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Abstract. The main object of this paper is to study the zero-divisor graph Γ(RL) of the ring RL. Using
the properties of the lattice Coz L, we associate the ring properties of RL, the graph properties of Γ(RL),
and the properties of a competely regular frame L. Paths in Γ(RL) are investigated, and it is shown that
the diameter of Γ(RL) and the girth of Γ(RL) coincide whenever L has at least 5 elements. Cycles in Γ(RL)
are surveyed, a ring-theoretic and a frame-theoretic characterizations are provided for the graph Γ(RL) to
be triangulated or be hypertriangulated. We show that Γ(RL) is complemented if and only if the space of
minimal prime ideals of RL is compact. The relation between the clique number of Γ(RL), the cellularity of
L and the dominating number of Γ(RL) is given. Finally, we prove that if Γ(RL) is not triangulated, then the
set of centers of Γ(RL) is a dominating set if and only if the socle of RL is an essential ideal.

1. Introduction

Let R be a commutative ring with identity. As in [1] and [16], by the zero-divisor graph Γ(R) of R we
mean the (simple) graph with vertices nonzero zero-divisors of R such that there is an edge between vertices
x and y if and only if x , y and xy = 0.

Let C(X) be the ring of all real-valued continuous functions on a completely regular Hausdorff space
X. The zero-divisor graph Γ(C(X)) has been studied by Azarpanah and Motamedi in [3]. They have
investigated the relations between ring properties of C(X), graph properties of Γ(C(X)) and topological
properties of the space X.

The ring of real-valued continuous functions on a frame L is the set of all frame homomorphisms
α : L(R) → L, where L(R) is the frame of reals, that is, the frame of open subsets of OR. This ring is
denoted by RL (see [4, 5] for details). Our main purpose in this article is to study the relations between
the ring properties of RL, the graph properties of Γ(RL) and the frame-theoretic properties of the frame
L. Our characterizations extend similar ones for Γ(C(X)) given in [3]. Although, in the statements of the
characterizations we give verbatim, literal translations of those in Γ(C(X)), our proofs are, of necessity,
entirely different in that the proofs in [3] use points of spaces involved while our proofs rely heavily on the
properties of the cozero part of frames.

Section 3 commences with a description that the concept of distance in Γ(RL) is captured in pointfree
topology (Proposition 3.3). We then determine the diameter, girth and the radius of Γ(RL). It turns out that
the diameter, the girth and the radius of Γ(RL) are 2 or 3, 3 or 4 and 2 or 3, respectively.
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In Section 4, we study cycles in Γ(RL). It turns out that the cycles in Γ(RL) have only length 3 or 4.
Graphical characterizations of regularity and almost regularity of the ring RL, and pointfree characteriza-
tions for the graph Γ(RL) to be triangulated, hypertriangulated and complemented are provided in this
section. In the paper [15], the concept of a middle P-frame has been introduced by Ighedo. In Proposition
4.5, we show that Γ(RL) is a hypertriangulated graph if and only if L is a connected middle P-frame.

We introduce the cellularity in Definitions 5.1. This definition and the weight of a frame enable us to
study the dominating number and the clique number of Γ(RL) in Section 5. A pointfree characterization
and an algebraic characterization for the set of centers of Γ(RL) to be a dominating set are given in Theorem
5.7.

2. Preliminaries

2.1. Frames
For general facts concerning pointfree functions rings, general topology, the ring C(X), and frames see

[4, 5], [13], [14], and [17]. Here, we recall a few definitions and results that will be relevant for our discussion.
A frame is a complete lattice for which finite meets distribute over arbitrary joins. Let L be a frame. We

denote the top element and the bottom element of L by > and ⊥ respectively. Throughout this context L
will denote a frame. The frame of open subsets of a topological space X is denoted by O(X).

The pseudocomplement of an element a ∈ L, denoted a∗, is the element

a∗ =
∨
{x ∈ L | a ∧ x = ⊥}.

We recall that:
(1) if a ≤ b, then b∗ ≤ a∗.
(2) a ≤ a∗∗ and a∗ = a∗∗∗.
(3) (a ∨ b)∗ = a∗ ∧ b∗ and (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.
An element a of L is said to be complemented if a ∨ a∗ = >, and dense if a∗ = ⊥. We call the set of

all complemented elements of L the Boolean part of L, and denote it by BL. For any frame L, we have
BL = {x ∈ L : x ∨ x∗ = >} and BL is a sublattice of L. Notice that every element x of BL has a unique
complement, which is denoted by x′.

An element p ∈ L is said to be an atom if p , ⊥ and there exists no element x with ⊥ < x < p.
A frame L is said to be completely regular if, for each a ∈ L, a =

∨
{x ∈ L | x ≺≺ a}, where x ≺≺ a means that

there are elements (cq) indexed by the rational numbers Q ∩ [0, 1] such that c0 = x, c1 = a, and cp ≺ cq for
p < q. Note that x ≺ a means that there is an element b such that x ∧ b = ⊥ and b ∨ a = >, or equivalently,
x∗ ∨ a = >. Throughout, all frames under consideration are assumed to be completely regular.

2.2. The ring RL
Regarding the frame of reals L(R) and the f -ring RL of continuous real functions on L, we use the

notation of [5]. We freely use the properties of the cozero map coz: RL→ L, given by

cozα =
∨
{α(p, q) | q < 0 or p > 0},

and those of Coz L = {cozα | α ∈ RL}, the cozero part of L. Note that Coz L is a regular sub-σ-frame of L; and
a frame is completely regular if and only if it is generated by its cozero part. We refer to [4–6] for general
properties of cozero elements and cozero parts of frames.

3. Paths in Γ(RL)

To begin with, we note that α ∈ RL is a zero-divisor if and only if cozα is not dense (see [9, Corollary
4.2] for details). Hence, 0 , α ∈ Γ(RL) if and only if (cozα)∗ , ⊥. Also if a ∈ L is different from the top or the
bottom, then there is α ∈ Γ(RL) such that cozα ≺≺ a. To see this, by complete regularity, take α ∈ RL such
that ⊥ , cozα ≺≺ a. That is to say (cozα)∗ ∨ a = >, implying that (cozα)∗ , ⊥. Thus α ∈ Γ(RL).
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Remark 3.1. If |L| = 2, that is, L = 2, then RL is isomorphic with the field of real numbers, that is, RL � R. On the
other hand, the three-element chain 3 = {⊥,m,>} is not completely regular. Thus for studying the zero-divisor graph
of RL, we should consider |L| ≥ 4. Next, by [1, Theorem 2.2], it is easy to see that Γ(RL) is always infinite.

