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Abstract. A planar harmonic mapping is a complex-valued function f : U → C of the form f (x + iy) =
u(x, y) + iv(x, y), where u and v are both real harmonic. Such a function can be written as f = h + 1,
where h and 1 are both analytic; the function ω = 1′/h′ is called the dilatation of f . We consider the linear
combinations of planar harmonic mappings that are the vertical shears of the asymmetrical vertical strip

mappingsϕ j(z) = 1
2i sinα j

log
(

1+ze
iα j

1+ze
−iα j

)
with various dilatations, where α j ∈ [ π2 , π), j = 1, 2. We prove sufficient

conditions for the linear combination of this class of harmonic univalent mappings to be univalent and
convex in the direction of the imaginary axis.

1. Introduction

A continuous complex-valued function f = µ + iν defined in a simply connected domain Ω ⊂ C is said
to be harmonic in Ω if both µ and ν are real harmonic in Ω. In any simply connected domain Ω, we can
write

f = h + 1, (1.1)

where h and 1 are analytic in Ω. A necessary and sufficient condition for f to be locally univalent and
sense-preserving in Ω is that |h′| > |1′| in Ω.

Denote by SH the class of functions f of the form (1.1) that are harmonic univalent and sense-preserving
in the unit discU = {z : |z| < 1} and normalized by f (0) = fz(0) − 1 = 0. It is obvious that the normalization
condition is equivalent to

h(z) = z +

∞∑
n=2

anzn and 1(z) =

∞∑
n=1

bnzn.

Furthermore, let S0
H be the subclass of SH consisting of f with b1 = 0. The classical family S of analytic

univalent, normalized functions on U is the subclass of SH in which bn = 0 for all n. In 1984, Clunie and
Sheil-Small [5] investigated the class SH for the first time. Since then, harmonic mappings have been an
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area of active research. Many remarkable results for harmonic mappings can be found in the literature [1-3,
5-11, 13-18, 20, 21, 24, 25].

A domain Ω ⊂ C is said to be convex in the direction γ, if for all z0 ∈ C, the set Ω ∩ {z0 + teiγ : t ∈ R} is
either connected or empty. Particularly, a domain is convex in the direction of the real (resp. imaginary)
axis if its intersection with each horizontal (resp. vertical) line is connected. A function is convex in the
direction of real (resp. imaginary) axis if it maps U onto a domain convex in the direction of real (resp.
imaginary) axis. The following result due to Hengarther and Schober [12] is very useful in checking if an
analytic function is convex in the direction of the imaginary axis.

Lemma 1.1. Suppose f is analytic and non constant inU. Then

<[(1 − z2) f ′(z)] ≥ 0, z ∈ U

if and only if

(i) it is univalent inU;
(ii) it is convex in the direction of the imaginary axis;

(iii) there exist sequences {z′n} and {z′′n } converging to z = 1 and z = −1, respectively, such that

lim
n→∞
<( f (z′n)) = sup

|z|<1
<( f (z)),

lim
n→∞
<( f (z′′n )) = inf

|z|<1
<( f (z)).

(1.2)

Clunie and Sheil-Small [5] introduced the shear construction method that produces a harmonic univalent
mapping with a given dilatation onto domains convex in one direction. This result is given in Lemma 1.2.

Lemma 1.2. A locally univalent harmonic function f = h + 1 in U is a univalent harmonic mapping of U onto a
domain convex in a direction of the imaginary (resp. real) axis if and only if h +1 (resp. h−1) is an analytic univalent
mapping ofU onto a domain convex in the direction of the imaginary (resp. real) axis.

A linear combination is an important method to construct a new function. MacGregor [19] showed that
the linear combination t f + (1− t)1 for 0 ≤ t ≤ 1 of analytic functions need not to be univalent even if f and
1 are convex functions. Some results on the linear combinations of analytic functions are obtained in [4, 19,
23]. Recently, the linear combinations of harmonic mappings have started to be studied [6, 16, 24, 25].

