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Abstract. This paper is motivated by Phong and Stein’s work in [11]. The purpose of this paper is to
establish the inhomogeneous multi-parameter Lipschitz spaces Lip;; , associated with mixed homogeneities
and characterize these spaces via the Littlewood-Paley theory. As applications, the boundedness of the
composition of Calderén-Zygmund singular integral operators with mixed homogeneities has been con-
sidered.

1.Introduction and Statement of Main Results

This paper is motivated by Phong and Stein’s work in [11]. The purpose of this paper is to introduce a
new class of inhomogeneous Lipschitz spaces associated with mixed homogeneities and characterize these
spaces via the Littlewood-Paley theory. We also prove that the composition of two Calderén-Zygmund
singular integral operators with mixed homogeneities is bounded on these new Lipschitz spaces.

In order to explain the question we deal with let us begin with recalling the questions of composition
of operators with mixed homogeneities. To be precise, let e(&) be a function on IR” homogeneous of degree
0 in the isotropic sense and smooth away from the origin. Similarly, suppose that /(&) is a function on IR"
homogeneous of degree 0 in the non-isotropic sense related to the heat equation, and also smooth away
from the origin. Then it is well-known that the Fourier multipliers T; defined by TTG)(«E) =¢(&)f(&) and
T, given by ﬁ(?)(é) = h(&)f(&) are both bounded on L? for 1 < p < oo, and satisfy various other regularity
properties such as being of weak-type (1, 1). Note that any operator T; is bounded on the classical Hardy
and homogeneous Lipschitz spaces, while T is bounded on the Hardy and homogeneous Lipschitz spaces
associated the non-isotropic homogeneity, which was introduced in [9]. See also the recent results of Stein
and Yung [12]. Rivieré in [13] asked the question: Is the composition T o T still of weak-type (1,1)? Phong
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and Stein in [11] was the first to answer this question and they gave the necessary and sufficient conditions
for which T; o T, is of weak-type (1,1). The operators Phong and Stein studied are in fact compositions
with mixed type of homogeneities which arise naturally in the d-Neumann problem. See [11] for more
details. In 2013, Han etc. in [4] developed a new Hardy space theory and proved that the composition of
two Calderén-Zygmund singular integral operators with different homogeneities is bounded on this new
Hardy space.

Indeed, there are other questions of this type that can be asked about composition of operators associated
with mixed homogeneities, which cannot be answered by using the properties of these operators separately.
We mention that such a question was considered for the homogeneous Lipschitz spaces in [3]. It is well
known that the classical Lipschitz spaces play an important role in harmonic analysis and partial differential
equations. See [1, 2, 5-8, 10].

The purpose of this paper is to introduce a new class of inhomogeneous Lipschitz spaces associated
with mixed homogeneities and characterize these spaces via the Littlewood-Paley theory. We prove that the
composition of two Calderén-Zygmund singular integral operators with mixed homogeneities is bounded
on these Lipschitz spaces.

In order to define the inhomogeneous Lipschitz space associated with mixed homogeneities, we recall
some notations concerning mixed homogeneities. For x = (x’,x,) € R ! xR and 6 > 0, we consider two
kinds of homogeneities

Oe s (X', x,) = (06X, 0x,), 6>0
and
O (X, x,) = (6x',6%x,), 6>0.

We denote |x|, = (|x'] + |x,*)'/? and x|, = (|x']* + |x.[)!/?. We also use notations j A k = min{j,k} and
j Vv k = max{j, k}.

Throughout this paper, we use C to denote positive constants, whose value may vary from line to line.
Constants with subscripts, such as C;, do not change in different occurrences. We denote by f ~ g that
there exists a constant C > 0 independent of the main parameters such that C"'g < f < Cg. Now we can
introduce the definition of the inhomogeneous Lipschitz space associated with different homogeneities.
Denote that

Auf@@) = flx—u) = f(x);  ALf(x) = flx—u) + flx +u) - 2f(x)

and

Aof(x) = f(x—0) = f(x); Aif(x) = f(x—0) + f(x +v) = 2f(x).

