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Available at: http://www.pmf.ni.ac.rs/filomat

Inhomogeneous Multi-Parameter Lipschitz Spaces
Associated with Different Homogeneities

and their Applications

Jian Tana, Yanchang Hanb

aCollege of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
bSchool of Mathematic Sciences, South China Normal University, Guangzhou, 510631, China.

Abstract. This paper is motivated by Phong and Stein’s work in [11]. The purpose of this paper is to
establish the inhomogeneous multi-parameter Lipschitz spaces Lipαcom associated with mixed homogeneities
and characterize these spaces via the Littlewood-Paley theory. As applications, the boundedness of the
composition of Calderón-Zygmund singular integral operators with mixed homogeneities has been con-
sidered.

1. Introduction and Statement of Main Results

This paper is motivated by Phong and Stein’s work in [11]. The purpose of this paper is to introduce a
new class of inhomogeneous Lipschitz spaces associated with mixed homogeneities and characterize these
spaces via the Littlewood-Paley theory. We also prove that the composition of two Calderón-Zygmund
singular integral operators with mixed homogeneities is bounded on these new Lipschitz spaces.

In order to explain the question we deal with let us begin with recalling the questions of composition
of operators with mixed homogeneities. To be precise, let e(ξ) be a function on Rn homogeneous of degree
0 in the isotropic sense and smooth away from the origin. Similarly, suppose that h(ξ) is a function on Rn

homogeneous of degree 0 in the non-isotropic sense related to the heat equation, and also smooth away
from the origin. Then it is well-known that the Fourier multipliers T1 defined by T̂1( f )(ξ) = e(ξ) f̂ (ξ) and
T2 given by T̂2( f )(ξ) = h(ξ) f̂ (ξ) are both bounded on Lp for 1 < p < ∞, and satisfy various other regularity
properties such as being of weak-type (1, 1). Note that any operator T1 is bounded on the classical Hardy
and homogeneous Lipschitz spaces, while T2 is bounded on the Hardy and homogeneous Lipschitz spaces
associated the non-isotropic homogeneity, which was introduced in [9]. See also the recent results of Stein
and Yung [12]. Rivieré in [13] asked the question: Is the composition T1 ◦T2 still of weak-type (1,1)? Phong
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and Stein in [11] was the first to answer this question and they gave the necessary and sufficient conditions
for which T1 ◦ T2 is of weak-type (1,1). The operators Phong and Stein studied are in fact compositions
with mixed type of homogeneities which arise naturally in the ∂̄-Neumann problem. See [11] for more
details. In 2013, Han etc. in [4] developed a new Hardy space theory and proved that the composition of
two Calderón-Zygmund singular integral operators with different homogeneities is bounded on this new
Hardy space.

Indeed, there are other questions of this type that can be asked about composition of operators associated
with mixed homogeneities, which cannot be answered by using the properties of these operators separately.
We mention that such a question was considered for the homogeneous Lipschitz spaces in [3]. It is well
known that the classical Lipschitz spaces play an important role in harmonic analysis and partial differential
equations. See [1, 2, 5–8, 10].

The purpose of this paper is to introduce a new class of inhomogeneous Lipschitz spaces associated
with mixed homogeneities and characterize these spaces via the Littlewood-Paley theory. We prove that the
composition of two Calderón-Zygmund singular integral operators with mixed homogeneities is bounded
on these Lipschitz spaces.

In order to define the inhomogeneous Lipschitz space associated with mixed homogeneities, we recall
some notations concerning mixed homogeneities. For x = (x′, xn) ∈ Rn−1

× R and δ > 0, we consider two
kinds of homogeneities

δe : (x′, xn)→ (δx′, δxn), δ > 0

and

δh : (x′, xn)→ (δx′, δ2xn), δ > 0.

We denote |x|e = (|x′|2 + |xn|
2)1/2 and |x|h = (|x′|2 + |xn|)1/2. We also use notations j ∧ k = min{ j, k} and

j ∨ k = max{ j, k}.
Throughout this paper, we use C to denote positive constants, whose value may vary from line to line.

Constants with subscripts, such as C1, do not change in different occurrences. We denote by f ∼ 1 that
there exists a constant C > 0 independent of the main parameters such that C−11 < f < C1. Now we can
introduce the definition of the inhomogeneous Lipschitz space associated with different homogeneities.
Denote that

∆u f (x) = f (x − u) − f (x); ∆z
u f (x) = f (x − u) + f (x + u) − 2 f (x)

and
∆v f (x) = f (x − v) − f (x); ∆z

v f (x) = f (x − v) + f (x + v) − 2 f (x).