Recall that for two vertices α and β of Γ(RL), d(α, β) is the length of the shortest path from α to β. The
diameter of Γ(RL) is denoted by diam Γ(RL) and is defined by diam Γ(RL) = sup{d(α, β) | α, β ∈ Γ(RL)}. The
girth of Γ(RL), denoted gr Γ(RL), is defined as the length of the shortest cycle in Γ(RL).

The following proposition characterizes the concept of distance in Γ(RL) using cozero elements of L.
First, we need the following lemma. In order to state this lemma, we need some background. As in [7], if
α : L(R)→ L and a ∈ L, then α|a denotes the composite α : L(R)→ L→↓ a. Recall also from [7, Lemma 1]
that if a ≺≺ b in L, then there exists ϕ ∈ RL such that 0 ≤ ϕ ≤ 1, ϕ|a = 1a, and ϕ|b∗ = 0.

Lemma 3.2. For every α, β ∈ Γ(RL), there exists a vertex ϕ ∈ Γ(RL) adjacent to both α and β if and only if
(cozα)∗ ∧ (coz β)∗ , ⊥.

Proof. We begin with the sufficiency. Let (cozα)∗ ∧ (coz β)∗ , ⊥. Then, by complete regularity, there
exists γ ∈ RL such that ⊥ , cozγ ≺≺ (cozα)∗ ∧ (coz β)∗. Now, take ϕ ∈ RL such that ϕ| cozγ = 1 and
ϕ|

(
(cozα)∗ ∧ (coz β)∗

)∗
= 0. The latter implies that cozϕ ∧

(
(cozα)∗ ∧ (coz β)∗

)∗
= ⊥ and hence

cozϕ ≤
(
(cozα)∗ ∧ (coz β)∗

)∗∗
= (cozα)∗∗∗ ∧ (coz β)∗∗∗ = (cozα)∗ ∧ (coz β)∗.

In consequence,

coz(ϕα) = cozϕ ∧ cozα ≤
(
(cozα)∗ ∧ (coz β)∗

)
∧ cozα

=
(
(cozα)∗ ∧ cozα

)
∧ (coz β)∗ = ⊥.

Therefore ϕα = 0, similarly ϕβ = 0. Consequently, ϕ ∈ Γ(RL) and ϕ adjacent to both α and β. Conversely, if
there existsϕ ∈ Γ(RL) adjacent to both α and β, thenϕα = ϕβ = 0. This implies that cozϕ ≤ (cozα)∗∧(coz β)∗

and therefore (cozα)∗ ∧ (coz β)∗ , ⊥, since cozϕ , ⊥.

Proposition 3.3. Let α, β ∈ Γ(RL). Then the following statements hold.

1. d(α, β) = 1 if and only if cozα ∧ coz β = ⊥.
2. d(α, β) = 2 if and only if cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ , ⊥.
3. d(α, β) = 3 if and only if cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ = ⊥.

Proof. (1). Trivial.
To prove (2), first suppose that d(α, β) = 2. Then, by part (1), cozα∧ coz β , ⊥ and there exists ϕ ∈ Γ(RL)

such that ϕ is adjacent to both α and β. Therefore, by Lemma 3.2, (cozα)∗ ∧ (coz β)∗ , ⊥. Conversely, let
cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ , ⊥. Then, by part (1), d(α, β) > 1 and, by Lemma 3.2, there is a
vertex adjacent to both α and β. These imply d(α, β) = 2.

To show (3), let d(α, β) = 3. Clearly, by parts (1) and (2), cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ = ⊥.
Conversely, suppose that cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ = ⊥. By parts (1) and (2), d(α, β) > 2.
Now, if a vertex δ is adjacent to α and a vertex γ is adjacent to β, then αδ = βγ = 0. In consequence,
coz δ ∧ cozγ ≤ (cozα)∗ ∧ (coz β)∗ = ⊥, implying that coz(δγ) = ⊥ and hence δγ = 0, this means that δ is
adjacent to γ. Therefore d(α, β) = 3.

Note that if α ∈ Γ(RL), then cozα ∧ coz 2α , ⊥ and (cozα)∗ ∧ (coz 2α)∗ , ⊥. Now as a consequence, by part
(2) of Proposition 3.3, we have the following.

Corollary 3.4. Whenever |L| ≥ 4, then diam Γ(RL) ≥ 2.

We intend to show that diam Γ(RL) = gr Γ(RL) = 3 for when |L| , 4. For this we shall need a series of results.
We begin with a lemma. Before the following lemma is presented, let us recall that a graph G is connected
if there is a path between any two distinct vertices. Note that Γ(RL) is always connected (see [1, Theorem
2.3]).
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Lemma 3.5. Let α, β ∈ Γ(RL) be such that cozα ∧ coz β = ⊥ and (cozα)∗ ∧ (coz β)∗ , ⊥. Then gr Γ(RL) = 3.

Proof. By hypothesis, we haveαβ = 0 andα2+β2 is a nonzero zero-divisor. Hence, there existsγ ∈ Γ(RL) such
that γ(α2 + β2) = 0, implying that γ2(α2 + β2) = 0. This shows that γα = γβ = 0. Therefore gr Γ(RL) = 3.

Recall that if a is an atom of L, then, by complete regularity, it is complemented and so a ∈ Coz L. For the
proof of the next corollary, we shall use the fact that if a and b are two atoms of L such that a′ , b, then

a ∧ b = ⊥ ⇒ a ∨ b , > ⇒ a′ ∧ b′ , ⊥.

Corollary 3.6. Whenever L has at least 3 atoms, then diam Γ(RL) = gr Γ(RL) = 3.

Proof. Whenever L has at least 3 atoms, then there exist α, β ∈ Γ(RL) such that cozα ∧ coz β , ⊥ and
(cozα)∗ ∧ (coz β)∗ = ⊥. Now, part (3) of Proposition 3.3 implies that diam Γ(RL) = 3. To prove the second
part it is easy to see that there exist δ, ρ ∈ RL such that coz δ ∧ cozρ = ⊥ and (coz δ)∗ ∧ (cozρ)∗ , ⊥. Now,
Lemma 3.5 shows that gr Γ(RL) = 3.

Recall from [8, Lemma 3.3] that if cozα ≺≺ coz β for some α, β ∈ RL, then there exists δ ∈ RL such that α = δβ.

Example 3.7. Suppose that |L| = 4. Since the four-element chain 4 = {⊥,m < n,>} is not completely regular, we
can conclude that L = {⊥, a, b,>}, where b = a′. Now, let α, β ∈ RL with cozα = a, coz β = b. We put

A = {δ ∈ RL | coz δ = cozα} and B = {γ ∈ RL | cozγ = coz β}.

