and each i ∈N.

(iv) There exists a constant L > 0 for any bounded U ⊂ PC1−q(J,X) such that

α(F(t,U(t))) 6 Lα(U(t)), for a.e. t ∈ J.

3.1. The case that T(t) is compact
Theorem 3.1. Let X be an ordered Banach space, whose positive cone P is normal with normal constant N. Assume
that T(t)(t > 0) is positive compact semigroup and the system (3) has upper and lower solutions x0, y0 ∈ PC1−q(J,X)
with x0 6 y0 and the assumptions (i)-(iii) holds. Then the system (3) has minimal and maximal solutions between x0
and y0.

Proof. Let E = [x0, y0] = {u ∈ PC1−q(J,X) : x0 6 u 6 y0}. Define a map Θ : E→ PC1−q(J,X) by

(Θu)(t) =


tq−1Tq(t)u0 +

∫ t

0 (t − s)q−1Tq(t − s)F(s,u(s))ds, t ∈ [0, t1];

tq−1Tq(t)u0 +

i∑
j=1

Tq(t − t j)(t − t j)q−1G j(t j,u(t j))

+
∫ t

0 (t − s)q−1Tq(t − s)F(s,u(s))ds, t ∈ (ti, ti+1], i = 1, 2, . . . ,m.

(4)

It is clear that Θ is well defined.
Using assumption (ii), for any u ∈ E, we have

F(t, x0(t)) 6 F(t,u(t)) 6 F(t, y0(t)).

Since the positive cone P is normal therefore there exists a constant C > 0 such that

‖F(t,u(t))‖ 6 C, for any u ∈ E.

The rest of the proof is divided into four steps:
Step 1: The map Θ is continuous in E.
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Let {un} ∈ E be a sequence such that {un} → u ∈ E as n → ∞. Using assumptions (i) and (iii), for almost
every t ∈ J, we get

F(t,un(t))→ F(t,u(t)), (5)
Gi(t,un(t))→ Gi(t,u(t)), (6)

as n→∞. For t ∈ [0, t1], using (5) together with Lebesgue dominated convergence theorem, we get

t1−q
‖(Θun)(t) − (Θu)(t)‖ 6

Mt1−q

Γq

∫ t

0
(t − s)q−1

‖F(s,un(s)) − F(s,u(s))‖ds

→ 0 as n→∞.

Similarly, for t ∈ (ti, ti+1], i = 1, 2, . . ., we obtain

(t − ti)1−q
‖(Θun)(t) − (Θu)(t)‖ 6

M(t − ti)1−q

Γq

∫ t

0
(t − s)q−1

‖F(s,un(s)) − F(s,u(s))‖ds

+

i∑
j=1

(t − ti)1−q(t − t j)q−1
‖Tq(t − t j)‖‖G j(t j,un(t j)) − G j(t j,u(t j))‖

→ 0 as n→∞.

Hence the map Θ is continuous in E.
Step 2: Θ is an increasing monotonic operator.
Since Tq(t) is a positive operator, combine this with assumptions (ii) and (iii), we get Θ is an increasing
operator in E.
Now show that x0 6 Θx0 and Θy0 6 y0.
For this, let h(t) =L Dq

t x0(t) − Ax0(t). Then by Definition 2.8, h(t) ∈ PC1−q and h(t) 6 F(t, x0(t)). Using
Definition (2.6) and positivity of the operator Tq(t), for t ∈ [0, t1], we get

x0(t) = tq−1Tq(t)x0(t)|t=0 +

∫ t

0
(t − s)q−1Tq(t − s)h(s)ds

6 tq−1Tq(t)x0(t)|t=0 +

∫ t

0
(t − s)q−1Tq(t − s)F(s, x0(s))ds

6 Θx0(t).

For t ∈ (ti, ti+1], i = 1, 2, . . ., we obtain

x0(t) = tq−1Tq(t)x0(t)|t=0 +

i∑
j=1

Tq(t − t j)(t − t j)q−1G j(t j, x0(t j)) +

∫ t

0
(t − s)q−1Tq(t − s)h(s)ds

6 tq−1Tq(t)x0(t)|t=0 +

i∑
j=1

Tq(t − t j)(t − t j)q−1G j(t j, x0(t j)) +

∫ t

0
(t − s)q−1Tq(t − s)F(s, x0(s))ds

6 Θx0(t).