It is interesting and meaningful to investigate the classes of harmonic functions that mapU onto specific
domains. One can refer to [1, 7, 8, 10, 11, 17, 18]. Specifically, the collection of functions f = h + 1 ∈ So

H that
mapU onto the right half-plane, R = {w : Rew > −1/2}, have the form

h(z) + 1(z) =
z

1 − z

and those that map U onto the vertical strip, Ωα = {w : α−π
2i sinα < <(w) < α

2 sinα }, where π
2 ≤ α < π, have the

form

h(z) + 1(z) =
1

2i sinα
log

(
1 + zeiα

1 + ze−iα

)
. (1.3)

In this paper, we derive several sufficient conditions for the combination f = t f1 +(1−t) f2 to be univalent
and convex in the imaginary direction, where f1 and f2 are univalent harmonic mappings obtained by
shearing of h + 1 as given in (1.3).
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2. Main Results

Theorem 2.1. Let fi = h j + 1 j ∈ SH, where h j(z) + 1 j(z) = 1
2i sinα j

log
(

1+zeiα j

1+ze−iα j

)
, α j ∈ [π2 , π) for j = 1, 2. Then

f = t f1 + (1 − t) f2 ∈ SH is convex in the direction of the imaginary axis for 0 ≤ t ≤ 1, if f is locally univalent and
sense-preserving.

Proof. Define F = tF1 + (1 − t)F2, where F j = h j + 1 j = 1
2i sinα j

log
(

1+zeiα j

1+ze−iα j

)
for j = 1, 2. Let

ϕ j(z) := (1 − z2)F′j(z) =
1 − z2

(1 + zeiα j )(1 + ze−iα j )
.

It is easy to verify that ϕ j(0) = 1 and <[ϕ j(z)] = 0 for |z| = 1. By the minimum principle for harmonic
functions with z ∈ U, we have

<[ϕ j(z)] =<[(1 − z2)F′j(z)] > 0.

Therefore,

<[(1 − z2)F′(z)] = t<[ϕ1(z)] + (1 − t)<[ϕ2(z)] > 0,

for all z ∈ U. It follows from Lemma 1.1 that F = tF1 + (1 − t)F2 = th1 + (1 − t)h2 + t11 + (1 − t)12 is analytic
and convex in the direction of the imaginary axis. Therefore if

f = t f1 + (1 − t) f2 = th1 + (1 − t)h2 + t11 + (1 − t)12

is locally univalent and sense-preserving, then by Lemma 1.2 we have f ∈ SH is convex in the direction of
the imaginary axis.

In view of Theorem 2.1, the main object we need to focus on is the condition f is locally univalent and
sense-preserving. Actually, we just need ω, the dilation of f , to satisfy |ω| < 1. We begin by finding an
expression for ω.

Lemma 2.2. Let fi = h j + 1 j ∈ SH, where h j(z) + 1 j(z) = 1
2i sinα j

log
(

1+zeiα j

1+ze−iα j

)
, α j ∈ [π2 , π) for j = 1, 2. If ω j = 1′j/h

′

j

are dilatation functions of f j, j = 1, 2, respectively, then the dilatation function ω of f = t f1 + (1 − t) f2, 0 ≤ t ≤ 1, is
given by

ω =
t(1 + ω2)(1 + 2z cosα2 + z2)ω1 + (1 − t)(1 + ω1)(1 + 2z cosα1 + z2)ω2

t(1 + ω2)(1 + 2z cosα2 + z2) + (1 − t)(1 + ω1)(1 + 2z cosα1 + z2)
. (2.1)

Proof. Since f = t f1 + (1 − t) f2 = th1 + (1 − t)h2 + t11 + (1 − t)12,

ω =
t1′1 + (1 − t)1′2
th′1 + (1 − t)h′2

=
tω1h′1 + (1 − t)ω2h′2

th′1 + (1 − t)h′2
. (2.2)

From h j(z) + 1 j(z) = 1
2i sinα j

log
(

1+zeiα j

1+ze−iα j

)
and ω j = 1′j/h

′

j, j = 1, 2, we have

h′j(z) =
1

(1 + ω j(z))(1 + 2z cosα j + z2)
.

Substituting these into (2.2), we get (2.1).

If ω1 = ω2, then (2.1) reduces to ω = ω1 = ω2. Considering Theorem 2.1, we get the following result.
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Theorem 2.3. Let fi = h j + 1 j ∈ SH, where h j(z) + 1 j(z) = 1
2i sinα j

log
(

1+zeiα j

1+ze−iα j

)
, α j ∈ [π2 , π) for j = 1, 2. If ω1 = ω2,

then f = t f1 + (1 − t) f2 ∈ SH is convex in the direction of the imaginary axis for 0 ≤ t ≤ 1.