Definition 1.1. Let o = (a1, ap) with aj,ay > 0. The inhomogeneous Lipschitz space associated with mixed
homogeneities Lip® is defined to be the space of all bounded continuous f defined on R" such that

) com
(i) when 0 < ay, a0 < 1,

[Ayf] 1A, f1 [AuA f]
I fllLie,, == llflleo + sup + sup +s
Peom u#0 |M|?1 v#0 |Z)|22 u,0#0 |u|?1|v|22 '
(ii)) when a1 = 1,0 < ap < 1,
ALfl 1A f |AL A f|
Ifllipe =1 flleo + SUp —— + sup T ;
Heom a u#0 |u|€ v#0 |Z)|Z2 u,v#0 |M|EIU|Z2 '

(iii) when 0 < a1 < 1,0 =1,

A f] A £ AN f]
Il = I flleo + sup f + sup DL — of
wzo [l 020 [0l 1,040 [ule [0l

7
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(iv) when a1 = ap =1,

A ] 1A, F7| IAZAZ f]
Wil o= fllo + sup 2l 4 gup T g 1S
u#0 [uale #0 [0l 1,040 1]l

< 00,

When a = (a1, ap) with aq, an > 1, we write ap = my + 11 and ap = my + rp where my, my are integers and
0<ry,r<1,r=(r,r). f€Lipl meansthat fisa C™*" function such that

com
g, = Y WD fllgy,, < oo.

|Bl=my +my

Next we will give the Littlewood-Paley characterization for Lip% . For this purpose, let ¢V € S(R") be
a radial function with

suppy (&) c{E:1/2 <&l <2},
and let ¢! be a radial function with
p0(0) =1, suppg® c (&, <2]
satisfying
PO, &) + Y WO TE,27E,)P =1, forall & € R".
=1
And let @ € S(R") be a radial function with
suppy@ (&) c{£:1/2 < |&], <2},
and let ¢ be a radial function with
pD(0) =1, suppg® c (&, <2]
satisfying
PO, ENE + Y 1p@@TE,27E,)P =1, forall & € R",
=1

Let t,bi.l)(x) = 2inyM(2ix’, 2ix,), 1/},((2) (x) = 2K Dy @ 2%y’ 2%y, ) and P = ¢§1)*¢f) (x). We denote ¢ = ng),
wherei=1,2.
By taking the Fourier transform, we obtain the Calderén identity, that is, for f € L?,

f= ii#}ﬁk*#’ﬁk*ﬂ
=0 k=0

where the series converges in L?(R") norm.
One of the main results of this paper is the following Littlewood-Paley characterization:

Theorem 1.2. f € Lip‘j‘om with @ = (a1, a2), aq, a0 > 0 ifand only if f € S’ and
[k * flloo < C27I01275a2,

where j,k > 0.
Furthermore,

j ki
Ul ~ sup 21252,  flleo.
jk=0
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To study the boundedness of the composition of Calderén-Zygmund singular integral operators on
Lip¢,,, we need the following

Definition 1.3. A locally integrable function Ky on R" \ {0} is called a Calderén-Zygmund kernel associated with
isotropic homogeneity if there exist constants C1,06 > 0 such that
(i) |Ki(x)| < Clﬁ;

(ii) |[K1(x)| < Cllxl,%for x| > 1;
(iii) (;%7(1(::)‘ < A" forall | > 0;

(iv) fr1<\xlg<r2 Ki(x)dx =0 forall 0 <ry <1y < 0.

We say that Ty is a Calderén-Zygmund singular integral operators associated with isotropic homogeneity if
T1f(x) = p.v.(Ky = f)(x), where K fulfills condition (i) — (iv).

Definition 1.4. Suppose that K, € Llloc(]R” \ {0}) is said to be a Calderén-Zygmund kernel associated with the
non-isotropic homogeneity if there exist constants C1,0 > 0 such that

(v) [Ka(x)| < Cq ﬁ;
("UZ) |K2(X)| < Clwﬁfor |X|h > 1,‘

(Ull) ;n—lal—Zﬁ—l
(viii) j;1<\xlh<rz Ky(x)dx =0 forall 0 < ry <1y < 00

We say that T is a Calderén-Zygmund singular integral operators associated with the non-isotropic homogeneity
if To f(x) = p.v.(Ka * f)(x), where K, fulfills condition (v) — (viii).