Hence x0(t) 6 Θx0(t) for all t ∈ J. Similarly, we can show that Θy0 6 y0. Hence Θ is an increasing monotonic
operator.
Step 3: Θ(E) is equicontinuous on J.
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For any u ∈ E and s1, s2 ∈ [0, t1] such that 0 < s1 < s2 6 t1, we have

‖s1−q
2 (Θu)(s2) − s1−q

1 (Θu)(s1)‖ 6 ‖Tq(s2)u0 − Tq(s1)u0‖ +

∥∥∥∥∥s1−q
2

∫ s2

s1

(s2 − s)q−1Tq(s2 − s)F(s,u(s))ds
∥∥∥∥∥

+

∥∥∥∥∥∫ s1

0
[s1−q

2 (s2 − s)q−1
− s1−q

1 (s1 − s)q−1]Tq(s2 − s)F(s,u(s))ds
∥∥∥∥∥

+

∥∥∥∥∥s1−q
1

∫ s1

0
(s1 − s)q−1[Tq(s2 − s) − Tq(s1 − s)]F(s,u(s))ds

∥∥∥∥∥
6 ‖Tq(s2)u0 − Tq(s1)u0‖

+
MC
Γ(q)

∫ s2

s1

s1−q
2 (s2 − s)q−1ds

+
MC
Γ(q)

∫ s1

0
|s1−q

2 [(s2 − s)q−1
− (s1 − s)q−1] + (s1 − s)q−1[s1−q

2 − s1−q
1 ]|ds

+ C
∫ s1

0
s1−q

1 (s1 − s)q−1
‖Tq(s2 − s) − Tq(s1 − s)‖ds

=

4∑
i=1

Ji.

Using Lemma 2.7(ii), J1 → 0 as s2 → s1. Moreover, it is easy to see that J2, J3 → 0 as s2 → s1.
For any ε ∈ (0, s1), we have

J4 6 C
∫ s1−ε

0
s1−q

1 (s1 − s)q−1
‖Tq(s2 − s) − Tq(s1 − s)‖ds

+ C
∫ s1

s1−ε
s1−q

1 (s1 − s)q−1
‖Tq(s2 − s) − Tq(s1 − s)‖ds

6 C
∫ s1−ε

0
s1−q

1 (s1 − s)q−1 sup
s∈[0,s1−ε]

‖Tq(s2 − s) − Tq(s1 − s)‖ds

+
2MC
Γ(q)

∫ s1

s1−ε
s1−q

1 (s1 − s)q−1ds

6 C
∫ s1−ε

0
s1−q

1 (s1 − s)q−1 sup
s∈[0,s1−ε]

‖Tq(s2 − s) − Tq(s1 − s)‖ds

+
2MCt1−q

1

Γ(q + 1)
εqds

6 C
∫ s1−ε

0
s1−q

1 sq−1 sup
s∈[0,s1−ε]

‖Tq(s2 + s − s1) − Tq(s)‖ds

+
2MCt1−q

1

Γ(q + 1)
εqds

→ 0 as s2 → s1 and ε→ 0.

Similarly, for ti < s1 < s2 6 ti+1, we can show that

‖(s2 − ti)1−q(Θu)(s2) − (s1 − ti)1−q(Θu)(s1)‖ → 0 as s2 → s1.

for every i = 1, 2, . . . ,m. Hence Θ(E) is equicontinuous on J.
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Step 4: The set G(t) = {(Θu)(t) : u ∈ E}, t ∈ J, is relatively compact in X.
Let

(Θu)(t) = (Θ1u)(t) + (Θ2u)(t),

where

(Θ1u)(t) = tq−1Tq(t)u0 +

∫ t

0
(t − s)q−1Tq(t − s)F(s,u(s))ds, t ∈ [ti, ti+1], i = 0, 1, 2 . . .

(Θ2u)(t) =

i∑
j=1

Tq(t − t j)(t − t j)q−1G j(t j,u(t j)) t ∈ [ti, ti+1], i = 1, 2 . . . .

For any t ∈ [ti, ti+1], i = 0, 1, 2 . . ., choose ε ∈ (ti, t) and ν > 0 such that

(Θ1uε,ν)(t) = qtq−1
∫
∞

ν
θζq(θ)T(tqθ)u0dθ + q

∫ t−ε

0

∫
∞

ν
(t − s)q−1θζq(θ)T((t − s)qθ)F(s,u(s))dθds

6 T(εqν)
[
qt1−q

∫
∞

ν
θζq(θ)T(tqθ − εqν)u0dθ

+ q
∫ t−ε

0

∫
∞

ν
(t − s)q−1θζq(θ)T((t − s)qθ − εqν)F(s,u(s))dθds

]
.