If α1 = α2, we have the following theorem.

Theorem 2.4. Let f j = h j + 1 j ∈ SH, where h j(z) + 1 j(z) = 1
2i sinα j

log
(

1+zeiα j

1+ze−iα j

)
, α j ∈ [π2 , π) for j = 1, 2. If α1 = α2,

then f = t f1 + (1 − t) f2 ∈ SH is convex in the direction of the imaginary axis for 0 ≤ t ≤ 1.

Proof. In view of Theorem 2.1, it suffices to show that f is locally univalent and sense-preserving. Substi-
tuting α1 = α2 into (2.1), we have

ω =
t(1 + ω2)ω1 + (1 − t)(1 + ω1)ω2

t(1 + ω2) + (1 − t)(1 + ω1)
=

tω1 + (1 − t)ω2 + ω1ω2

1 + tω2 + (1 − t)ω1
. (2.3)

Let

I := |1 + tω2 + (1 − t)ω1|
2
− |tω1 + (1 − t)ω2 + ω1ω2|

2

= 1 + 2t(1 − |ω1|
2)<ω2 + 2(1 − t)(1 − |ω2|

2)<ω1

+(1 − 2t)(|ω1|
2
− |ω2|

2) − |ω1|
2
|ω2|

2

and ω j = ρ jeiθ j , j = 1, 2. Then

I = 1 + 2t(1 − ρ2
1)ρ2 cosθ2 + 2(1 − t)(1 − ρ2

2)ρ1 cosθ1 + (1 − 2t)(ρ2
1 − ρ

2
2) − ρ2

1ρ
2
2

≥ 1 − 2t(1 − ρ2
1)ρ2 − 2(1 − t)(1 − ρ2

2)ρ1 + (1 − 2t)(ρ2
1 − ρ

2
2) − ρ2

1ρ
2
2

= (1 − ρ2
2)(1 − ρ1)2 + 2t(ρ1 − ρ2)[1 + ρ1ρ2 − (ρ1 + ρ2)] := II.

It is easy to verify that 1 + ρ1ρ2 − (ρ1 + ρ2) > 0 for ρ j ∈ [0, 1), j = 1, 2. Actually, 0 < 1 + ρ1ρ2 − (ρ1 + ρ2) ≤ 1
for all ρ j ∈ [0, 1), j = 1, 2. If ρ1 − ρ2 ≥ 0, then

I ≥ II ≥ (1 − ρ2
2)(1 − ρ1)2 > 0.

If ρ1 − ρ2 < 0, then

I ≥ II ≥ (1 − ρ2
2)(1 − ρ1)2 + 2(ρ1 − ρ2)[1 + ρ1ρ2 − (ρ1 + ρ2)]

= (1 − ρ2
1)(1 − ρ2)2 > 0.

Therefore, I > 0 which implies |ω| < 1. Hence f is locally univalent and sense-preserving.

Remark 2.5. In an earlier paper [24, Thm. 3], it was claimed that for ω given in (2.3), |ω| < 1. The authors assumed
that the function I is monotonic in t for t ∈ [0, 1] and this is not the case. Our proof establishes the validity of the
result.

The following lemma is popularly known as Cohn’s Rule.

Lemma 2.6 (Cohn’s Rule, see (22, p. 375)). Given a polynomial p(z) = a0 + a1z + a2z2 + ...+ anzn of degree n, let

p∗(z) = zn p
(

1
z

)
= an + an−1z + an−2z2 + ... + a0zn.

Denote by r and s the number of zeros of p inside and on the circle |z| = 1, respectively. If |a0| < |an|, then

p1 =
anp(z) − a0p∗(z)

z

is of degree n − 1 and has r1 = r − 1 and s1 = s number of zeros inside and on the unit circle |z| = 1, respectively.
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In order to get our next result, we need Lemma 6.