1 B
Ty ey o, x)| < Bl for alllal, § >0,

We now state the main result of this paper.

Theorem 1.5. Suppose that Ty and T are the Calderén-Zygmund singular integral operators associated with the
isotropic and non-isotropic homogeneity, respectively. Then both Ty and T, extend to bounded operators on Lip?
with a = (a1, az) for 0 < ay, ay < o0. Particularly, the composition operator T = Ty o T, is bounded on Lip{,,, with
a = (ay,a3), a1, a > 0.

2Proof of Theorem 1.1

Proof. First we prove that if f € Lip}, with 0 < ay,a; < 1, then f € §'. To do this, it suffices to show that
< f,g > is well defined for any g € S. In fact, we have

9@ = Y it i+ g0,
jk=0
where the series converges in S. Then we only need to prove that Z?/l:o < f,jk* Yjr * g > is well defined

for g € S. To this end, for all j, k > 0 we estimate < ¢, * f,1;x * g > as follows.
Casel: j=k=0.

o0+ fX)] = | f f ¥ @) f(x = 1 = v)dudo| < Cl|flleo < Cllfllje. -

This implies that
| <oo*f,oo*g>1<Clifllipe lI9lls-
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Case2: j>1;k=0.
Applying the cancellations conditions on t,b;l), we have

o fOl = | f f PP Y I f (x = u = 0) = f(x - 0)ldudol
If(x —w) = f)I a
< sup % f f W80 gy ©)llule’ dudo

u#0,xeR"

2]'11 1
< " i ald !
< C“f”Llpmm ff (1 + 2]|M|3)M (1 + |U|h)M|u|e uao
< C27 fllgpe. -

Applying the almost orthogonal estimate, we get that

1 1
(14 ML (L + ) H4M

i * gl = [P« Y« g()] < C27* lglls

for any L, M > 0, where j € Z,.
Therefore, we obtain that

| <o fiio*g > 1< C2T D fllLe Nlglls.

Case3: j=0;k>1.
Applying the similar estimate, we have
| < ox* frpoxxg>1 < C2HEFD| Al lglls.
Case4: j>1;k>1.
Applying the cancellations conditions on both 1/15.1) and l/},(f), we have
[k * f ()]
= | f f ¢§1>(u)¢§f>(v)[ fx—u—v)— fx—u) — f(x — ) + f(x))dudo]

cc sup LD SO SO ORI [ [y 0y ol o dudo

u,v#0,xeR" |M|l;1 |Z)|?2
< C27M 27K fl e

Similarly, applying the almost orthogonal estimate, we get that

L L
(L + Py (1 )i

Wjex g0l =19+ yi « gl < 22

for any L, M > 0, where j,k € Z,.
We obtain that

| <@+ fpjprg>| < C2T/Erap Kl o) g gl

com

and thus, < f, g > is well defined. Moreover, if & = (a1, az) with 0 < a3, a4 < 1, we have

sup 2/%1252[1h ¢+ fllo < Cll fllripe

. com ”
jk=0



J. Tan, Y. Han / Filomat 32:9 (2018), 3397-3408 3402

When a = (a1, a2) with a3 =1, 0 < a; < 1, we only need to consider the cases where j > 1;k = 0 and
j = 1,k > 1 since the other two cases are similar to the case where a = (a1, ) with a; =1, a, < 1. Indeed, if

j =1,k =0, noting that 1#5.1) is a radial function, we have

o= f0)l =1 f f PP YR I f(x = u = 0) = f(x - 0)ldudol

= %I f f PP@YP I f(x +u—0) + flx =1 —0) = 2f(x = 0)ldudol
<C sup lf(x+u—0)+ f(x —u—0)—2f(x — 0| ff|¢§1)(u)¢82)(v)||uledudv

u#0,xeR" [l
< C270Ifllipe, -

com

If j>1;k>1, then

ljx = fOOl = %I f f PP PR O)f(x -1 —0) + f(x +u - o) dudol

=%Iff¢§”(u)¢f’(v){[f(x —u—0)+ f(x+u—0)—2f(x —0)]