Note that θ > ν and t − ε > s so (t − s)qθ − εqν > 0. Therefore from Lemma 2.7(iii), The operators T(εqν) and
T(tqθ − εqν) are compact. Hence (Θ1uε,ν)(t) is relatively compact in X.
Now, we have

t1−q
‖(Θ1u)(t) − (Θ1uε,ν)(t)‖ = ‖q

∫ ν

0
θζq(θ)T(tqθ)u0dθ‖

+ ‖qt1−q
∫ t

0

∫ ν

0
(t − s)q−1θζq(θ)T((t − s)qθ)F(s,u(s))dθds‖

+ ‖qt1−q
∫ t

t−ε

∫
∞

ν
(t − s)q−1θζq(θ)T((t − s)qθ)F(s,u(s))dθds‖

6 qM‖u0‖

∫ ν

0
θζq(θ)dθ

+ qCMa1−q
∫ t

0
(t − s)q−1ds

∫ ν

0
θζq(θ)dθ

+ qCMa1−q
∫ t

t−ε
(t − s)q−1ds

∫
∞

0
θζq(θ)dθ

→ 0 as ε→ 0, ν→ 0.

i.e. relatively compact sets (Θ1uε,ν)(t) are arbitrarily close to the set {(Θ1u)(t) : u ∈ E}. Hence the set
{(Θ1u)(t) : u ∈ E} is relatively compact in X.
Moreover, for t ∈ [t j, t j+1], j = 1, 2 . . ., using assumption (iii) and Lemma 2.7(iii), we get {(Θ2u)(t) : u ∈ E} is
relatively compact in X. Hence G(t) = {(Θu)(t) : u ∈ E}, t ∈ J, is relatively compact in X. From Arzela-Ascoli
theorem, we get Θ : E→ E is relatively compact.
Now define two sequences {xn} and {yn}, by the iterative scheme

xn = Θxn−1 and yn = Θyn−1, n = 1, 2, . . . . (7)

Since Θ is an increasing monotonic operator, we have

x0 6 x1 6 · · · 6 xn 6 · · · 6 yn 6 · · · 6 y1 6 y0. (8)
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Since Θ : E→ E is relatively compact therefore there exists a convergent subsequence {xnκ } of {xn}. Let {xnκ }

converges to x∗. Therefore for each ε > 0 there exists an nκ such that

‖xnκ − x∗‖ <
ε

1 + N
.

For nκ 6 n, we have

xnκ 6 xn 6 x∗,

i.e.

δ 6 xn − xnκ 6 x∗ − xnκ .

Using the normality of positive cone P, we get

‖xn − xnκ‖ 6 N‖x∗ − xnκ‖.

Thus

‖xn − x∗‖ 6 ‖xn − xnκ‖ + ‖xnκ − x∗‖
6 (N + 1)‖xnκ − x∗‖
6 ε.

Hence xn → x∗. Now using equation (4) and (7), we get

xn(t) =


tq−1Tq(t)u0 +

∫ t

0 (t − s)q−1Tq(t − s)F(s, xn−1(s))ds, t ∈ [0, t1];

tq−1Tq(t)u0 +

i∑
j=1

Tq(t − t j)(t − t j)q−1G j(t j, xn−1(t j))

+
∫ t

0 (t − s)q−1Tq(t − s)F(s, xn−1(s))ds, t ∈ (ti, ti+1], i = 1, 2, . . . ,m.

as n→∞ and using Lebesgue dominated convergence theorem, we have

x∗(t) =


tq−1Tq(t)u0 +

∫ t

0 (t − s)q−1Tq(t − s)F(s, x∗(s))ds, t ∈ [0, t1];

tq−1Tq(t)u0 +

i∑
j=1

Tq(t − t j)(t − t j)q−1G j(t j, x∗(t j))

+
∫ t

0 (t − s)q−1Tq(t − s)F(s, x∗(s))ds, t ∈ (ti, ti+1], i = 1, 2, . . . ,m.