Lemma 2.7. Let a ∈ (−1, 0) ∪ (0, 1), t ∈ (0, 1) and α1, α2 ∈ [π2 , π). If a(α1 − α2) > 0, then

(1) |a(2t − 1) + 1| > |a(2t − 1) + 1 + 2at(1 − t)(cosα1 − cosα2)|; (2.4)
(2) |a(2t − 1) + 1 + at(1 − t)(cosα1 − cosα2)|

> |(at + 1)t cosα2 + (1 − t)(at + 1 − a) cosα1|. (2.5)

Proof. (1) It is obvious that a(2t− 1) + 1 > 0 holds for a ∈ (−1, 0)∪ (0, 1) and t ∈ (0, 1). Thus we just need to
prove the following double inequality

a(2t − 1) + 1 > a(2t − 1) + 1 + 2at(1 − t)(cosα1 − cosα2) > −[a(2t − 1) + 1].

That is,

0 > at(1 − t)(cosα1 − cosα2) > −[a(2t − 1) + 1]. (2.6)

First, because α1, α2 ∈ [π2 , π), then a(α1−α2) > 0 is equivalent to a(cosα1−cosα2) < 0. Therefore, for t ∈ (0, 1)
we have

0 > at(1 − t)(cosα1 − cosα2). (2.7)

Next, to prove the second inequality of (2.6), we consider two subcases.
Subcase 1: if a ∈ (0, 1) and α1, α2 ∈ [π2 , π), then a(α1 − α2) > 0 implies −1 < cosα1 − cosα2 < 0. Thus,

at(1 − t)(cosα1 − cosα2) > −at(1 − t) > −[a(2t − 1) + 1] (2.8)

holds for t ∈ (0, 1). The last inequality holds because of a(t2 + t − 1) > −1 for t ∈ (0, 1) and a ∈ (0, 1).
Subcase 2: if a ∈ (−1, 0) and α1, α2 ∈ [π2 , π), then a(α1 − α2) > 0 implies 0 < cosα1 − cosα2 < 1. Thus,

at(1 − t)(cosα1 − cosα2) > at(1 − t) > −[a(2t − 1) + 1] (2.9)

holds for t ∈ (0, 1). The last inequality holds because of a(−t2 + 3t − 1) > −1 for t ∈ (0, 1) and a ∈ (−1, 0).
Therefore, the second inequality of the double inequality (2.6) follows from inequalities (2.8) and (2.9).
(2) If a(α1−α2) > 0, then in view of inequality (2.6) we know that a(2t−1)+1+at(1−t)(cosα1−cosα2) > 0

for a ∈ (−1, 0) ∪ (0, 1), t ∈ (0, 1), and α1, α2 ∈ [π2 , π). So inequality (2.5) is equivalent to the double inequality

a(2t − 1) + 1 + at(1 − t)(cosα1 − cosα2)
> (at + 1)t cosα2 + (1 − t)(at + 1 − a) cosα1

> −[a(2t − 1) + 1 + at(1 − t)(cosα1 − cosα2)].
(2.10)

Now, let

f (a, t) :=a(2t − 1) + 1 + at(1 − t)(cosα1 − cosα2)
− [(at + 1)t cosα2 + (1 − t)(at + 1 − a) cosα1]

=(1 − a)(1 − cosα1)
+ t[(1 + a)(cosα1 − cosα2) + 2a(1 − cosα1)].

It follows that

∂ f (a, t)
∂a

= −(1 − cosα1) + t[cosα1 − cosα2 + 2(1 − cosα1)];

∂ f (a, t)
∂t

= (1 + a)(cosα1 − cosα2) + 2a(1 − cosα1).
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Let
∂ f (a, t)
∂a

= 0 and
∂ f (a, t)
∂t

= 0.

Then we have

a = a0 =
cosα2 − cosα1

2 − (cosα1 + cosα2)
and t = t0 =

1 − cosα1

2 − (cosα1 + cosα2)
.