It is easy to see that the zero-divisor graph of RL is a graph where its vertices are two disjoint nonempty sets A and
B such that two vertices δ and γ are adjacent if and only if δ ∈ A and γ ∈ B. This means that Γ(RL) is a bipartite
complete graph. Consequently, diam Γ(RL) = 2 and gr Γ(RL) = 4.

Before proving the next result let us notice the following about cozero elements. If a ≺≺ b in L, then there
is c ∈ Coz L such that a ≺≺ c ≺≺ b (see [6, Corollary 1]). As a consequence, there exists d ∈ Coz L such that
a ∧ d = ⊥ and d ∨ b = >.

Lemma 3.8. Let α ∈ Γ(RL). Then the following statements hold.

1. If cozα < BL, then there exists β ∈ Γ(RL) such that d(α, β) = 3.
2. Let cozα ∈ BL. If there exists γ ∈ Γ(RL) such that cozγ � cozα and cozγ ∈ BL, then there exists β ∈ Γ(RL)

such that d(α, β) = 3.

Proof. (1). Since cozα < BL, there exists δ ∈ RL such that⊥ , coz δ ≺≺ cozα. This means that coz δ∧coz β = ⊥
and cozα ∨ coz β = > for some β ∈ RL. In consequence,

(coz β)∗ , ⊥, cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ = ⊥.

Therefore, part (3) of Proposition 3.3 implies that d(α, β) = 3.
(2). Putting coz β = (cozγ)′, we then have

cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ = ⊥.

Therefore, part (3) of Proposition 3.3 implies that d(α, β) = 3.

Proposition 3.9. Whenever L has at least 5 elements, then diam Γ(RL) = 3.

Proof. We consider two cases.
Case 1: Suppose that Coz L = BL (note that L can be finite or infinite). Then Coz L has at least 3 elements

other than the top or the bottom. When Coz L has at least 3 atoms, Corollary 3.6 implies that diam Γ(RL) = 3.
Now, suppose cozα is not an atom for some α ∈ RL. Then there exists δ ∈ RL such that ⊥ , coz δ � cozα.
Therefore, part (2) of Lemma 3.8 implies that diam Γ(RL) = 3.
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Case 2: Suppose BL $ Coz L (note that L and Coz L are infinite). If there exists α ∈ Γ(RL) such that
cozα ∈ Coz L \ BL, then part (1) of Lemma 3.8 implies that diam Γ(RL) = 3. Otherwise, for every α ∈ RL
with (cozα)∗ , ⊥, we have cozα ∈ BL. This means that we can choose δ ∈ Γ(RL) with coz δ ∈ Coz L.
So, take ρ ∈ RL such that cozρ = (coz δ)′. In case coz δ or cozρ is not an atom, part (2) of Lemma 3.8
implies that diam Γ(RL) = 3. Now, let coz δ and cozρ be two atoms. If there is γ ∈ Γ(RL) such that
cozγ , coz δ and cozγ , cozρ, then, by either Corollary 3.6 or part (1) of Lemma 3.8, we can conclude
that diam Γ(RL) = 3. Otherwise, by complete regularity, it is easy to show L = {⊥, coz δ, cozρ,>} which is a
contradiction. Therefore, the proof is complete.

The combination of this proposition with Example 3.7 imply the following corollary.

Corollary 3.10. The diam Γ(RL) = 2 if and only if L = {⊥, a, b,>}, where b = a′.

Next, we are going to discuss the girth of Γ(RL). We begin with the following lemma. For the proof of this
lemma, we shall use the following fact: If a, b ∈ L and a ≺≺ b, then b∗ ≺≺ a∗.

Lemma 3.11. Let α ∈ Γ(RL). Then the following statements hold.

1. Let cozα ∈ BL. If there exists γ ∈ Γ(RL) such that cozγ � cozα and cozγ ∈ BL, then gr Γ(RL) = 3.
2. If cozα < BL, then gr Γ(RL) = 3.

Proof. (1). Putting coz β = (cozα)′, we then have

cozγ ∧ coz β ≤ cozα ∧ coz β = ⊥, in consequence cozγ ∧ coz β = ⊥;

and also we claim that (cozγ)∗ ∧ (coz β)∗ , ⊥. To see this, suppose, by way of contradiction, that (cozγ)∗ ∧
(coz β)∗ = ⊥. Then (cozγ)∗ ∧ cozα = ⊥, implying that cozα ≤ cozγ ≤ cozα and hence cozα = cozγ which
is a contradiction. Therefore, by Lemma 3.5, gr Γ(RL) = 3.

(2). Since cozα < BL, there exists δ ∈ RL such that⊥ , coz δ ≺≺ cozα and so (cozα)∗ ≺≺ (coz δ)∗. Take ρ ∈
RL such that (cozα)∗ ≺≺ cozρ ≺≺ (coz δ)∗. This show that (cozρ)∗ , ⊥ and cozρ∧coz δ ≤ cozρ∧(coz δ)∗∗ = ⊥,
that is, cozρ∧coz δ = ⊥. Now, if (cozρ)∗∧(coz δ)∗ , ⊥, then Lemma 3.5 shows that gr Γ(RL) = 3. Otherwise,
let (cozρ)∗ ∧ (coz δ)∗ = ⊥. On the other hand, cozρ ≺≺ (coz δ)∗ implies that (cozρ)∗ ∨ (coz δ)∗ = >. Therefore
(coz δ)∗ ∈ BL. Now, we consider two cases.

Case 1: Suppose (cozα)∗ ∈ BL. Then since coz δ ≺≺ cozα, (coz δ)∗ ∨ cozα = >, showing that (coz δ)∗ ,
(cozα)∗. Therefore, by (1), gr Γ(RL) = 3 since (cozα)∗ � (coz δ)∗, (cozα)∗∗ , ⊥, and (coz δ)∗∗ , ⊥.

Case 2: Suppose (cozα)∗ < BL. Pick ϕ ∈ RL such that (cozϕ)∗ , ⊥ and ⊥ , cozϕ ≺≺ (cozα)∗ ≺≺ (coz δ)∗,
implying that cozϕ ∧ coz δ = ⊥. Now, if (cozϕ)∗ ∧ (coz δ)∗ , ⊥, then, by Lemma 3.5, gr Γ(RL) = 3.
Otherwise, (cozϕ)∗ ∧ (coz δ)∗ = ⊥ implies that (cozϕ)∗ ≤ (coz δ)∗∗. This shows that (cozϕ)∗ = (coz δ)∗∗ since
cozϕ ≺≺ (coz δ)∗. Consequently, (coz δ)∗∗ = (cozα)∗∗, implying (coz δ)∗ = (cozα)∗, a contradiction because
(coz δ)∗ ∈ BL implies (cozα)∗ ∈ BL.

Proposition 3.12. Whenever L has at least 5 elements, then gr Γ(RL) = 3.

