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Abstract. This paper is concerned with the problem of finding common fixed points for a family of
Bregman relatively weak nonexpansive mappings. The motivation is due to our finding of some gaps
in a paper of K. S. Kim (Nonlinear Analysis, 73 (2010), 3413-3419), where the author was developing a
hybrid iterative scheme for locating common fixed points of a nonlinear representation of a left reversible
semigroup. After a brief discussion about the gaps and why they are fatal, we present a new approach by
using Bergman type nonexpansive mappings. A correct version of Kim’s convergence theorem is given as
a consequence of our new results, which also improve and extend some recent results in the literature.

1. Introduction

Let S be a semigroup. Let C be a nonempty closed and convex subset of a (real) Banach space E with
dual space E∗. Let T := {T(s) : s ∈ S} be a representation of S as mappings from C into C such that

T(st) = T(s)T(t), ∀s, t ∈ S.

Assume the set F(T ) of common fixed points of all T(s) in T is nonempty. The question is to establish an
algorithm to locate the elements in F(T ). Note that S can be uncountable, while an “effective” algorithm is
expected to finish in almost finite, i.e., countably, many steps.

A translation invariant subspace X of l∞(S) is called rich for T if X contains the constant functions and
all the “matrix entries” of the representation T , namely, the functions s 7→ 〈T(s)x, x∗〉with x ∈ C and x∗ ∈ E∗.
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Assume also that every point x in C is weakly almost periodic for T , i.e., the set {T(s)x : s ∈ S} is relatively
weakly compact in E. Then, as in [8], for each x in C and each mean µ on X, there exists a unique point Tµx
in E, called the barycenter of T(·)x with respect to µ, in the sense that

µ〈T(·)x, x∗〉 = 〈Tµx, x∗〉, ∀x∗ ∈ E∗.

It follows from the strong separation theorem that Tµx is contained in the closure of the convex hull of
{T(s)x : s ∈ S} for each x in C. In particular, F(T ) ⊆ F(Tµ), the set of fixed points of Tµ. Conversely, we
consider an asymptotically left invariant sequence {µn} of means on X; i.e.,

lim
n

(µn(ls f ) − µn( f )) = 0, ∀s ∈ S, f ∈ X.

Here, ls denotes the left translation by s defined by

ls( f )(x) = f (sx), ∀ f ∈ X, x ∈ S.

It follows from [10, Lemma 3.5] (see also [14]) that

lim inf
n→∞

‖Tµn z − z‖ = 0 =⇒ z ∈ F(T ). (1.1)

This implies

F(T ) =
⋂

n

F(Tµn ) (1.2)

Consequently, the question of finding common fixed points of T reduces to that of finding those z in C
satisfying (1.1), or finding common fixed points of the sequence {Tµn }.

In 2010, K. S. Kim [10] provided the following plausible strong convergence theorem for a class of
representations for left reversible semigroups. Recall that a topological semigroup S with an identity is left
reversible if every two closed right ideals of S intersect, i.e., aS ∩ bS , ∅ for all a, b in S.

(False) Assertion 1.1 (Kim, [10, Theorem 4.1]). Let C be a nonempty, closed and convex subset of a uniformly
convex and uniformly smooth Banach space E. LetT = {T(s) : s ∈ S} be a representation of a left reversible semigroup
S as relatively nonexpansive maps from C into C with F(T ) , ∅.

Let X be a rich subspace of `∞(S) for T , and let {µn}n∈N be an asymptotically left invariant sequence of means on
X. Let Tµn be the barycenter representation of T associated to each µn. Let {αn}n∈N be a sequence in (0, 1) such that
limn→∞ αn = 0. Let {xn}n∈N be a sequence generated by the following algorithm

x0 = x ∈ C chosen arbitrarily,

C1 = C,

x1 = ΠC1 x0,

yn = J−1[αn Jx1 + (1 − αn)JTµn xn)],

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)},

xn+1 = ΠCn+1 x1 for n ∈N.

(1.3)

Here, J : E→ E∗ is the normalized duality map and ΠD is the generalized projection from C onto a nonempty closed
convex subset D of C.