Definition 1.1. Let α = (α1, α2) with α1, α2 > 0. The inhomogeneous Lipschitz space associated with mixed
homogeneities Lipαcom is defined to be the space of all bounded continuous f defined on Rn such that
(i) when 0 < α1, α2 < 1,

‖ f ‖Lipαcom
:= ‖ f ‖∞ + sup

u,0

|∆u f |
|u|α1

e
+ sup

v,0

|∆v f |
|v|α2

h

+ sup
u,v,0

|∆u∆v f |
|u|α1

e |v|
α2
h

< ∞;

(ii) when α1 = 1, 0 < α2 < 1,

‖ f ‖Lipαcom
:= ‖ f ‖∞ + sup

u,0

|∆z
u f |
|u|e

+ sup
v,0

|∆v f |
|v|α2

h

+ sup
u,v,0

|∆z
u∆v f |
|u|e|v|α2

h

< ∞;

(iii) when 0 < α1 < 1, α2 = 1,

‖ f ‖Lipαcom
:= ‖ f ‖∞ + sup

u,0

|∆u f |
|u|α1

e
+ sup

v,0

|∆z
v f |
|v|h

+ sup
u,v,0

|∆u∆z
v f |

|u|α1
e |v|h

< ∞;
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(iv) when α1 = α2 = 1,

‖ f ‖Lipαcom
:= ‖ f ‖∞ + sup

u,0

|∆z
u f |
|u|e

+ sup
v,0

|∆v f z
|

|v|h
+ sup

u,v,0

|∆z
u∆z

v f |
|u|e|v|h

< ∞.

When α = (α1, α2) with α1, α2 > 1, we write α1 = m1 + r1 and α2 = m2 + r2 where m1,m2 are integers and
0 < r1, r2 ≤ 1, r = (r1, r2). f ∈ Lipαcom means that f is a Cm1+m2 function such that

‖ f ‖Lipαcom
:=

∑
|β|=m1+m2

‖Dβ f ‖Lipr
com
< ∞.

Next we will give the Littlewood-Paley characterization for Lipαcom. For this purpose, let ψ(1)
∈ S(Rn) be

a radial function with

suppψ̂(1)(ξ) ⊂ {ξ : 1/2 < |ξ|e ≤ 2},

and let ϕ(1) be a radial function with

ϕ̂(1)(0) = 1, suppϕ̂(1) ⊂ {|ξ|e ≤ 2}

satisfying

|̂ϕ(1)(ξ′, ξn)|2 +

∞∑
j=1

|ψ̂(1)(2− jξ′, 2− jξn)|2 = 1, for all ξ ∈ Rn.

And let ψ(2)
∈ S(Rn) be a radial function with

suppψ̂(2)(ξ) ⊂ {ξ : 1/2 < |ξ|h ≤ 2},

and let ϕ(2) be a radial function with

ϕ̂(2)(0) = 1, suppϕ̂(1) ⊂ {|ξ|e ≤ 2}

satisfying

|̂ϕ(2)(ξ′, ξn)|2 +

∞∑
j=1

|ψ̂(2)(2− jξ′, 2− jξn)|2 = 1, for all ξ ∈ Rn.

Letψ(1)
j (x) = 2 jnψ(1)(2 jx′, 2 jxn),ψ(2)

k (x) = 2k(n+1)ψ(2)(2kx′, 22kxn) andψ j,k = ψ(1)
j ∗ψ

(2)
k (x). We denoteϕ(i) = ψ(i)

0 ,
where i = 1, 2.

By taking the Fourier transform, we obtain the Calderón identity, that is, for f ∈ L2,

f =

∞∑
j=0

∞∑
k=0

ψ j,k ∗ ψ j,k ∗ f ,

where the series converges in L2(Rn) norm.
One of the main results of this paper is the following Littlewood-Paley characterization:

Theorem 1.2. f ∈ Lipαcom with α = (α1, α2), α1, α2 > 0 if and only if f ∈ S′ and

‖ψ j,k ∗ f ‖∞ ≤ C2− jα1 2−kα2 ,

where j, k ≥ 0.
Furthermore,

‖ f ‖Lipαcom
∼ sup

j,k≥0
2 jα1 2kα2‖ψ j,k ∗ f ‖∞.
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To study the boundedness of the composition of Calderón-Zygmund singular integral operators on
Lipαcom, we need the following