Proof. We consider two cases.
Case 1: Suppose Coz L = BL. Then Coz L has at least 3 elements other than the top or bottom. Whenever

Coz L has at least 3 atoms, then Corollary 3.6 implies gr Γ(RL) = 3. Now, suppose cozα is not an atom for
some α ∈ RL. Then there exists τ ∈ RL such that ⊥ , coz τ � cozα. Therefore, part (1) of Lemma 3.11
implies that gr Γ(RL) = 3.

Case 2: Suppose BL $ Coz L. If there exists α ∈ Γ(RL) such that cozα ∈ Coz L \ BL, Then part (2) of
Lemma 3.11 implies that gr Γ(RL) = 3. Otherwise, for every α ∈ RL with (cozα)∗ , ⊥, we have cozα ∈ BL.
This means that we can choose δ ∈ Γ(RL) with coz δ ∈ Coz L. Hence, take ρ ∈ RL such that cozρ = (coz δ)′.
In case coz δ or cozρ is not an atom, part (1) of Lemma 3.11 implies that gr Γ(RL) = 3. Now, suppose coz δ
and cozρ are atoms. If there is γ ∈ Γ(RL) such that cozγ , coz δ and cozγ , cozρ, then, by either Corollary
3.6 or part (1) of Lemma 3.11, we can conclude that gr Γ(RL) = 3. Otherwise, by complete regularity, it is
easy to show that L = {⊥, coz δ, cozρ,>}which is a contradiction. Therefore, the proof is complete.
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An immediate consequence of Example 3.7 and the previous proposition, is the following corollary.

Corollary 3.13. The gr Γ(RL) = 4 if and only if L = {⊥, a, b,>} where b = a′.

Combining Propositions 3.9 and 3.12, we have the following theorem.

Theorem 3.14. The diameter of Γ(RL) and the girth of Γ(RL) coincide whenever L has at least 5 elements.

In what follows, we intend to study the radius of the zero-divisor graph of Γ(RL). Let us recall the definition
of the radius of a graph G. The associated number of a vertex x of a graph G denoted by e(x) is defined as
e(x) = sup{d(x, y) | x , y ∈ G}. A center of G is defined to be a vertex t with the smallest associated number.
The associated number e(t) of any center t is said to be the radius of G and is denoted by %(G).

Proposition 3.15. Suppose α ∈ Γ(RL), then

e(α) =

{
2 if cozα is an atom
3 otherwise.

Proof. First, let cozα be an atom. Consider β ∈ Γ(RL). Then cozα ∧ coz β = cozα or cozα ∧ coz β = ⊥. The
latter implies that d(α, β) = 1. By the former case, we have cozα ≤ coz β, showing that (cozα)∗ ∧ (coz β)∗ =
(coz β)∗ , ⊥. Hence, by part (2) of Proposition 3.3, d(α, β) = 2. Therefore e(α) = 2 since cozα∧coz 2α = cozα.
Now, suppose cozα is not an atom. Then we consider two cases.

Case 1: If cozα < BL, then part (1) of Lemma 3.8 implies that e(α) = 3.
Case 2. Suppose cozα ∈ BL. Since cozα is not an atom, there exists δ ∈ RL such that ⊥ , coz δ ≺≺ cozα

and (coz δ)∗ , ⊥. In case coz δ ∈ BL, part (2) of Lemma 3.8 implies that e(α) = 3. Otherwise, by Case 1,
e(δ) = 3. Take β ∈ Γ(RL) such that d(δ, β) = 3, and so, by part (2) of Proposition 3.3, we have coz δ∧ coz β , ⊥
and (coz δ)∗ ∧ (coz β)∗ = ⊥. This implies quickly that cozα∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ = ⊥. Again, by
part (2) of Proposition 3.3, d(α, β) = 3, which shows that e(α) = 3.

As an immediate consequence, we now have the following corollary.

Corollary 3.16. If L has an atom, then %(Γ(RL)) = 2; otherwise %(Γ(RL)) = 3.

By this corollary and the definition of center, if L has no atoms, that is, %(Γ(RL)) = 3; then every vertex is a
center. But whenever L has at least one atom, that is, if %(Γ(RL)) = 2, then the set of centers of Γ(RL) is the
set of all vertices α ∈ Γ(RL) such that cozα is an atom.

4. Cycles in Γ(RL)

A graph G is called triangulated (hypertriangulated) if each vertex (edge) of G is a vertex (edge) of a
triangle. In the next proposition, we show that every vertex of Γ(RL) is a cycle vertex, that is, every vertex
of Γ(RL) belongs to a cycle. In fact, it turns out that for every vertex α in Γ(RL), there exists a 4-cycle
(quadrangle) containing α and whenever L has no atoms, then for every vertex α of Γ(RL), there exists a
3-cycle (triangle) containing α.

Proposition 4.1. For a frame L, every vertex of Γ(RL) is a 4-cycle-vertex.

Proof. For every vertex α, there exists a vertex β such that αβ = 0 since Γ(RL) is always connected. Therefore
αβ = (2α)β = (2α)(2β) = α(2β) = 0, that is, the path with vertices α, β, 2α and 2β is a cycle with length 4
containing α.

By the above proposition, every vertex in Γ(RL) is a vertex of a cycle. It is also easy to see that every edge
in Γ(RL) is an edge of a cycle.

In the following theorem, we give the frame-theoretic property of L and the ring-theoretic property of
RL for which the graph Γ(RL) is triangulated. We begin with the following lemma.
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Lemma 4.2. If α, β ∈ Γ(RL) such that cozα � coz β and coz β ∈ BL, then α is a vertex of a triangle.

Proof. Putting cozγ = (coz β)′, we then have cozα ∧ cozγ = ⊥. Now, (cozα)∗ ∧ (cozγ)∗ = ⊥ implies that
cozα = coz β which is a contradiction. In consequence, (cozα)∗ ∧ (cozγ)∗ , ⊥. Therefore, by Lemma 3.2,
there exists a vertex δ adjacent to both α and γ, showing α is a vertex of the triangle with vertices α, γ and
δ.

Recall that an ideal of a ring is essential if it meets every nonzero ideal non-trivially. By Lemma 4.3 in [9], an
ideal I in RL is essential if and only if

∨
δ∈I coz δ is dense.

Theorem 4.3. The following are equivalent for a frame L.
1. Γ(RL) is a triangulated graph.
2. L has no atoms.
3. There is no maximal ideal in RL generated by an idempotent.

Proof. (1) ⇒ (2). Let Γ(RL) be a triangulated graph and suppose L has an atom a. Consider α ∈ RL
such that cozα = a′, clearly α ∈ Γ(RL). Since Γ(RL) is triangulated, then there are γ, δ ∈ Γ(RL) such that
αγ = αδ = γδ = 0. This shows that cozγ ≤ a, coz δ ≤ a, and cozγ ∧ coz δ = ⊥. Therefore γ = 0 or δ = 0,
which is a contradiction.