Then {xn}n∈N converges strongly to the fixed point ΠF(T )x1 of T .

Unfortunately, there are some gaps in the original proof of Assertion 1.1. For example, in [10, line -11,
p. 3416], the author derived that {xn}n∈N is a Cauchy sequence after he showed limn→∞ ‖xn+m − xn‖ = 0 for
all fixed m = 1, 2, . . .. It is not a tautology, however, as xn =

∑n
k=1 1/k verifies.
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After some preparations, we will provide in §2 a concrete counter example to demonstrate that the
original plan proving Assertion 1.1 in [10] does not work.

In §3, we collect some necessary definitions and preliminary results for introducing the recent developed
notions of Bregman type nonexpansive mappings. As an extension of nonexpansive mappings, the class of
Bregman type nonexpansive mappings appears in many applications. The theory of fixed points involving
Bregman distances and Bregman type nonexpansive mappings are studied in, e.g., [1, 2, 19].

In §4, we present a correct version of Assertion 1.1. In a more general setting, we will study the problem
of finding common fixed points for an arbitrary family of Bregman relatively weak nonexpansive mappings,
and obtain strong convergence theorems by hybrid schemes of Halpern types. The method of the present
paper is different from the original one proposed by Kim in [10] and our results improve and extend some
recent results in the literature, for example, [15, 17].

Finally, we mention that the problem of locating common fixed points of a semigroup of uniformly
Lipschitz mappings are studied in [6, 16, 28]. On the other hand, the hybrid projection method was first
introduced by Hangazeau in [7]. In [9, 11, 27], the authors investigated hybrid projection method. As a
generalization of the hybrid projection method, the shrinking projection method was first introduced by
Takahashi et al. in [27]. Our approach in this paper follows this line.

2. A counter example

In the following, we let C be a nonempty, closed and convex subset of a smooth, strictly convex and
reflexive (real) Banach space E. We denote by xn → x and xn ⇀ x, respectively, the strong and weak
convergence of a sequence {xn}n∈N to x in E. For any x in E, the value of a bounded linear functional x∗

in the Banach dual space E∗ of E at x is denoted by 〈x, x∗〉. When E∗ is strictly convex, one can define a
single-valued normalized duality map J : E→ E∗ such that Jx is the unique functional satisfying

〈x, Jx〉 = ‖x‖2 = ‖Jx‖2.

When E is uniformly smooth, J is uniformly norm-to-norm continuous on bounded subsets of E.
The generalized projection ΠC from E onto C is defined by

ΠC(x) = argminy∈C φ(y, x),

where

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2.

When E is a Hilbert space, we have φ(x, y) = ‖x − y‖2. Let T : C→ C be a map. The set of fixed points of T
is denoted by

F(T) = {x ∈ C : Tx = x}.

A point p ∈ C is said to be an asymptotic fixed point [21] of T if there exists a sequence xn ⇀ p in C such that
limn→∞ ‖xn − Txn‖ = 0. If we have xn → p instead, we call p a strong asymptotic fixed point of T. The set of all
asymptotic and strong asymptotic fixed points of T are denoted by Fa(T) and Fsa(T), respectively. Clearly,

F(T) ⊆ Fsa(T) ⊆ Fa(T).

Following Matsushita and Takahashi [15] and Kim [10], we call T a relatively nonexpansive (resp. relatively
weak nonexpansive) map if Fa(T) = F(T) , ∅ (resp. Fsa(T) = F(T) , ∅) and

φ(u,Tx) ≤ φ(u, x), ∀u ∈ F(T), x ∈ C.

Let us return to the promised counterexample to Assertion 1.1, i.e., [10, Theorem 4.1]. In [10] the proof
of its Theorem 4.1 is divided into three parts.
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Step 1. {xn}n∈N is well defined.
Step 2. limn→∞ ‖xn − Tµn xn‖ = 0, and based on this assertion, xn ∈ F(T ),∀n = 1, 2, . . ..
Step 3. p = limn→∞ xn = ΠF(T )x1.
Unfortunately, we discovered gaps and errors there. Beside the false statement limn→∞ ‖xn+m − xn‖ = 0,
∀m = 1, 2, . . ., implying that {xn} converged (to p) as mentioned before, we also find that the conclusion in
Step 2 does not hold either. More precisely, we do not see the validity of using [10, Lemma 3.5], i.e. (1.1), to
conclude xn ∈ F(T ). Indeed, xn < F(T ) in the following example.