Definition 1.3. A locally integrable function K1 on Rn
\ {0} is called a Calderón-Zygmund kernel associated with

isotropic homogeneity if there exist constants C1, δ > 0 such that
(i) |K1(x)| ≤ C1

1
|x|ne

;
(ii) |K1(x)| ≤ C1

1
|x|n+δ

e
for |x|e ≥ 1;

(iii)
∣∣∣∣∣ ∂α∂xαK1(x)

∣∣∣∣∣ ≤ A|x|−n−|α|
e for all |α| ≥ 0;

(iv)
∫

r1<|x|e<r2
K1(x)dx = 0 for all 0 < r1 < r2 < ∞.

We say that T1 is a Calderón-Zygmund singular integral operators associated with isotropic homogeneity if
T1 f (x) = p.v.(K1 ∗ f )(x), where K1 fulfills condition (i) − (iv).

Definition 1.4. Suppose that K2 ∈ L1
loc(R

n
\ {0}) is said to be a Calderón-Zygmund kernel associated with the

non-isotropic homogeneity if there exist constants C1, δ > 0 such that
(v) |K2(x)| ≤ C1

1
|x|n+1

h
;

(vi) |K2(x)| ≤ C1
1

|x|n+δ+1
h

for |x|h ≥ 1;

(vii)
∣∣∣∣∣ ∂α

∂(x′)α
∂β

∂(xn)βK2(x′, xn)
∣∣∣∣∣ ≤ B|x|−n−|α|−2β−1

h for all |α|, β ≥ 0,;

(viii)
∫

r1<|x|h<r2
K2(x)dx = 0 for all 0 < r1 < r2 < ∞.

We say that T2 is a Calderón-Zygmund singular integral operators associated with the non-isotropic homogeneity
if T2 f (x) = p.v.(K2 ∗ f )(x), where K2 fulfills condition (v) − (viii).

We now state the main result of this paper.

Theorem 1.5. Suppose that T1 and T2 are the Calderón-Zygmund singular integral operators associated with the
isotropic and non-isotropic homogeneity, respectively. Then both T1 and T2 extend to bounded operators on Lipαcom
with α = (α1, α2) for 0 < α1, α2 < ∞. Particularly, the composition operator T = T1 ◦ T2 is bounded on Lipαcom with
α = (α1, α2), α1, α2 > 0.

2.Proof of Theorem 1.1

Proof. First we prove that if f ∈ Lipαcom with 0 < α1, α2 < 1, then f ∈ S′. To do this, it suffices to show that
< f , 1 > is well defined for any 1 ∈ S. In fact, we have

1(x) =

∞∑
j,k=0

ψ j,k ∗ ψ j,k ∗ 1(x),

where the series converges in S. Then we only need to prove that
∑
∞

j,k=0 < f , ψ j,k ∗ ψ j,k ∗ 1 > is well defined
for 1 ∈ S. To this end, for all j, k ≥ 0 we estimate < ψ j,k ∗ f , ψ j,k ∗ 1 > as follows.
Case 1: j = k = 0.

|ψ0,0 ∗ f (x)| = |
∫ ∫

ψ(1)
0 (u)ψ(2)

0 (v) f (x − u − v)dudv| ≤ C‖ f ‖∞ ≤ C‖ f ‖Lipαcom
.

This implies that
| < ψ0,0 ∗ f , ψ0,0 ∗ 1 > | ≤ C‖ f ‖Lipαcom

‖1‖S.
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Case 2: j ≥ 1; k = 0.
Applying the cancellations conditions on ψ(1)

j , we have

|ψ j,0 ∗ f (x)| = |
∫ ∫

ψ(1)
j (u)ψ(2)

0 (v)[ f (x − u − v) − f (x − v)]dudv|

≤ sup
u,0,x∈Rn

| f (x − u) − f (x)|
|u|α1

e

∫ ∫
|ψ(1)

j (u)ψ(2)
0 (v)||u|α1

e dudv

≤ C‖ f ‖Lipαcom

∫ ∫
2 jn

(1 + 2 j|u|e)M

1
(1 + |v|h)M |u|

α1
e dudv

≤ C2− jα1‖ f ‖Lipαcom
.