2 f(r = u) + f(x + 1) = 2£(0)\dudol
<C I[f(x—u—-0)+ f(x +u—0)=2f(x —0)] = 2[f(x —u) + f(x +u) = 2f(x)]|
< sup

u,v#0,xeR" |“|e|v|§2

f f 0" )2 @) llulefolgdudo
SCZ‘jZ—kaz”f”UPZW ‘

Applying the almost orthogonal estimate, namely

1
L+ )T (L4 e 19l

[jux g = 19 9« g()] < C277H2 7
for any L, M > 0, where j, k € Z,, yields

| <jx* fr g >| < C2IENTHER) £ gl
Thus, < f, g > is well defined and

ik
sup 2/2°2[j * flloo < CllfllLie,,-
k=0

Similarly, we can deal with other cases @ = (a1, a;) where 0 < @1 <1, ap = 1 or @; = ap = 1. Finally,
we consider the case where @ = (a,ax) with 1 < a1 = my +r,1 < ax =my+r, with 0 < ry,rn < 1,7 =

. 3 v 5 9 .
(r1,72). We write B = (B1,B2), Bil = mu, |Bal = ma, §37(8) = oz and §7(6) = gy for jk 2 0. Then

ot £ = DB x f = (=1)m*m2g « DB, where 0 = ¢V * 0P, Note that 2/M2km21)., satisfy the similar
2 2 J J j k J y

smoothness, size and cancellation conditions as ;. Therefore, the similar argument yields that for any
j,k >0, |‘B| =my +myp

s % flloo = 272722 13 % DF fllo
< C2_jm1 2—kn122—jr12—kr2”DﬁfHLipzm — Cz—jmz—kaz”Dﬁf”u.pzm.
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That is,

j k
sup 27122191 fll < Clflluge. -
k=0

To prove the converse statement, we first show that every distribution f € &’ satisfying

sup 2ja12kt12||1]bj/k *f”oo <C
Jik=0

coincide with a bounded continuous function in IR".
To see this, as mentioned, f(x) = Y. =0 ¥jk * ¥jk * f(x) in §’. Observe that

Wik * @ik * fI<Pjx* flloollpjrll < (sup 2k *f||oo)2_j“12_k“2-
k=0

Thus, the series ). ;1o Yjx * Pk * f converges uniformly in x. Since ;x * 1, * f is continuous in R”, the sum
function f is also continuous in IR". Moreover,

Ifllee < C((sup 22|l 1+ fllo -

k=0
Now we estimate ||f|;2 as follows.

Case 1: if a = (a1, ap) with 0 < aq,a; < 1.
We show that

If(x —u) - f(x)| < c( sup 20428 [y, + f llm)luli“-

k=0
To do this, write
Fe =) - FI
1Y [ Wit =) = gata - )l S
k>0
< (sup 22 lyje flo) Y, 224 [ gate =) - gt - wides
k=20 k=0

Therefore, we only need to consider the case where |ul, < 1. Let 7 be the unique nonnegative integer

such that 277! < |ul, < 27 and denote A := sup k0 2/m2k|jy 4+ flleo. Then we have

If(x =) = fl
SA( z Z 2‘f‘¥12—kt¥z fh[)j/k(x —-u- ZU) - l;bj,k(x — w)|dw
=0 k=0
+ Z Z o-jarp—kas f'l’bf’k(x — 1= w)| + lyj(x — w)ldew)
j=n k=0

=:1+1I
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For I, applying the mean value theorem, for any M > 0 there exist an 6 € (0, 1) such that

=AY Y 2 [t @) - yucio)

j=0 k=0

kZ:: 2-jap-ka ffhb;l)(u +w—2z) - gb;l)(w - z)IIIpf{Z)(z)ldzdw)

ks ok(n+1)
<A 21a12ka2ffzfe dzd
( )3 u (1+2le z+9u| WM (1 + 2Kz M w)

<A() 2/27morin) < CATmmA) ~ AR L Aluft,
j=0

For II, the size conditions on both 1/)(1 and 1/1(2) yield

11 < CA( ZZz joo gk f [ j(w0)ldw)

j=n1 k=0

<CA Z 27 L ADTMA  Aly |,

j=m

Thus, we obtain that for any u # 0 and x € R?,

VDTN < up 220 ke
|u|g k=0
Similarly,
|f(x Z)) ()| ayyka
L =9) = FO g o
u#0,xeR* |U| A0