(2)⇒ (1). Suppose that L does not contain atoms and take α ∈ Γ(RL). Then there exists 0 , β ∈ RL such
that coz β ≺≺ (cozα)∗ and coz β , (cozα)∗. Now, we consider two cases.

Case 1: Suppose (coz β)∗ ∧ (cozα)∗ , ⊥. Then, by Lemma 3.2, there exists a vertex γ adjacent to both α
and β, showing α is a vertex of the triangle with vertices α, β and γ since coz β ∧ cozα = ⊥.

Case 2: Assume (coz β)∗ ∧ (cozα)∗ = ⊥. Pick δ ∈ RL such that coz δ ≺≺ coz β. If (coz δ)∗ ∧ (cozα)∗ , ⊥,
then, similar to Case 1, α is a vertex of a triangle. Otherwise, let (coz δ)∗ ∧ (cozα)∗ = ⊥. Then since

(coz β)∗ ∨ (cozα)∗ = > and (coz δ)∗ ∨ (cozα)∗ = >,

we can conclude that (cozα)∗∗ = (coz β)∗ = (coz δ)∗. This shows that coz β ∨ (coz β)∗ = > and so coz β ∈ BL.
On the other hand, coz β ≺≺ (cozα)∗ implies that cozα ≤ (cozα)∗∗ ≺≺ (coz β)∗, showing cozα ≤ (coz β)∗.
Therefore if cozα , (coz β)∗, then, by Lemma 4.2, α is a vertex of a triangle. Otherwise, cozα = (coz β)∗

shows that (cozα)∗ = coz β which is a contradiction.
(2) ⇒ (3). Let M be a maximal ideal of RL generated by an idempotent. Take an idempotent η in RL

such that M = 〈η〉. Then, 〈1 − η〉 is a minimal ideal generated by the idempotent 1 − η, and hence, by the
proof of Lemma 3.4 in [11], coz(1 − η) is an atom.

(3) ⇒ (2). Let a be an atom of L. Again, by Lemma 3.4 in [11], the ideal Ma = {δ ∈ RL| coz δ ≤ a} is a
minimal ideal and

∨
Ma = a. Hence, Lemma 4.3 in [9] shows that Ma is a non-essential ideal of RL. Thus,

Lemma 4.5 in [11] implies that Ma = 〈η〉 for some idempotent η in RL. Now, since RL is a reduced ring,
M = 〈1 − η〉 is a maximal ideal of RL generated by an idempotent.

Recall from [3] that a zeroset Z in X is said to be a middle zeroset if there exist two proper zerosets E and F
such that Z = E ∩ F and E ∪ F = X. A space X is called a middle P-space if every nonempty middle zeroset
in X has a nonempty interior. Clearly, every almost P-space is a middle P-space but not conversely (see [3]
for details). Now, adapting this to frames, Ighedo [15] has introduced the following definition.

Definition 4.4. (1) A cozero element c in L is said to be middle cozero element if there exist two cozero elements a
and b other than the bottom such that c = a ∨ b and a ∧ b = ⊥.

(2) A frame L is called a middle P-frame if every non-top middle cozero element in L is not dense. This is equivalent
to saying L is a middle P-frame if and only if the only dense middle cozero element of L is >.

Clearly, a topological space X is a middle P-space if and only if the frameOX is a middle P-frame. For more
details about middle P-frames see [15].

In the following proposition, we consider frame-theoretic properties of L for which the graph Γ(RL) is
hypertriangulated. Recall from [4] that a frame is disconnected if there is at least one non-trivial comple-
mented element. A frame is connected if it is not disconnected, or equivalently, if a ∧ b = ⊥ and a ∨ b = >
imply a = > or b = >.
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Proposition 4.5. For a frame L, Γ(RL) is a hypertriangulated graph if and only if L is a connected middle P-frame.

Proof. Let Γ(RL) be a hypertriangulated graph. If L is not connected, then there exists a complemented
element ⊥ , a in L. Take α, β in RL such that cozα = a and coz β = a′. Now, cozα ∧ coz β = ⊥ implies that
α is adjacent to β and since (cozα)∗ ∧ (coz β)∗ = ⊥, then by Lemma 3.2, there is no vertex adjacent to both α
and β. So the edge α − β does not belong to a triangle, which is a contradiction; therefore L is connected.
Now, let cozα be a middle cozero element. Then cozα = coz β ∨ cozγ and coz β ∧ cozγ = ⊥ for some
cozero elements coz β and cozγ. Since Γ(RL) is hypertriangulated, then β − γ is an edge of a triangle, that
is, there exists a vertex δ such that βδ = γδ = 0. This implies that cozα = coz β ∨ cozγ ≤ (coz δ)∗, showing
⊥ , coz δ ≤ (coz δ)∗∗ ≤ (cozα)∗ which means that (cozα)∗ , ⊥. Consequently, L is a middle P-frame.

Conversely, let L be a connected middle P-frame and α − β be an edge in Γ(RL). Since cozα ∧ coz β = ⊥
and L is connected, then cozα ∨ coz β , >. This shows that (cozα)∗ ∧ (coz β)∗ , ⊥, because L is a middle
P-frame. Now, by Lemma 3.2 there exists a vertex adjacent to both α and β. This means that Γ(RL) is a
hypertriangulated graph.

If α and β are two vertices in Γ(RL), by c(α, β), we mean the length of the smallest cycle containing α and β.
For every two vertices α and β, all possible cases for c(α, β) are provided in the next proposition.

Proposition 4.6. Let α, β ∈ Γ(RL). Then the following statements hold.
1. c(α, β) = 3 if and only if cozα ∧ coz β = ⊥ and (cozα)∗ ∧ (coz β)∗ , ⊥.
2. c(α, β) = 4 if and only if either cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ , ⊥ or cozα ∧ coz β = ⊥ and

(cozα)∗ ∧ (coz β)∗ = ⊥.
3. c(α, β) = 6 if and only if cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ = ⊥.