Applying the almost orthogonal estimate, we get that

|ψ j,0 ∗ 1(x)| = |ψ(1)
j ∗ ψ

(2)
0 ∗ 1(x)| ≤ C2− jL 1

(1 + |x′|)n+M−1

1
(1 + |xn|)1+M ‖1‖S

for any L,M ≥ 0, where j ∈ Z+.
Therefore, we obtain that

| < ψ j,0 ∗ f , ψ j,0 ∗ 1 > | ≤ C2− j(L+α1)
‖ f ‖Lipαcom

‖1‖S.

Case 3: j = 0; k ≥ 1.
Applying the similar estimate, we have

| < ψ0,k ∗ f , ψ0,k ∗ 1 > | ≤ C2−k(L+α2)
‖ f ‖Lipαcom

‖1‖S.

Case 4: j ≥ 1; k ≥ 1.
Applying the cancellations conditions on both ψ(1)

j and ψ(2)
k , we have

|ψ j,k ∗ f (x)|

= |

∫ ∫
ψ(1)

j (u)ψ(2)
k (v)[ f (x − u − v) − f (x − u) − f (x − v) + f (x)]dudv|

≤ C sup
u,v,0,x∈Rn

| f (x − u − v) − f (x − u) − f (x − v) + f (x)|
|u|α1

e |v|
α2
e

∫ ∫
|ψ(1)

j (u)ψ(2)
k (v)||u|α1

e |v|
α2
e dudv

≤ C2− jα1 2−kα2‖ f ‖Lipαcom
.

Similarly, applying the almost orthogonal estimate, we get that

|ψ j,k ∗ 1(x)| = |ψ(1)
j ∗ ψ

(2)
k ∗ 1(x)| ≤ C2− jL2−kL 1

(1 + |x′|)n+M−1

1
(1 + |xn|)1+M ‖1‖S

for any L,M ≥ 0, where j, k ∈ Z+.
We obtain that

| < ψ j,k ∗ f , ψ j,k ∗ 1 > | ≤ C2− j(L+α1)2−k(L+α2)
‖ f ‖Lipαcom

‖1‖S

and thus, < f , 1 > is well defined. Moreover, if α = (α1, α2) with 0 < α1, α2 < 1, we have

sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ f ‖∞ ≤ C‖ f ‖Lipαcom
.
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When α = (α1, α2) with α1 = 1, 0 < α2 < 1, we only need to consider the cases where j ≥ 1; k = 0 and
j ≥ 1; k ≥ 1 since the other two cases are similar to the case where α = (α1, α2) with α1 = 1, α2 < 1. Indeed, if
j ≥ 1; k = 0, noting that ψ(1)

j is a radial function, we have

|ψ j,0 ∗ f (x)| = |
∫ ∫

ψ(1)
j (u)ψ(2)

0 (v)[ f (x − u − v) − f (x − v)]dudv|

=
1
2
|

∫ ∫
ψ(1)

j (u)ψ(2)
0 (v)[ f (x + u − v) + f (x − u − v) − 2 f (x − v)]dudv|

≤ C sup
u,0,x∈Rn

| f (x + u − v) + f (x − u − v) − 2 f (x − v)|
|u|e

∫ ∫
|ψ(1)

j (u)ψ(2)
0 (v)||u|edudv

≤ C2− j
‖ f ‖Lipαcom

.

If j ≥ 1; k ≥ 1, then

|ψ j,k ∗ f (x)| =
1
2
|

∫ ∫
ψ(1)

j (u)ψ(2)
k (v)[ f (x − u − v) + f (x + u − v)]dudv|

=
1
2
|

∫ ∫
ψ(1)

j (u)ψ(2)
k (v){[ f (x − u − v) + f (x + u − v) − 2 f (x − v)]

− 2[ f (x − u) + f (x + u) − 2 f (x)]}dudv|

≤C sup
u,v,0,x∈Rn

|[ f (x − u − v) + f (x + u − v) − 2 f (x − v)] − 2[ f (x − u) + f (x + u) − 2 f (x)]|
|u|e|v|α2

e∫ ∫
|ψ(1)

j (u)ψ(2)
k (v)||u|e|v|α2

e dudv

≤C2− j2−kα2‖ f ‖Lipαcom
.

Applying the almost orthogonal estimate, namely

|ψ j,k ∗ 1(x)| = |ψ(1)
j ∗ ψ

(2)
k ∗ 1(x)| ≤ C2− jL2−kL 1

(1 + |x′|)n+M−1

1
(1 + |xn|)1+M ‖1‖S

for any L,M ≥ 0, where j, k ∈ Z+, yields

| < ψ j,k ∗ f , ψ j,k ∗ 1 > | ≤ C2− j(L+1)2−k(L+α2)
‖ f ‖Lipαcom

‖1‖S.