Here x∗ ∈ PC1−q(J,X) and x∗ = Θx∗. Hence x∗ is a fixed point of Θ. Similarly, we can show that there exists
y∗ ∈ PC1−q(J,X) such that yn → y∗ as n→∞ and y∗ = Θy∗. If u ∈ E and u is a fixed point of Θ then by using
monotonic increasing property of Θ, we get x1 6 Θx0 6 Θu = u 6 Θy0 6 y1. By induction xn 6 u 6 yn.
Using (8) and taking limit n→ ∞, we get x0 6 x∗ 6 u 6 y∗ 6 y0. Hence x∗, y∗ are the minimal and maximal
mild solutions of (4) on [x0, y0] respectively.

3.2. The case that T(t) is not compact

Theorem 3.2. Let X be an ordered Banach space, whose positive cone P is normal with normal constant N. Assume
that T(t)(t > 0) is positive semigroup and the system (3) has upper and lower solutions x0, y0 ∈ PC1−q(J,X) with
x0 6 y0 and the assumptions (i)-(iv) holds. Then the system (3) has minimal and maximal solutions between x0 and
y0.
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Proof. From Theorem 3.1, we have that Θ : E → E is a continuous increasing monotonic operator. Now,
define the sequences {xn} and {yn} as defined in Theorem 3.1, which satisfies equations (7) and (8).
We prove that {xn} and {yn} are uniformly convergent in J.
Let S = {xn : n ∈N} and S0 = {xn−1 : n ∈N}. By normality of cone, S and S0 are bounded. From S0 = S∪ {x0}

it follows that α(S0(t)) = α(S(t)) for t ∈ J. Let

ϕ(t) := α(S0(t)) = α(S(t)), t ∈ J.

Since S = Θ(S0), we have

α(S(t)) = α(ΘS0(t)).

For t ∈ [0, t1], we have,

ϕ(t) = α
(
Tq(t)x̄0 + t1−q

∫ t

0
(t − s)q−1Tq(t − s)F(s, xn−1(s))ds

)
6

2Mt1−q
1

Γ(q)

∫ t

0
(t − s)q−1α(F(s, xn−1(s)))ds

6
2MLt1−q

1

Γ(q)

∫ t

0
(t − s)q−1α(xn−1(s))ds

6
2MLt1−q

1

Γ(q)

∫ t

0
(t − s)q−1ϕ(s)ds

Using Lemma 2.13, ϕ(t) = 0 for t ∈ [0, t1].
For t ∈ (ti, ti+1], i = 1, 2, . . . ,m, we have

ϕ(t) = α
(
(t − ti)1−qtq−1Tq(t)x̄0 + (t − ti)1−q

i∑
j=1

Tq(t − t j)(t − t j)q−1G j(t j, xn−1(t j))

+ (t − ti)1−q
∫ t

0
(t − s)q−1Tq(t − s)F(s, xn−1(s))ds

)
6

2Ma1−q

Γ(q)

∫ t

0
(t − s)q−1α(F(s, xn−1(s)))ds

6
2Ma1−q

Γ(q)

∫ t

0
(t − s)q−1α(xn−1(s))ds

6
2MLa1−q

Γ(q)

∫ t

0
(t − s)q−1ϕ(s)ds

Using Lemma 2.13, ϕ(t) = 0 for t ∈ [t j, t j+1]. Hence, for any t ∈ J, ϕ(t) = 0 i.e. α(Θ(S)) = 0.
Thus the set {xn : n ∈ N} is precompact in E. Therefore {xn} has a convergent sequence in E. From (8) we
can see that {xn} is itself a convergent sequence. Therefore there exists x∗ ∈ E such that xn → x∗ as n → ∞.
Similarly there exists y∗ ∈ E such that yn → y∗ as n → ∞. Using same argument as in Theorem 3.1, we get
there exists x∗ and y∗ which are the minimal and maximal mild solutions of Riemann-Liouville fractional
differential equation (3) in [x0, y0] respectively.

Corollary 3.3. Let X be an ordered Banach space with regular positive cone P. Assume that T(t)(t > 0) is positive
semigroup and the system (3) has upper and lower solutions x0, y0 ∈ PC1−q(J,X) with x0 6 y0, and the assumptions
(i)-(iii) holds. Then the system (3) has minimal and maximal solutions between x0 and y0.
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Proof. Since the assumptions (i) − (iii) holds, therefore equation (8) is satisfied. Let {xn} and {yn} be two
increasing or decreasing sequences in E. Then using Definition (2.2) and assumption (ii), { f (t, xn)} is
convergent. Therefore α({ f (t, xn)}) = α({xn}) = 0. Hence assumption (iv) holds. Then from Theorem 3.2, the
proof is complete.