Proof. First of all, by Lemma 3.2 and Proposition 3.3, it is easily checked that parts (1) and (2) are true. To
prove part (3), if c(α, β) = 6, then parts (1) and (2) imply that cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ = ⊥.
Conversely, since cozα ∧ coz β , ⊥ and (cozα)∗ ∧ (coz β)∗ = ⊥, then by part (3) of Proposition 3.3, we
have d(α, β) = 3. Thus, there exist vertices γ and δ such that αγ = γδ = δβ = 0. Now, if some vertex
ϕ is adjacent to β, then ϕβ = 0. In consequence, cozϕ ≤ (coz β)∗ and cozγ ≤ (cozα)∗ implying that
cozγ ∧ cozϕ ≤ (cozα)∗ ∧ (coz β)∗ = ⊥, and so ϕ is adjacent to γ. But this simply means that c(α, β) ≥ 5. On
the other hand, d(α, β) = 3 implies that α is not adjacent to ϕ. Therefore, c(α, β) ≥ 6. Now, if we consider the
vertices 2γ and 2δ, then we have a cycle with vertices α, β, γ, δ, 2γ and 2δ, that is to say c(α, β) = 6.

As an immediate consequence, we now have the following result.

Corollary 4.7. For a frame L, the following statements hold.
1. Every cycle in Γ(RL) has length 3 or 4.
2. Every edge of Γ(RL) is an edge of a cycle with length 3 or 4.

A frame L is said to be a P-frame if for every α ∈ RL, cozα is complemented. It is well known that L is a
P-frame if and only if the ring RL is regular (that is, for every α ∈ RL, there exists β ∈ RL such that α2β = α).
A frame L is called almost P-frame if every cozero element in L is regular (or equivalently, every nonunit
element of RL is zero-divisor). Whenever L is an almost P-frame, we call the ring RL almost regular. We
refer the reader to [8] and [9] for more details and properties of P-frames and almost P-frames.

Proposition 4.8. For a frame L, the ring RL is almost regular if and only if for every nonunit α ∈ RL, there exists
1 , β ∈ RL such that α = αβ.

Proof. To prove the ‘if’ part, let α ∈ RL be a nonunit element. We can assume that α is a nonzero-nonunit
element since otherwise there is nothing to prove. Then ⊥ , (cozα)∗ , >, and so there exists γ ∈ RL such
that cozγ ≺≺ (cozα)∗, implying that cozα ≤ (cozα)∗∗ ≺≺ (cozγ)∗. It follows that cozα ≺≺ cozρ ≺≺ (cozγ)∗ for
some ρ ∈ RL. Therefore, by [8, Lemma 3.3], there exists 1 , β ∈ RL such that α = αβ.

To prove the ‘only if’ part, it is enough to show that every nonunit element of RL is zero-divisor. Let
α ∈ RL be a nonunit element. Then, by the hypothesis, there exists 1 , β ∈ RL such that α = αβ. This
shows that cozα ∧ coz(1 − β) = ⊥, implying that coz(1 − β) ≤ (cozα)∗. In consequence (cozα)∗ , ⊥, since
⊥ , coz(1 − β). Therefore α is zero-divisor.
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In the following theorem, the almost regularity of the ring RL is characterized graphically. We begin with
the following lemma.

Lemma 4.9. Let L be an infinite frame. Then there exist δ, γ ∈ Γ(RL) such that coz δ∨cozγ = > and coz δ∧cozγ ,
⊥.

Proof. We consider two cases.
Case 1. Suppose that for every α ∈ Γ(RL), cozα ∈ BL. Now, if there exists α ∈ Γ(RL) such that cozα is

not an atom, then we have coz β ≺≺ cozα for some β ∈ Γ(RL) with coz β , cozα. Putting coz δ = cozα and
cozγ = (coz β)∗, we then have coz δ∨ cozγ = > and coz δ∧ cozγ , ⊥. Otherwise, for every α ∈ Γ(RL), cozα
is an atom. Then it is easy to see that |L| = 4 which is a contradiction.

Case 2. Let cozα < BL for some α ∈ Γ(RL). Then there exists β ∈ Γ(RL) with coz β ≺≺ cozα. Take
coz δ ∈ Coz L such that coz β∧coz δ = ⊥ and cozα∨coz δ = >. Putting γ = α, we then have coz δ∨cozγ = >
and coz δ ∧ cozγ , ⊥.

Theorem 4.10. For a frame L, RL is an almost regular ring if and only if for every pair of vertices β and γ of Γ(RL)
and every nonunit α ∈ RL, c(αβ, αγ) ≤ 4.

Proof. Necessity. Let RL be an almost regular ring. Then for any nonunit α ∈ RL, we have (cozα)∗ , ⊥.
Since (cozα)∗ ≤ (cozαβ)∗ ∧ (cozαγ)∗, then by parts (1) and (2) of Proposition 4.6 c(αβ, αγ) ≤ 4.

Sufficiency. Suppose that α ∈ RL is a nonunit and c(αβ, αγ) ≤ 4 for all vertices β and γ of Γ(RL). If L
is finite, then it is easy to show that RL is almost regular. Otherwise, suppose that L is infinite. Then, by
Lemma 4.9, there exist δ, ρ ∈ Γ(RL) such that coz δ∨ cozρ = > and coz δ∧ cozρ , ⊥. If cozαδ∧ cozαρ = ⊥,
then cozα ∧ coz δ ∧ cozρ = ⊥. This implies that ⊥ , coz δ ∧ cozρ ≤ (cozα)∗. In consequence, (cozα)∗ , ⊥.
Now, suppose that cozαδ ∧ cozαρ , ⊥. Then since c(cozαδ, cozαρ) ≤ 4, by part (2) of Proposition 4.6, we
have (cozαδ)∗ ∧ (cozαρ)∗ , ⊥. On the other hand,

cozα = cozα ∧ > = cozα ∧ (coz δ ∨ cozρ) = cozαδ ∨ cozαρ,

and so (cozα)∗ = (cozαδ)∗ ∧ (cozαρ)∗. Consequently, (cozα)∗ , ⊥. Therefore α is zero-divisor and the proof
is complete.

In the next theorem, the regularity of the ring RL is characterized graphically.

Theorem 4.11. For a frame L, RL is a regular ring if and only if RL is an almost regular ring and for every vertex α
of Γ(RL), there exists a vertex β of Γ(RL) adjacent to α such that c(α, β) = 4.

Proof. Necessity. If RL is regular, then clearly it is almost regular. Since for every vertex α, cozα is
complemented, then (cozα)∗ is also a cozero element. Putting coz β = (cozα)∗, we then have cozα∧coz β = ⊥
and (cozα)∗ ∧ (coz β)∗ = ⊥. Now, part (2) of Proposition 4.6 implies that c(α, β) = 4.

Sufficiency. Let 0 , α ∈ RL be a nonunit. Then α ∈ Γ(RL) since RL is an almost regular ring. Now,
the hypothesis implies that α is adjacent to β for some β ∈ Γ(RL), such that c(α, β) = 4. Hence, by part
(2) of Proposition 4.6, we have (cozα)∗ ∧ (coz β)∗ = ⊥. This shows that (cozα ∨ coz β)∗ = ⊥ and hence
(cozα ∨ coz β)∗∗ = >, implying that cozα ∨ coz β = > since RL is almost regular. Therefore cozα is
complemented, that is, RL is regular.