Thus, < f , 1 > is well defined and

sup
j,k≥0

2 j2kα2‖ψ j,k ∗ f ‖∞ ≤ C‖ f ‖Lipαcom
.

Similarly, we can deal with other cases α = (α1, α2) where 0 < α1 < 1, α2 = 1 or α1 = α2 = 1. Finally,
we consider the case where α = (α1, α2) with 1 < α1 = m1 + r1, 1 < α2 = m2 + r2 with 0 < r1, r2 ≤ 1, r =

(r1, r2). We write β = (β1, β2), |β1| = m1, |β2| = m2, ̂̃
ψ(1)

j (ξ) =
ψ̂(1)

j (ξ)

(−2πiξ)β1
and ̂̃

ψ(2)
k (ξ) =

ψ̂(2)
k (ξ)

(2πiξ)β2
for j, k ≥ 0. Then

ψ j,k ∗ f = Dβψ̃ j,k ∗ f = (−1)m1+m2ψ̃ j,k ∗ Dβ f , where ψ̃ j,k = ψ̃(1)
j ∗ ψ̃

(2)
k . Note that 2 jm1 2km2ψ̃ j,k satisfy the similar

smoothness, size and cancellation conditions as ψ j,k. Therefore, the similar argument yields that for any
j, k ≥ 0, |β| = m1 + m2

‖ψ j,k ∗ f ‖∞ = ‖2− jm1 2−km2 (2 jm1 2km2ϕ j,k) ∗Dβ f ‖∞
≤ C2− jm1 2−km2 2− jr1 2−kr2‖Dβ f ‖Lipr

com
= C2− jα1 2−kα2‖Dβ f ‖Lipr

com
.



J. Tan, Y. Han / Filomat 32:9 (2018), 3397–3408 3403

That is,

sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ f ‖∞ ≤ C‖ f ‖Lipαcom
.

To prove the converse statement, we first show that every distribution f ∈ S′ satisfying

sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ f ‖∞ ≤ C

coincide with a bounded continuous function in Rn.
To see this, as mentioned, f (x) =

∑
j,k≥0 ψ j,k ∗ ψ j,k ∗ f (x) in S′. Observe that

|ψ j,k ∗ ψ j,k ∗ f | ≤ ‖ψ j,k ∗ f ‖∞‖ψ j,k‖L1 ≤

(
sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ f ‖∞
)
2− jα1 2−kα2 .

Thus, the series
∑

j,k≥0 ψ j,k ∗ψ j,k ∗ f converges uniformly in x. Since ψ j,k ∗ψ j,k ∗ f is continuous inRn, the sum
function f is also continuous in Rn. Moreover,

‖ f ‖∞ ≤ C
(

sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ f ‖∞
)
.

Now we estimate ‖ f ‖Lipαcom
as follows.

Case 1: if α = (α1, α2) with 0 < α1, α2 < 1.
We show that

| f (x − u) − f (x)| ≤ C
(

sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ f ‖∞
)
|u|α1

e .

To do this, write

| f (x − u) − f (x)|

= |
∑
j,k≥0

∫
[ψ j,k(x − u − w) − ψ j,k(x − w)]ψ j,k ∗ f (w)dw|

≤

(
sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ f ‖∞
) ∑

j,k≥0

2− jα1 2−kα2

∫
|ψ j,k(x − u − w) − ψ j,k(x − w)|dw.

Therefore, we only need to consider the case where |u|e ≤ 1. Let n1 be the unique nonnegative integer
such that 2−n1−1

≤ |u|e < 2−n1 and denote A := sup j,k≥0 2 jα1 2kα2‖ψ j,k ∗ f ‖∞. Then we have

| f (x − u) − f (x)|

≤A
( n1∑

j=0

∞∑
k=0

2− jα1 2−kα2

∫
|ψ j,k(x − u − w) − ψ j,k(x − w)|dw

+

∞∑
j=n1

∞∑
k=0

2− jα1 2−kα2

∫
|ψ j,k(x − u − w)| + |ψ j,k(x − w)|dw

)
= : I + II.
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For I, applying the mean value theorem, for any M > 0 there exist an θ ∈ (0, 1) such that