Example 2.1. Let S be the left reversible additive semigroup of nonnegative integers in discrete topology. Define
Tn : R→ R (so C = R here) by

Tn(x) = e−nx,

for n = 0, 1, 2, . . .. It is plain thatT = {Tn}n∈S is a representation of the additive semigroup S as relatively nonexpansive
(indeed, contractive and linear) mappings with the common fixed point set F = {0}.

Let X ⊂ `∞(S) be the Banach space of all convergent real sequences, and letµn be the point evaluation at n = 1, 2, . . ..
Then {µn} is an asymptotically left invariant sequence of means on X, and Tµn = Tn is the barycenter representation
of T associated to each µn. If {xn}n∈N is a sequence defined by (1.3) above with x0 , 0, then xn <

⋂
s∈S F(Ts) = {0} for

each n ≥ 0.
However, it follows from ‖xn − Tnxn‖ → 0 that (1 − e−n)xn → 0 and hence xn → 0. Therefore, the implication

from the first part of Step 2 to Step 3 still holds. One shall see our new Theorem 4.3 below applies to this example. A
numerical demonstration is given in §5.

3. Bregman distance and Bregman type nonexpansive mappings

Let E be a Banach space, and let 1 : E → (−∞,+∞] be a convex function. Denote by dom 1 = {x ∈ E :
1(x) < +∞} the domain of 1. For any point x in the interior of dom 1, the right-hand derivative 1o(x, y) of 1 at x
in the direction y is defined as

1o(x, y) = lim
t↓0

1(x + ty) − 1(x)
t

. (3.1)

The function 1 is said to be Gâteaux differentiable at x if limt→0
1(x+ty)−1(x)

t exists for any y , 0. In this case,
1o(x, y) coincides with 〈y,∇1(x)〉. Here, the vector ∇1(x) in E∗ is the value of the gradient ∇1 of 1 at x. The
function 1 is said to be Fréchet differentiable at x if the limit in (3.1) is attained uniformly wherever ‖y‖ = 1.
The function 1 is said to be Gâteaux differentiable or Fréchet differentiable if it is Gâteaux differentiable or
Fréchet differentiable everywhere. Finally, 1 is said to be uniformly Fréchet differentiable on a subset X of E if
the limit is attained uniformly for all x in X and ‖y‖ = 1.

It is well known that if a continuous convex function 1 : E → R is Gâteaux differentiable, then ∇1 is
norm-to-weak∗ continuous (see, e.g., [4]). It is also known that if 1 is Fréchet differentiable, then ∇1 is
norm-to-norm continuous (see, e.g., [13]).

Let SE = {z ∈ E : ‖z‖ = 1} and Br := {z ∈ E : ‖z‖ ≤ r} for all r > 0. Define the gauge ρr : [0,+∞)→ [0,+∞]
of uniform convexity of 1 by

ρr(t) = inf
x,y∈Br,‖x−y‖=t,α∈(0,1)

α1(x) + (1 − α)1(y) − 1(αx + (1 − α)y)
α(1 − α)

, ∀t ≥ 0.

Define σr : [0,+∞)→ [0,+∞] by

σr(t) = sup
x∈Br,y∈SE,α∈(0,1)

α1(x + (1 − α)ty) + (1 − α)1(x − αty) − 1(x)
α(1 − α)

, ∀t ≥ 0.
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We call the function 1 strongly coercive if

lim
‖xn‖→+∞

1(xn)
‖xn‖

= +∞.

We call 1 bounded on bounded subsets of E if 1(Br) is bounded for each r > 0. We call 1 uniformly convex on
bounded subsets of E ([30], pp. 203, 221) if ρr(t) > 0 for all r, t > 0. Finally, we call 1 uniformly smooth on bounded
subsets of E ([30], pp. 207, 221) if limt↓0

σr(t)
t = 0 for all r > 0.