Corollary 3.4. Let X be an ordered and weakly sequentially complete Banach space with normal positive cone P.
Assume that T(t)(t > 0) is positive semigroup and the system (3) has upper and lower solutions x0, y0 ∈ PC1−q(J,X)
with x0 6 y0, and the assumptions (i)-(iii) holds. Then the system (3) has minimal and maximal solutions between x0
and y0.

Proof. In an ordered and weakly sequentially complete Banach space, the normal cone P is regular. Then
using Corollary 3.3, the proof may be completed.

Now we shall prove the uniqueness of the solution of the system (3). For this we use the following
assumptions

(v) The function F : J × X→ X is continuous and there exists c > 0 such that

F(t, x2) − F(t, x1) 6 c(x2 − x1),

for any t ∈ J, x1, x2 ∈ X with x0 6 x1 6 x2 6 y0.

(vi) The function Gn : (t j, t j+1]→ X is continuous and there exists a constant b > 0 such that

Gn(t, x2) − Gn(t, x1) 6 b(x2 − x1),

for x1, x2 ∈ X with x0 6 x1 6 x2 6 y0.

Theorem 3.5. Let X be an ordered Banach space, whose positive cone P is normal with normal constant N. Assume
that T(t) is a positive operator. Also assume that the system (3) has upper and lower solutions x0, y0 ∈ PC1−q(J,X)
with x0 6 y0. If the assumptions (ii), (iii), (v) and (vi) hold with

bMN
Γ(q)

i∑
j=1

(t j − t j−1)q−1 +
MNcaq

Γ(q + 1)
< 1, for i = 1, 2, . . .m. (9)

Then the system (3) has a unique mild solution between x0 and y0.

Proof. Let {xn} ⊂ [x0(t), y0(t)] be a monotonic increasing sequence. Then for any m, p = 1, 2, . . . with m > p,
using (ii), (v) and (vi), we have

δ 6 F(t, xm) − F(t, xp) 6 c(xm − xp).

Using the normality of positive cone P, we get

‖F(t, xm) − F(t, xp)‖ 6 Nc‖xm − xp‖. (10)

By the definition of measure of noncompactness, we obtain

α({F(t, xm)}) 6 Lα({xm}),

where L = Nc. Thus the assumptions (i)− (iv) are satisfied. Therefore by Theorem 3.2, there exists x∗ and y∗

which are the minimal and maximal mild solutions of (3) between x0 and y0 in E respectively.
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Now, we will show that x∗ = y∗ for every [ti, ti+1], i = 0, 1, . . . ,m.
For t ∈ [0, t1], we have

‖x∗ − y∗‖PC1−q = ‖t1−q
∫ t

0
(t − s)q−1Tq(t − s)[F(s, x∗(s)) − F(s, y∗(s))]ds‖

6 t1−q
∫ t

0
(t − s)q−1

‖Tq(t − s)‖‖F(s, x∗(s)) − F(s, y∗(s))‖ds

6
cNMt1−q

Γ(q)

∫ t

0
(t − s)q−1

‖x∗(s) − y∗(s)‖ds

6
cNMtq

1

Γ(q + 1)
‖x∗ − y∗‖PC1−q .

Using equation (9),
cNMtq

1
Γ(q+1) < 1, so we obtain ‖x∗ − y∗‖PC1−q = 0, i.e. x∗(t) = y∗(t) for t ∈ [0, t1].

For t ∈ (ti, ti+1], i = 1, 2, . . . ,m, we have

‖x∗ − y∗‖PC1−q = (t − ti)1−q
i∑

j=1

(t − t j)q−1
‖Tq(t − t j)‖G j(t j, x∗(t j)) − G j(t j, y∗(t j))‖

+ (t − ti)1−q
∫ t

0
(t − s)q−1

‖Tq(t − s)‖‖F(s, x∗(s)) − F(s, y∗(s))‖ds

6
bMN
Γ(q)

i∑
j=1

(t j − t j−1)q−1(t j − t j−1)1−q
‖x∗(t j) − y∗(t j)‖

+
MNc(t − ti)1−q

Γ(q)

∫ t

0
(t − s)q−1

‖x∗(s) − y∗(s)‖ds

6
bMN
Γ(q)

i∑
j=1

(t j − t j−1)q−1
‖x∗ − y∗‖PC1−q +

MNcaq

Γ(q + 1)
‖x∗ − y∗‖PC1−q

=
[bMN

Γ(q)

i∑
j=1

(t j − t j−1)q−1 +
MNcaq

Γ(q + 1)

]
‖x∗ − y∗‖PC1−q

Using equation (9), we obtain ‖x∗ − y∗‖PC1−q = 0, i.e. x∗(t) = y∗(t) for t ∈ (ti, ti+1], i = 1, 2, . . . ,m. Thus, we
obtain x∗(t) = y∗(t) for t ∈ [0, a]. Hence x∗ = y∗ is the unique mild solution of the system (3), which can be
acquired by the monotone iterative procedure beginning from x0 and y0.