I = A
( n1∑

j=0

∞∑
k=0

2− jα1 2−kα2

∫
|ψ j,k(u + w) − ψ j,k(w)|dw

)
≤ A

( n1∑
j=0

∞∑
k=0

2− jα1 2−kα2

∫ ∫
|ψ(1)

j (u + w − z) − ψ(1)
j (w − z)||ψ(2)

k (z)|dzdw
)

≤ A
( n1∑

j=0

∞∑
k=0

2− jα1 2−kα2

∫ ∫
2 j
|u|e

2 jn

(1 + 2 j|w − z + θu|e)M

2k(n+1)

(1 + 2k|z|h)M
dzdw

)
≤ A

( n1∑
j=0

2 j2−n1 2− jα1
)
≤ CA2−n1 2n1(1−α1)

∼ A2−n1α1 ∼ A|u|α1
e .

For II, the size conditions on both ψ(1)
j and ψ(2)

k yield

II ≤ CA
( ∞∑

j=n1

∞∑
k=0

2− jα1 2−kα2

∫
|ψ j,k(w)|dw

)
≤ CA

∞∑
j=n1

2− jα1 ∼ A2−n1α1 ∼ A|u|α1
e .

Thus, we obtain that for any u , 0 and x ∈ Rn,

| f (x − u) − f (x)|
|u|α1

e
≤ sup

j,k≥0
2 jα1 2kα2‖ψ j,k ∗ f ‖∞.

Similarly,

sup
u,0,x∈Rn

| f (x − v) − f (x)|
|v|α2

h

≤ sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ f ‖∞.

Finally, we show that

sup
u,v,0

| f (x − u − v) − f (x − u) − f (x − v) + f (x)|
|u|α1

e |v|
α2
h

≤ sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ f ‖∞.

In fact,

| f (x − u − v) − f (x − u) − f (x − v) + f (x)|

=|
∑
j,k≥0

∫
[ψ j,k(x − u − v − w) − ψ j,k(x − u − w) − ψ j,k(x − v − w) + ψ j,k(x − w)]

× ψ j,k ∗ f (w)dw|

=|
∑
j,k≥0

∫
[ψ(1)

j (x − u − z − w) − ψ(1)
j (x − z − w)][ψ(2)

k (z − v) − ψ(2)
k (z)]ψ j,k ∗ f (w)dzdw|

≤A
∑
j,k≥0

2− jα1 2−kα2

∫
|ψ(1)

j (x − u − z − w) − ψ(1)
j (x − z − w)||ψ(2)

k (z − v) − ψ(2)
k (z)|dzdw.

We only consider the case where |u|e ≤ 1 and |v|h ≤ 1 since other cases are similar and easier. Let n1,n2
be the unique nonnegative integer such that 2−n1−1

≤ |u|e < 2−n1 and 2−n2−1
≤ |v|h < 2−n2 .
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Now we split the above series by

A
∑
j≥n1

∑
k≥n2

2− jα1 2−kα2 B + A
∑
j<n1

∑
k≥n2

2− jα1 2−kα2 B

+
∑
j≥n1

∑
k<n2

2− jα1 2−kα2 B +
∑
j<n1

∑
k<n2

2− jα1 2−kα2 B

:= B1 + B2 + B3 + B4,

where B =
∫
|ψ(1)

j (x − u − z − w) − ψ(1)
j (x − z − w)||ψ(2)

k (z − v) − ψ(2)
k (z)|dzdw.

To deal with the first series, applying the size conditions on bothψ(1)
j andψ(2)

k yields that B1 is dominated
by ∣∣∣∣B1

∣∣∣∣ ≤ C
∑
j≥n1

∑
k≥n2

2− jα1 2−kα2 ≤ C2−n1α1 2−n2α2 ≤ C|u|α1
e |v|

α2
h .

To estimate the second series B2, applying the smoothness condition on ψ(1)
j and the size condition on

ψ(2)
k implies that B2 is bounded by∣∣∣∣B2

∣∣∣∣ ≤ C
∑
j<n1

∑
k≥n2

2 j(1−α1)2−kα2 |u|e . 2n1(1−α1)2−n2α2 |u|e . |u|α1−1
e |v|α2

h |u|e . |u|
α1
e |v|

α2
h .

The estimate for third series B3 is similar to the estimate for B2. Finally, to handle with the last series B4,
applying the smoothness conditions on both ψ(1)

j and ψ(2)
k we obtain that B4 is dominated by∣∣∣∣B4

∣∣∣∣ ≤ C
∑
j<n1

∑
k<n2

2 j
|u|e2k

|v|h2− jα1 2−kα2 . 2n1(1−α1)2n2(1−α2)
|u|e|v|h . |u|α1

e |v|
α2
h .