As defined in [16], for distinct vertices x and y in a graph G, we say that x and y are orthogonal, written
x y y, if x and y are adjacent and there is no vertex z of G which is adjacent to both x and y. A graph G is
said to be complemented if for each vertex x of G, there is a vertex y of G, called a complement of x, such that
x y y, and that G is uniquely complemented if G is complemented and whenever x y y and x y z, then y ∼ z,
this means that y and z are adjacent to exactly the same vertices.

By Lemma 3.2, for every two vertices α and β in Γ(RL), α y β if and only if cozα ∧ coz β = ⊥ and
(cozα)∗ ∧ (coz β)∗ = ⊥. Hence, Γ(RL) is complemented if and only if for every vertex α, there exists a vertex
δ such that cozα ∧ coz δ = ⊥ and (cozα)∗ ∧ (coz δ)∗ = ⊥.
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For our next characterization, we let Min(RL) be the space of minimal prime ideals of RL. A frame
L has been defined in [9] to be cozero-complemented if for each a ∈ Coz L there exists b ∈ Coz L such that
a∧ b = ⊥ and a∨ b is dense. The space Min(RL) is compact if and only if L is cozero-complemented (see [9,
Proposition 4.7]). Now, the following corollary is obvious.

Corollary 4.12. For a frame L, Γ(RL) is complemented if and only if L is cozero-complemented if and only if the space
Min(RL) is compact.

We close this section by giving a direct proof for the next proposition which is also true for every reduced
ring, see [2, Theorem 3.5].

Proposition 4.13. For a frame L, Γ(RL) is complemented if and only if it is uniquely complemented.

Proof. To prove the nontrivial part of the proposition, let α, β and γ be vertices of Γ(RL) such that α y β
and α y γ. So cozα ∧ coz β = ⊥, (cozα)∗ ∧ (coz β)∗ = ⊥, cozα ∧ cozγ = ⊥ and (cozα)∗ ∧ (cozγ)∗ = ⊥. In
consequence, coz β ≤ cozα)∗ ≤ (cozγ)∗∗ and cozγ ≤ cozα)∗ ≤ (coz β)∗∗, showing that (coz β)∗ = (cozγ)∗. This
means that β and γ are adjacent to exactly the same vertices, that is, β ∼ γ. Therefore Γ(RL) is uniquely
complemented.

5. Dominating sets

A dominating set of a graph G is a set of vertices V such that every vertex outside V is adjacent to at least
one vertex in V. The dominating number of G denoted by dtG is the smallest cardinal number of the form
|V|, where V is a dominating set. A complete subgraph of G is a subgraph in which every vertex is adjacent
to every other vertex. The smallest cardinal number a such that every complete subgraph G has cardinality
≤ a, denoted by ωG, is called the clique number of G.

The cellularity of the space X is denoted by c(X) and is the smallest cardinal number n ≥ ℵ0 such that
every family of pairwise disjoint of nonempty open subsets of X has cardinality ≤ n. This motivates the
following definition.

Definition 5.1. The cellularity of a frame L is denoted by c(L) and is the smallest cardinal number n ≥ ℵ0 such that
every family of pairwise disjoint of nonzero elements of L has cardinality ≤ n.

Clearly, for a topological space X, we have c(X) = c(OX).

Proposition 5.2. For a frame L, ωΓ(RL) = c(L). In particular, whenever L is a boolean frame, then ωΓ(RL) = |L|.

Proof. We first show that ωΓ(RL) ≤ c(L). Let A ⊆ Γ(RL) be a complete subgraph. Then for every α, β ∈ A,
αβ = 0 implies that cozα ∧ coz β = ⊥. Thus S = {cozγ | γ ∈ A} is a family of pairwise disjoint nonzero
elements of L. This establishes that ωΓ(RL) ≤ c(L). To show the other containment, suppose that S is a
collection of pairwise disjoint nonzero elements of L. For every s ∈ S, pick αs ∈ RL such that cozαs ≺≺ s and
(cozαs)∗ , ⊥. Now, for every s, t ∈ S, we have αsαt = 0. So A = {αs | s ∈ S} is a complete subgraph of Γ(RL).
This shows that ωΓ(RL) ≥ c(L) and therefore ωΓ(RL) = c(L). The second part is obvious.

The set of all cardinal numbers of the form |S|, where S is a base for a frame L, has a smallest element;
this cardinal number is called the weight of the frame L and is denoted by ω(L) (see [12]). Clearly, for a
topological space X, we have ω(X) = ω(OX).

Proposition 5.3. For a frame L, dtΓ(RL) ≤ ω(L).

Proof. Suppose S is a base for L. Then for every s ∈ S, take αs ∈ RL such that cozαs ≺≺ s and (cozαs)∗ , ⊥.
We claim that A = {αs | s ∈ S} is a dominating set of Γ(RL). To see this, let β ∈ Γ(RL), then there exists
s0 ∈ S such that s0 ≤ (coz β)∗. This implies that cozαs0 ≤ (coz β)∗ and hence cozαs0 ∧ (coz β)∗∗ = ⊥. Therefore
cozαs0 ∧ coz β = ⊥, that is, αs0β = 0 and consequently A is a dominating set. Now, dtΓ(RL) ≤ |A| ≤ |S| for
every base S of L. But this means that dtΓ(RL) ≤ ω(L).
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In the following example, we show that there is a frame L for which the dominating number of Γ(RL) is
strictly less than the weight of L.

Example 5.4. Consider βN, the Stone-Čech compactification of N. By Example 3.3 in [3], dtΓ(C(βN)) = ℵ0 � c =
ω(βN). Putting L = O(βN), we then have dtΓ(RL) = dtΓ(C(βN)) � ω(βN) = ω(L), since C(βN) � R(O(βN)).

Next, we intend to give a frame-theoretic characterization and an algebraic characterization for the set
of centers of Γ(RL) to be a dominating set. Before we give these characterizations, we first give the two
propositions below. Recall that a frame is atomic if below every nonzero element there is an atom. We
denote the set of centers of Γ(RL) by C(Γ(RL)).

Proposition 5.5. For a frame L, Γ(RL) is not triangulated and the set of centers of Γ(RL) is a dominating set
containing at least two elements if and only if L is atomic.

Proof. (⇒) Since Γ(RL) is not triangulated, then by Theorem 4.3, L has at least one atom and so Proposition
5.5 implies that C(Γ(RL)) = {ϕ ∈ Γ(RL) | cozϕ is an atom}. Now, let a ∈ L be different from the top and
the bottom, and let α ∈ Γ(RL) be such that cozα ≺≺ a. If cozα is an atom, then there is nothing to prove.
Otherwise, pick β ∈ RL such that coz β ≺≺ cozα and so (cozα)∗ ≺≺ (coz β)∗. Now, we consider two cases.