4. Discussions

In this paper, monotone iterative technique coupled with the method of lower and upper solution has
been applied to show the existence and uniqueness of mild solution to impulsive Riemann-Liouville frac-
tional differential equation (3). Here we have proved two existence results. In the first existence result,
the semigroup T(t) generated by the linear operator A is assumed to be compact. While in the second
existence result, we relax the condition of compactness of the semigroup T(t) that is we have assumed that
the semigroup T(t) is non-compact and the existence of the mild solution is shown using the theory of
measure of noncompactness. Moreover, if the functions F and G satisfies Lipschitz type condition (v)-(vi),
then the solution will be unique.
In some applications of partial differential equations (for example neutron transport equations, reaction
diffusion equations, population models), the linear part generates a positive analytic semigroup in weakly
sequentially complete Banach space. Therefore, if the assumptions (i)-(iii) are satisfied, one can easily apply
Corollary (3.4) to these partial differential equations.
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5. Example

Consider the following Riemann-Liouville fractional impulsive differential equation in an ordered Ba-
nach space X = L2[0, π]:

D1/2u(t, x) = ∂2

∂x2 u(t, x) +
et
|u(t,x)|

1+|u(t,x)| , t ∈ [0, 1
2 ) ∪ ( 1

2 , 1], x ∈ [0, π];
∆I1/2

t u( 1
2 , x) =

|u(t,x)|
1+|u(t,x)| ,

u(t, 0) = u(t, π) = 0,
I1/2
t u(t, x)|t=0 = u0(x),

(11)

where t ∈ [0, 1] and x ∈ [0, π]. Let P = {u ∈ X : u(ν) > 0 a.e. ν ∈ [0, π]}. Then P is normal cone in Banach
space X with normal constant N = 1. Define an operator A : D(A) ⊂ X→ X by Au = u′′ with domain

D(A) = {u ∈ X : u,u′ are absolutely continuous u′′ ∈ X,u(0) = u(π) = 0}.

Clearly, A has a discrete spectrum with the eigenvalues of the form −n2 for n ∈ N, whose correspond-
ing(normalized) eigenfunctions are given by un(x) =

√
2/π sin nx and can be written as

Au = −

∞∑
n=1

n2(u,un)un, u ∈ D(A).

Then A generates an analytic semigroup of uniformly bounded linear operator {T(t)}t>0 in X given by

T(t)u =

∞∑
n=1

e−n2t(u,un)un, u ∈ X.

and
‖T(t)‖ 6 e−1 < 1 = M.

Now define

y(t) = u(t, x),

F(t,y(t)) =
ety(t)

1 + y(t)
,

G(t,y(t))|t=1/2 =
y(t)

1 + y(t)
.

Thus, the aforementioned equation (11) can be written in the form
LD1/2

t y(t) = Ay(t) + F(t, y(t)), t ∈ J = [0, 1], t , 1/2;
∆I1/2

t=1/2y(1/2) = G(1/2, y(1/2)),
I1/2
t y(0) = y0,

(12)

Let y0(x) > 0, x ∈ [0, π] and there exists a function ξ(t) > 0 such that
LD1/2

t ξ(t) > Aξ(t)(t) + F(t, ξ(t)), t ∈ J = [0, 1], t , 1/2;
∆I1/2

t=1/2ξ(1/2) > G(1/2, ξ(1/2)),
I1/2
t ξ(0) > y0,

(13)

From (13), we get that x0 = 0 and y0 = ξ(t) are the lower and upper solutions of the system (12) respectively.
We can easily check that the functions F and G satisfies all the assumptions (i)− (vi). Hence using Theorem
3.1 or 3.2 and 3.5, we conclude that, the given system (11) has the unique mild solution lying between the
lower solution 0 and the upper solution ξ(t).
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