These estimates imply that

| f (x − u − v) − f (x − u) − f (x − v) + f (x)| ≤ A|u|e|α1 |v|α2
h .

Next we consider the case where α = (α1, α2) with α1 = α2 = 1 and only show the following estimate for
any u, v ∈ Rn

[ f (x − u − v) + f (x + u − v) − 2 f (x − v)] + [ f (x − u + v) + f (x + u + v) − 2 f (x + v)]
−2[ f (x − u) + f (x + u) − 2 f (x)]

≤C
(

sup
j,k≥0

2 j2k
‖ψ j,k ∗ f (x)‖∞

)
|u|e|v|h.

The other estimates are similar and easier. Observe that

[ f (x − u − v) + f (x + u − v) − 2 f (x − v)] + [ f (x − u + v) + f (x + u + v) − 2 f (x + v)]
−2[ f (x − u) + f (x + u) − 2 f (x)]

=
∑
j,k≥0

∫
[ψ(1)

j (x − u − z − w) + ψ(1)
j (x + u − z − w) − 2ψ(1)

j (x − z − w)]

× [ψ(2)
k (z − v) + ψ(2)

k (z + v) − 2ψ(2)
k (z)]ψ j,k ∗ f (w)dzdw.

Repeating a similar calculation gives the desired result for this case.
By repeating the similar calculation, we can handle the other cases where α1 = 1, 0 < α2 < 1 and

0 < α1 < 1, α2 = 1 similarly. To end the whole proof, we need to consider the case where α1, α2 > 1. We
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denote that β = (β1, β2), |βi| = mi and αi = mi + r2, i = 1, 2. Here we will prove that for any |β| = m1 + m2 and
0 < r1, r2 < 1

‖Dβ f ‖Lipr
com
≤ C sup

j,k≥0
2 jα1 2α2‖ψ j,k ∗ f ‖∞.

Note that

Dβ f (x − u − v) −Dβ f (x − u) −Dβ f (x − v) + Dβ f (x)

≤

∑
j,k≥0

∫ ∫
[Dβ1ψ(1)

j (x − u − z − w) −Dβ1ψ(1)
j (x − z − w)]

× [Dβ2ψ(2)
k (z − v) −Dβ2ψ(2)

k (z)]ψ j,k ∗ f (w)dwdz.

By analogous argument we can obtain the desired results. We leave the details to the reader.
Therefore, the proof of Theorem 1.1 is concluded.

3.Proof of Theorem 1.2

In order to prove Theorem 1.5, we first show the following

Proposition 3.1. If f ∈ Lipαcom, then there exist a sequence { fn} ∈ L2
∩ Lipαcom such that fn converges to f in the

distribution sense. Furthermore,
‖ fn‖Lipαcom

≤ C‖ f ‖Lipαcom
,

where the constant C is independent of fn and f .

Proof. To show this proposition, note that

f =
∑
j,k≥0

ψ j,k ∗ ψ j,k ∗ f (x)

in the distribution sense.
Set

fn =
∑
| j|,|k|≤n

ψ j,k ∗ ψ j,k ∗ f (x).

Obviously, fn ∈ L2 and converges to f in the distribution sense. To see that fn ∈ Lipαcom, by Theorem 1.1,

|| fn||Lipαcom ≤ C sup
j,k≥0,x∈Rn

2 jα1 2kα2 |ψ j,k ∗ fn(x)|.

Observe that

ψ j,k ∗ fn(x) = ψ j,k ∗
∑
| j′ |,|k′ |≤n

ψ j′,k′ ∗ ψ j′,k′ ∗ f (x) =
∑
| j′ |,|k′ |≤n

ψ j,k ∗ ψ j′,k′ ∗ ψ j′,k′ ∗ f (x).

By the classical almost orthogonal estimate, that is, there exist two positive integers L,M > α1 +α2 + 1, such
that

|ψ j,k ∗ ψ j′,k′ (x)| . 2−| j− j′ |L2−|k−k′ |L 2( j∧ j′∧k∧k′)(n−1)

(1 + 2 j∧ j′∧k∧k′ |x′|)n+M−1

2 j∧ j′∧2(k∧k′)

(1 + 2 j∧ j′∧2(k∧k′)|xn|)1+M
.