Finally, we show that

| X—1U—7D X —1u x —0)+ f(x)| o Hka
£( )2 e+ FON s pim gy o L
uv;éO |u|€ |?J| 20

In fact,
lfx—u—-v) - flx—u) = flx —0) + f(x)|
_|Zf4;]k(x—u—v W) = Pix(x —u—w) = Pjx(x —v —w) + Pjr(x — w)]

jk=0
X qb]k *_f(ZU)dZU|
AY [0 u-zmw) - P -z - g - o) - Y@ S
k=0
<A22 o ke f ! Wiy —y - )—¢§1>(x—z—w)||¢f’(z—v)— P (2)|dzduw.
k=0

3404

We only consider the case where |u|, < 1 and ||, < 1 since other cases are similar and easier. Let 11,1,

be the unique nonnegative integer such that 277! < |u|, < 27 and 277! < [v], < 272,
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Now we split the above series by

AY Y 2imptkep 4 Y'Y poiuphep

j2ﬂ1 k>ny j<n1 k>n,
j=ny k<ny j<ni k<ny

:= By + By + B3 + By,
where B = [ |¢§1>(x —u-—z-w)— ij.”(x -z 0Pz - v) - PP (2)ldzdw.

To deal with the first series, applying the size conditions on both Ilbﬁ.l) and ¢
by

;{2) yields that B; is dominated

\311 <C)Y Y arimprhe < cpmmap e < Clulf o,

jZﬂl k>n,

To estimate the second series B,, applying the smoothness condition on 1/)51) and the size condition on
}(f) implies that B, is bounded by
[Bof <€ Y7 Y it enprtenyy, ¢ -y, <t olul, < w0l
j<ni k=ny

The estimate for third series Bj is similar to the estimate for B,. Finally, to handle with the last series By,
applying the smoothness conditions on both 1/1§1) and 1/11((2) we obtain that B, is dominated by

|B4| <CY Y 2l 2ol ke g gmmangmi=ady) o, < Juld ol
j<ni k<ny

These estimates imply that

[fx—u—0) = flx—u) = flx —0) + f(x)] < Afule|" 0],

Next we consider the case where @ = (a1, ay) with a; = a» = 1 and only show the following estimate for
any u,v € R"

[fx—u—-0)+ fx+u—-0)-2f(x-v)]+[fx—u+0)+ f(x +u+0) - 2f(x + v)]
“2[f(x—u)+ f(x+u)-2f(x)]
=C( sup 20285 % F0)llo kel
Jk=

The other estimates are similar and easier. Observe that

[fx-—u—-0v)+ fx+u—-0)-2f(x=-v)]+[f(x —u+0) + f(x + u+0v) - 2f(x + v)]
“2[f(x—u)+ f(x+u)—2f(x)]
:Zf[gb;l)(x—u—z—w)+1/;§,1)(x+u—z—w)—2¢§l)(x—z—w)]

k>0
X [W2(z = 0) + 2z + 0) - 20PN j1 * fw)dzduw,
Repeating a similar calculation gives the desired result for this case.

By repeating the similar calculation, we can handle the other cases where a1 = 1,0 < a» < 1 and
0 < a1 <1, ap = 1similarly. To end the whole proof, we need to consider the case where a1, a; > 1. We
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denote that § = (81, f2), IBil = m; and a; = m; + 15, i = 1,2. Here we will prove that for any |f| = m; + m; and
O0<ry,rn<l

IDF fllgy < Csup 2122l + fllo.
jk=0

Note that

DFf(x —u—v) = DP f(x — u) — DPf(x — v) + DP f(x)
<) ff[DﬁW;”(x —u-z-w) - DY (x -z - w)]
jk=0

x [DFyP (z — v) - DPYP @)+ f(w)dewdz.

By analogous argument we can obtain the desired results. We leave the details to the reader.
Therefore, the proof of Theorem 1.1 is concluded. O

3.Proof of Theorem 1.2

In order to prove Theorem 1.5, we first show the following

a
com

Proposition 3.1. If f € Lip% , then there exist a sequence {f,} € L*> N Lip
distribution sense. Furthermore,

such that f, converges to f in the

”fn”Lip?nm < C”f”Lip“

com”

where the constant C is independent of f, and f.