Therefore, it is obvious that

f (a, t) ≥ f (a0, t0) =
2(1 − cosα1)(1 − cosα2)

2 − (cosα1 + cosα2)
> 0. (2.11)

Inequality (2.11) implies that the first inequality of the double inequality (2.10) holds.
Next, let

I :=(at + 1)t cosα2 + (1 − t)(at + 1 − a) cosα1

+ a(2t − 1) + 1 + at(1 − t)(cosα1 − cosα2)
=[a(2t − 1) + 1][1 + cosα1 − t(cosα1 − cosα2)]. (2.12)

If cosα1 − cosα2 > 0, then

I > [a(2t − 1) + 1][1 + cosα1 − (cosα1 − cosα2)]
= [a(2t − 1) + 1](1 + cosα2) > 0. (2.13)

If cosα1 − cosα2 < 0, then

I > [a(2t − 1) + 1](1 + cosα1) > 0. (2.14)

Therefore, I > 0 follows from inequalities (2.13) and (2.14) and the second inequality of the double inequality
(2.10) is proved.

Theorem 2.8. Let f j = h j + 1 j ∈ SH, where h j(z) + 1 j(z) = 1
2i sinα j

log
(

1+zeiα j

1+ze−iα j

)
, α j ∈ [π2 , π) for j = 1, 2. If ω1(z) = z,

ω2(z) = z+a
1+az , a ∈ (−1, 1), then f = t f1 + (1 − t) f2 ∈ SH (0 < t < 1) is convex in the direction of the imaginary axis

provided a(α1 − α2) ≥ 0.

Proof. By Theorem 2.1, we just need to show that |ω| < 1 inU. If a = 0, then ω2(z) = ω1(z) = z and this case
can follows from Theorem 2.3. If α1 = α2, then the case follows from Theorem 2.4. Therefore, we shall only
consider the case when a(α1 − α2) > 0.

Setting ω1(z) = z and ω2(z) = z+a
1+az in (2.1), we get

ω(z) =
t(1 + z+a

1+az )(1 + 2z cosα2 + z2)z + (1 − t)(1 + z)(1 + 2z cosα1 + z2) z+a
1+az

t(1 + z+a
1+az )(1 + 2z cosα2 + z2) + (1 − t)(1 + z)(1 + 2z cosα1 + z2)

=
t(1 + a)(1 + 2z cosα2 + z2)z + (1 − t)(1 + 2z cosα1 + z2)(z + a)
t(1 + a)(1 + 2z cosα2 + z2) + (1 − t)(1 + 2z cosα1 + z2)(1 + az)

=
p(z)
p∗(z)

,

where

p(z) =(at + 1)z3 + [2t(1 + a) cosα2 + 2(1 − t) cosα1 + a(1 − t)]z2

+ [1 + at + 2a(1 − t) cosα1]z + a(1 − t)

:=a3z3 + a2z2 + a1z + a0
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and

p∗(z) =a(1 − t)z3 + [1 + at + 2a(1 − t) cosα1]z2

+ [2t(1 + a) cosα2 + 2(1 − t) cosα1 + a(1 − t)]z + (at + 1)

=z3p( 1
z ).

Thus if z0 is a zero of p and z0 , 0, then 1/z0 is a zero of p∗, and we can rewrite

ω(z) =
(z + A)(z + B)(z + C)

(1 + Az)(1 + Bz)(1 + Cz)
.

For |β| ≤ 1, the function φ(z) =
z+β

1+βz
maps U = {z : |z| ≤ 1} onto U. Hence, to prove that |ω| < 1 in U, it

suffices to show that |A| ≤ 1, |B| ≤ 1, |C| ≤ 1 with at least one of these having modulus strictly less than one.
As |a3| = at + 1 > |a0| = |a(1 − t)| holds for all a ∈ (−1, 0) ∪ (0, 1) and t ∈ (0, 1), we can apply Cohn’ Rule to p,
and thus it is sufficient to show that all the zeros of p1 lie inside or on |z| = 1, where

p1(z) =
a3p(z) − a0p∗(z)

z
= (1 + a)p̃1(z)

and

p̃1(z) =[a(2t − 1) + 1]z2 + [2(1 − t)(at + 1 − a) cosα1 + 2t(at + 1) cosα2]z
+ a(2t − 1) + 1 + 2at(1 − t)(cosα1 − cosα2)

:=b2z2 + b1z + b0.