Therefore, again by Theorem 1.1, it follows that

2 jα1 2kα2 |ψ j,k ∗ fn(x)| . sup
j′,k′,x

2 j′α1 2k′α2 |ψ j′,k′ ∗ f (x)| . || f ||Lipαcom .
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We now prove Theorem 1.2.
Proof of Theorem 1.5. First we prove that for any f ∈ L2

∩ Lipαcom,

‖T2( f )‖Lipαcom
≤ C‖ f ‖Lipαcom

.

To see this, by Theorem 1.1,
‖T2( f )‖Lipαcom

≤ C sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ T2( f )‖∞.

Noting that T2 is bounded on L2, f ∈ L2, and applying the Calderón identity yields

ψ j,k ∗ T2 f (x) =
∑

j′,k′≥0

(ψ j,k ∗ K2 ∗ ψ j′,k′ ) ∗ ψ j′,k′ ∗ f (x). (1)

By the following almost orthogonal estimate

|ψ j,k ∗ K2 ∗ ψ j′,k′ (x′, xn)| ≤ C
2−| j− j′ |L2−|k−k′ |L

[2−( j∧ j′∧k∧k′) + |x′|]n+M−1

2−( j∧ j′∧k∧k′)M2−( j∧ j′∧2k∧2k′)M

[2−( j∧ j′∧2k∧2k′) + |xn|]1+M
, (2)

we obtain that

‖T2( f )‖Lipαcom

≤C sup
j,k≥0

2 jα1 2kα2

∑
j′,k′≥0

2−| j− j′ |L2−|k−k′ |L
‖ψ j,k ∗ f ‖∞

≤C sup
j′,k′≥0

2 j′α1 2k′α2 sup
j,k≥0

∑
j′,k′≥0

2( j− j′)α1 2(k−k′)α2 2−| j− j′ |L2−|k−k′ |L
‖ψ j,k ∗ f ‖∞

≤C sup
j′,k′≥0

2 j′α1 2k′α2‖ψ j′,k′ ∗ f ‖∞ ≤ C‖ f ‖Lipαcom
.

(3)

Next we extend T2 to Lipαcom as follows. By Proposition 3.1, if f ∈ Lipαcom, then there exist a sequence
{ fn} ∈ L2

∩ Lipαcom such that fn converges to f in the distribution sense. Furthermore,

‖ fn‖Lipαcom
≤ C‖ f ‖Lipαcom

.

Applying (3) implies that

‖T2( fn) − T2( fm)‖Lipαcom
≤ C‖ fn − fm‖Lipαcom

.

Thus, T2( fn) converges in the distribution sense and we can define

T2( f ) = lim
n→∞

T2( fn) in S
′.

To see the existence of this limit, we write < T2( fn− fm), 1 >=< fn− fm,T∗2(1) > since that fn− fm and 1 belong
to L2, and T2 is bounded on L2 as well as T∗. By Proposition 3.1, < fn − fm,T∗2(1) > tends to zero as n,m→∞.

Applying Theorem 1.1 again, we get that

‖T2( f )‖Lipαcom
≤ C sup

j,k≥0
2 jα1 2kα2‖ψ j,k ∗ T2( f )(x)‖∞

≤ C sup
j,k≥0

2 jα1 2kα2‖ lim
n→∞

ψ j,k ∗ T2( fn)(x)‖∞

≤ Clim infn→∞ sup
j,k≥0

2 jα1 2kα2‖ψ j,k ∗ T2( fn)(x)‖∞

≤ Clim infn→∞‖ fn‖Lipαcom

≤ C‖ f ‖Lipαcom
.
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Similarly, we can also prove that
‖T1( f )‖Lipαcom

≤ C‖ f ‖Lipαcom
.

As a consequence, we obtain that
‖T( f )‖Lipαcom

≤ C‖ f ‖Lipαcom
.

Therefore, we conclude the proof of Theorem 1.5. �
Finally, we remark that Theorem 1.1 holds for 0 < α1 < ε1 and 0 < α2 < ε2 if∣∣∣∣∣K1(x) −K1(x′)

∣∣∣∣∣ ≤ A|x − x′|ε1
e |x|

−n−ε1
e for |x − x′|e ≤

1
2
|x|e

and ∣∣∣∣∣K2(x) −K2(x′)
∣∣∣∣∣ ≤ B|x − x′|ε2

h |x|
−n−1−ε2
h for all |x − x′|h ≤

1
2
|x|h.

We leave the details of the proof to the reader.
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