Case 1. Suppose that (cozα)∗ is an atom. Since, by our supposition, C(Γ(RL)) has at least two elements,
let c ∈ L be an atom such that c , (cozα)∗. Then c∧ cozα = c or c∧ cozα = ⊥. The latter is not possible, lest
we have c ≤ (cozα)∗, implying (cozα)∗ = c. Therefore c ∧ cozα = c, showing that c ≤ cozα ≤ a.

Case 2. Suppose that (cozα)∗ is not an atom. Take γ ∈ RL such that (cozα)∗ ≺≺ cozγ ≺≺ (coz β)∗. Clearly
γ ∈ Γ(RL) \ C(Γ(RL)), so we can choose δ ∈ C(Γ(RL)) such that coz δ ∧ cozγ = ⊥ because C(Γ(RL)) is a
dominating set. This shows that coz δ ∧ (cozα)∗ = ⊥, that is, coz δ ≤ (cozα)∗∗. Next, since coz δ is an atom,
we have cozα ∧ coz δ = coz δ or cozα ∧ coz δ = ⊥. The latter is not possible, lest we have coz δ ≤ (cozα)∗,
implying coz δ = ⊥which is a contradiction. Therefore coz δ ≤ cozα ≤ a.

(⇐) Suppose that L is atomic. Then by Theorem 4.3 Γ(RL) is not triangulated. For the second part, first
note that if L has exactly one atom, then the present hypothesis implies that L = 2, a contradiction since
|L| ≥ 4. Next, let α ∈ Γ(RL) \ C(Γ(RL)). Then there exists an atom a shch that a ≤ (cozα)∗. Putting a = coz β,
we then have β ∈ C(Γ(RL)) with coz β ≤ (cozα)∗. Thus coz β∧ (cozα)∗∗ = ⊥, implying that coz β∧ cozα = ⊥,
that is, α adjacent to β.

Before proving the next proposition, we recall some definitions. A frame L is basically disconnected if
c∗ ∨ c∗∗ = > for all c ∈ Coz L, and L is zero dimensional if it has a base of complemented elements (see [4] for
details).

Proposition 5.6. Let Γ(RL) not be triangulated. If the set of centers of Γ(RL) is a dominating set, then it has at least
two elements.

Proof. Since Γ(RL) is not triangulated, then by Theorem 4.3, L has at least one atom. Then Proposition
5.5 implies that C(Γ(RL)) = {ϕ ∈ Γ(RL) | cozϕ is an atom}. Now suppose, by way of contradiction, that
|C(Γ(RL))| = 1, that is, L has exactly one atom, say a. Take α, β ∈ RL such that a = cozα and a′ = coz β. Now,
we continue the proof in three stages.

The first stage: We show that ifγ ∈ Γ(RL), then (cozγ)∗ = cozα or (cozγ)∗ = coz β. We claim that for every
γ ∈ Γ(RL) with cozγ , cozα, (cozγ)∗ = cozα. It suffices to prove that for every γ ∈ Γ(RL) with cozγ , cozα
and cozγ , coz β, (cozγ)∗ = cozα. To see this, take γ ∈ Γ(RL) such that cozγ , cozα and cozγ , coz β,
Then cozα ∧ cozγ = ⊥ since C(Γ(RL)) = {α} is a dominating set. This shows that cozγ ∨ cozα , > because
cozγ , coz β. Pick ϕ ∈ RL such that cozϕ = cozγ ∨ cozα. If (cozϕ)∗ , ⊥, then cozϕ ∧ cozα = ⊥, showing
cozϕ ≤ coz β, that is, cozα ≤ coz β which is a contradiction. Consequently, (cozϕ)∗ = ⊥, this means that
(cozγ)∗ ∧ coz β = ⊥, implying that (cozγ)∗ ≤ cozα. Therefore (cozγ)∗ = cozα since cozα ≤ (cozγ)∗.

The second stage: We show that L is a zero dimensional frame. By [4, Proposition 8.4.4], it suffices to
prove that L is a basically disconnected frame. To see this, let c ∈ Coz L. Then, by the first stage, we have
c∗ = ⊥, c∗ = cozα or c∗ = coz β. This shows that c∗ ∨ c∗∗ = >, that is, L is basically disconnected.

The third stage: We argue to arrive at a contradiction. By the second stage, L has a base of complemented
elements, say S. If S = {cozα, coz β, }, then coz β is an atom which is a contradiction. Otherwise, there exists
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δ ∈ Γ(RL) such that coz δ ∈ BL, coz δ , cozα and coz δ , coz β. Since C(Γ(RL)) is a dominating set,
coz δ ∧ cozα = ⊥ and (coz δ)∗ ∧ cozα = ⊥, showing that coz δ ≤ coz β and (coz δ)∗ ≤ coz β. In consequence,
coz β = >which is a contradiction.

We conclude the article with the following theorem. Before the theorem is presented, let us recall that the
socle of a ring R is the ideal generated by minimal ideals of R. In [10, 11], the socle of RL is characterized
as the ideal consisting of functions each of which has cozero equal to a join of finitely many atoms. The
equivalence of parts (2) and (3) of the following theorem is shown in [10]. Now combining Propositions 5.5
and 5.6, we obtain the following result.

Theorem 5.7. The following statements are equivalent for a frame L.

1. Γ(RL) is not triangulated and the set of centers of Γ(RL) is a dominating set.
2. L is atomic.
3. The socle of RL is an essential ideal.

Acknowledgement

Thanks are due to Professor Themba Dube for reading the paper and giving advise. We are also grateful
to Professor Ali Akbar Estaji for his support. We appreciate Dr Oghenetega Ighedo for sending her paper
[16] to make sure that the results in the paper do not overlap with ours. We would like to express our deep
gratitude to the referee for the comments which have improved the paper.

References

[1] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra 217 (1999) 434–447.
[2] D. F. Anderson, R. Levy and J. Shapiro, Zero-divisor graphs, von neumann regular rings, and boolean algebras, Journal of Pure

and Applied Algebra 180 (2003) 221–241.
[3] F. Azarpanah and M. Motamedi, Zero-divisor graph of C(X), Acta Mathematica Hungarica 108 (2005) 25–36.
[4] R. N. Ball and J. Walters-Wayland, C and C∗-quotients in pointfree topology, Dissertationes Mathematicae (Rozprawy Matem-

atyczne) 412 (2002), 1–61.
[5] B. Banaschewski, The real numbers in pointfree topology, Textos de Mathemática (Séies B), No. 12, Departamento de Mathemática
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