By Lemma 2.7(1), we have |b2| > |b0|. So we can use Cohn’s Rule again on p̃1. Now, we need to show that
all the zeros of p2 lie inside or on |z| = 1, where

p2(z) =
b2p̃1(z) − b0p̃∗1(z)

z
= −4at(1 − t)(cosα1 − cosα2)p̃2(z)

and

p̃2(z) =[a(2t − 1) + 1 + at(1 − t)(cosα1 − cosα2)]z
+ (at + 1)t cosα2 + (1 − t)(at + 1 − a) cosα1

:=c1z + c0.

By Lemma 2.7(2), we have |c1| > |c0|. Hence, the zeros of p̃2, p2, p̃1, and p1 lie in |z| < 1. Therefore, |ω| < 1.

Theorem 2.9. Let f j = h j + 1 j ∈ SH with ω j = eiθ j z , where h j(z) + 1 j(z) = 1
2i sinα j

log( 1+zeiα j

1+ze−iα j
), α j ∈ [π2 , π) and

θ j ∈ [0, 2π) for j = 1, 2. For each case, if the stated conditions are satisfied, then f = t f1 + (1− t) f2 ∈ SH is convex in
the direction of the imaginary axis for 0 < t < 1.

Case (1): θ1 = θ2 or α1 = α2;
Case (2):

(a) (cosα1 − cosα2)(cosα1 − cosα2 + cosθ1 − cosθ2) < 0, and
(b) | cosα1 − cosα2 + cosθ1 − cosθ2|

> | cosα1e−iθ1 − cosα2e−iθ2 + i sin(θ1 − θ2)|.

Proof. By Theorem 2.1, we just need to show that dilatation ω of f satisfies |ω| < 1 in U. By Theorem 2.3
and 2.4, respectively, Case (1) is true.



B.-Y. Long, M. Dorff / Filomat 32:9 (2018), 3111–3121 3118

If θ1 , θ2 and α1 , α2, by substituting ω j = eiθ j z, j = 1, 2 into the equation (2.1), we derive

ω(z) = zei(θ1+θ2) p(z)
p∗(z)

,

where

p(z) =z3 + [(1 − t)e−iθ1 + te−iθ2 + 2(t cosα2 + (1 − t) cosα1)]z2

+ [2t cosα2e−iθ2 + 2(1 − t) cosα1e−iθ1 + 1]z + (1 − t)e−iθ1 + te−iθ2

:=a3z3 + a2z2 + a1z + a0

and
p∗(z) = z3p( 1

z ) = a0z3 + a1z2 + a2z + a3.

Because of t ∈ (0, 1) and θ1 , θ2, we have |(1− t)e−iθ1 + te−iθ2 | < 1.Hence, |a0| < |a3|. By Cohn’s Rule, we have

p1(z) =
a3p(z) − a0p∗(z)

z
= 2t(1 − t)(e−iθ1 − e−iθ2 )p̃1(z),

where

p̃1(z) =
1
2

(eiθ1 − eiθ2 )z2 + (cosα1eiθ1 − cosα2eiθ2 )z

+ cosα1 − cosα2 +
1
2

(eiθ1 − eiθ2 )

:=b2z2 + b1z + b0.

In view of condition (a) in Case (2), we have

|b0|
2
− |b2|

2 =| cosα1 − cosα2 +
1
2

(eiθ1 − eiθ2 )|2 −
1
4
|eiθ1 − eiθ2 |

2

=(cosα1 − cosα2)(cosα1 − cosα2 + cosθ1 − cosθ2) < 0.

It follows |b0| < |b2|. Therefore, we can make use of Cohn’s Rule again. Let

p̃∗1(z) = z2p̃1( 1
z ) = b0z2 + b1z + b2.

By direct computation, we have

p2(z) :=
b2p̃1(z) − b0p̃∗1(z)

z
:= − (cosα1 − cosα2)p̃2(z) = −(cosα1 − cosα2)(c1z + c0),

where

c1 = cosα1 − cosα2 + cosθ1 − cosθ2,

c0 = cosα1e−iθ1 − cosα2e−iθ2 + i sin(θ1 − θ2).

Because of condition (a) in Case (2), we have |c1| > |c0|. So the zero(s) of p̃2 and p̃1 both lie inside the unit
circle |z| = 1. Therefore, it follows |ω| < 1.