Proof. To show this proposition, note that

f= ) ikr e f0)

k=0

in the distribution sense.
Set

fo = Z Pk * P f(0).

L Ikl<n

Obviously, f, € L? and converges to f in the distribution sense. To see that f, € Lip% ,, by Theorem 1.1,

I fullips,, <C sup 279252+ £ (x)].
jk=>0,x€R"

Observe that

Vi ful) =i Y WprrPpe e fO =Y Wi Py x by ).

LIk’ |<n [j'LIk'|<n

By the classical almost orthogonal estimate, that is, there exist two positive integers L, M > a; + a + 1, such

that
D(AJ AKAK)(1=1) QJAJ A2AKAK')

W (x)] < 2T LKL :
Wik Py (] <2 2 (1 + 2N ARAR |7 |yt ML (1 4 2JAT AN |y, [ 1+M

Therefore, again by Theorem 1.1, it follows that
202 e i@l < sup 22 e« OIS Il

K x
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We now prove Theorem 1.2.
Proof of Theorem 1.5.  First we prove that for any f € LN Lip%

IT2(lleige,, < Cll e

com com

To see this, by Theorem 1.1,

IT2(Allipe. < Csup 27425921k * Ta(f)lo-
k=0

Noting that T, is bounded on L?, f € L2, and applying the Calderén identity yields
P Taf() = Y. WjxrKax i) * Py » f(2).
j/ k=0
By the following almost orthogonal estimate

—lj—f'ILy~lk=K'IL 9=(iA] ARAKIM—(jA ] A2kN2K' )M

7
[Yjx* Ko * o (0, 200)] < C[z—(j/\j’/\k/\k’) + ML [2GATAZKAZR) § g, M

we obtain that

IT2(llLipe,,
<Csup 2/ ke Z 2_|j_j/|L2_|k_k/|L||le,k * flleo
j,kZO jl,klzo
SC sup 2j’a12k'a2 Sup Z z(j_j/)al2(k—k’)0(22—|j_j/|L2—|k—k'|L“ll)j,k *f”oo
k=0 jk=0 ' k>0

—
<C sup 27 2°%|ihjr o * flloo < CllfllLipe, -
1) >0

Next we extend T to Lip;

{fu} € L> N Lip® such that f, converges to f in the distribution sense. Furthermore,
PCOH’! g

”fn”Lip;'um < C”f”UPZWn'
Applying (3) implies that
IT2(fi) = To(fullLips,, < Cllfa = fulliig,,

Thus, T>(f,) converges in the distribution sense and we can define

To(f) = lim Ta(fy) in .

3407

)

as follows. By Proposition 3.1, if f € Lip_ , then there exist a sequence

To see the existence of this limit, we write < Tao(f, — fu), § >=< fu = fu, T5(g) > since that f, — f,, and g belong
to L2, and T» is bounded on L? as well as T*. By Proposition 3.1, < f,, — fu, T5(g) > tends to zero as n,m — oo.

Applying Theorem 1.1 again, we get that

IT2(Pllips < Csup 274252 i+ Ta(£)(0)lleo
k=0

< Csup 27%2%2|| lim 5 * To(fu)(@)lloo
k=0 n—eo

< Clim infyy—,e0 sup 27 2592|[th 1 * To(f) (¥)lleo
k20

< Clim infyeoll fullLipe,
< Cllfllipe

com
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Similarly, we can also prove that

As

IT1 (i, < ClifllLipe, -

com
a consequence, we obtain that

IT(Nipe, < Cllfllipe -

Therefore, we conclude the proof of Theorem 1.5. ]
Finally, we remark that Theorem 1.1 holds for 0 < a; < ej and 0 < a; < € if

and

e 1
Ki(x) — Ki(x)| < Alx — 2[5 x4 for |x —x'|, < Elxlg
7( 7( Nl < B 71€2 1 —N—1—€2 £ 11 N < 1
2(x) = Ka(x')| < Blx — x[}?|x], orall [x — x|, < §|x|h.

We leave the details of the proof to the reader.
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