If we take specific values for θ1 and θ2, we have the following corollary.
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Corollary 2.10. Let f j = h j + 1 j ∈ SH, where h j(z) + 1 j(z) = 1
2i sinα j

log
(

1+zeiα j

1+ze−iα j

)
, α j ∈ [π2 , π) for j = 1, 2. For each

case, if the stated conditions are satisfied, then f = t f1 + (1 − t) f2 ∈ SH is convex in the direction of the imaginary
axis for 0 < t < 1.

Case (1): For ω1(z) = zei(θ+ π
2 ), ω2(z) = zeiθ.

(a) (cosα1 − cosα2)(cosα1 − cosα2 − sinθ − cosθ) < 0, and
(b) (cosα1 + sinθ)(cosθ − cosα2) > (sinθ + cosθ)(cosα1 − cosα2).

Case (2): For ω1(z) = zei(θ+π), ω2(z) = zeiθ.

(a) (cosα1 − cosα2)(cosα1 − cosα2 − 2 cosθ) < 0, and
(b) (cosα1 − cosθ)(cosα2 + cosθ) < 0.

Case (3): For ω1(z) = z, ω2(z) = −z.
(a) α1 > α2.

Theorem 2.11. Let f j = h j + 1 j ∈ SH, where h j(z) + 1 j(z) = 1
2i sinα j

log
(

1+zeiα j

1+ze−iα j

)
, α j ∈ [π2 , π) for j = 1, 2. For each

case, if the stated conditions are satisfied, then f = t f1 + (1 − t) f2 ∈ SH is convex in the direction of the imaginary
axis for 0 < t < 1.

Case (1): For ω1(z) = z, ω2(z) = z2, and α1 < α2.

Case (2): For ω1(z) = z, ω2(z) = −z2, and α1 > α2.

Proof. As the proof is similar to the proof of Theorem 2.8 and Theorem 2.9, it is omitted.

3. Example

In this section, we give two examples to illustrate our results.

Example 3.1. If α1 = α2 = π
2 , then h j(z) + 1 j(z) = 1

2i log
(

1+iz
1−iz

)
for j = 1, 2. Taking ω1(z) = z, we get

h1(z) = 1
4 log (1+z)2

1+z2 + 1
2 arctan z,

11(z) = − 1
4 log (1+z)2

1+z2 + 1
2 arctan z.

Taking ω2(z) = −z2, we obtain

h2(z) = 1
4 log 1+z

1−z + 1
2 arctan z,

12(z) = − 1
4 log 1+z

1−z + 1
2 arctan z.

Let f j = h j + 1 j for j = 1, 2 and f = t f1 + (1 − t) f2. Then by Theorem 2.4, we know that f is in SH and is convex in
the direction of the imaginary axis. The images ofU under f with t = 0, 1

2 and 1, respectively, are shown in Figure 1.
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(a) t = 0 (b) t = 1
2 (c) t = 1

Figure 1: Images of concentric circles under f of Example 3.1

Example 3.2. Letting α1 = 3π
4 , we have

h1(z) + 11(z) =
1
√

2i
log

 √2 + (−1 + i)z
√

2 − (1 + i)z

 .
With ω1(z) = z, we have

h1(z) = 2−
√

2
4 log (1+z)2

1−
√

2z+z2
+

(1+
√

2) arctan(
√

2z−1)
2+
√

2
+

(1+
√

2)π
4(2+

√
2)
,

11(z) = − 2−
√

2
4 log (1+z)2

1−
√

2z+z2
+

(1+
√

2) arctan(
√

2z−1)
2+
√

2
+

(1+
√

2)π
4(2+

√
2)
.

With α2 = π
2 , then h2(z) + 12(z) = 1

2i log
(

1+iz
1−iz

)
. Taking ω2(z) = −z, we get

h2(z) = 1
4 log 1+z2

(1−z)2 + 1
2 arctan z,

12(z) = − 1
4 log 1+z2

(1−z)2 + 1
2 arctan z.

Let f j = h j + 1 j for j = 1, 2 and f = t f1 + (1 − t) f2, Then Corollary 2.10 gives us that f is in SH and is convex in the
direction of the imaginary axis. The images ofU under f with t = 0, 1

2 and 1, respectively, are shown in Figure 2.

(a) t = 0 (b) t = 1
2 (c) t = 1

Figure 2: Images of concentric circles under f of Example 3.2
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