Let E be a Banach space. Let 1 : E → R be a convex and Gâteaux differentiable function. The Bregman
distance [3] corresponding to 1 is the function D1 : E × E→ R defined by

D1(x, y) = 1(x) − 1(y) − 〈x − y,∇1(y)〉, ∀x, y ∈ E.

It is clear that D1(x, y) ≥ 0 for all x, y ∈ E. When E is a smooth Banach space, setting 1(x) = ‖x‖2, we obtain
that ∇1(x) = 2Jx and hence

D‖·‖2 (x, y) = φ(x, y), ∀x, y ∈ E.

The following definition is slightly different from that in Butnariu and Iusem [4].

Definition 3.1 ([13]). Let E be a Banach space. The function 1 : E → R is said to be a Bregman function if the
following conditions are satisfied.

(1) 1 is continuous, strictly convex and Gâteaux differentiable;
(2) the set {y ∈ E : D1(x, y) ≤ r} is bounded for all x in E and r > 0.

Let C be a nonempty and convex subset of E. It follows from [18] that for x in E and x0 in C we have

D1(x0, x) = min
y∈C

D1(y, x) if and only if 〈y − x0,∇1(x) − ∇1(x0)〉 ≤ 0, ∀y ∈ C. (3.2)

Furthermore, if C is a nonempty, closed and convex subset of a reflexive Banach space E and 1 : E→ R is a
strongly coercive Bregman function, then for each x in E, there exists a unique x0 in C such that

D1(x0, x) = min
y∈C

D1(y, x).

In this case, the Bregman projection proj1C from E onto C is defined by proj1C(x) = x0. It is well known that

D1
(
y,proj1Cx

)
+ D1

(
proj1Cx, x

)
≤ D1(y, x), ∀y ∈ C, x ∈ E. (3.3)

See [4] for more details.

Lemma 3.2 ([20]). Let E be a Banach space and 1 : E → R a Gâteaux differentiable function which is uniformly
convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N be bounded sequences in E. Then

lim
n→∞

D1(xn, yn) = 0 ⇐⇒ lim
n→∞
‖xn − yn‖ = 0.

Let E be a reflexive Banach space. For any proper, lower semicontinuous and convex function 1 : E →
(−∞,+∞], the conjugate function 1∗ of 1 is defined by

1∗(x∗) = sup
x∈E
{〈x, x∗〉 − 1(x)}, ∀x∗ ∈ E∗.

It is well known that

1(x) + 1∗(x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ E × E∗,
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and

(x, x∗) ∈ ∂1 ⇐⇒ 1(x) + 1∗(x∗) = 〈x, x∗〉.

Here, ∂1 is the subdifferential of 1 [24]. We also know that if 1 : E → (−∞,+∞] is a proper, lower
semicontinuous and convex function, then 1∗ : E∗ → (−∞,+∞] is a proper, weak∗ lower semicontinuous
and convex function; see [26] for more details.

The following lemma follows from Butnariu and Iusem [4] and Zălinscu [30].

Lemma 3.3. Let E be a reflexive Banach space and 1 : E→ R a strongly coercive Bregman function. Then

(1) ∇1 : E→ E∗ is one-to-one, onto and norm-to-weak∗ continuous;
(2) 〈x − y,∇1(x) − ∇1(y)〉 = 0 if and only if x = y;
(3) {x ∈ E : D1(x, y) ≤ r} is bounded for all y ∈ E and r > 0;
(4) dom 1∗ = E∗, 1∗ is Gâteaux differentiable and ∇1∗ = (∇1)−1.

The following result was first proved in [5] (see also [13]).

Lemma 3.4. Let E be a reflexive Banach space, 1 : E→ R a strongly coercive Bregman function, and V the function
defined by

V(x, x∗) = 1(x) − 〈x, x∗〉 + 1∗(x∗), x ∈ E, x∗ ∈ E∗.

Then the following assertions hold:

(1) D1(x,∇1∗(x∗)) = V(x, x∗) for all x in E and x∗ ∈ E∗.
(2) V(x, x∗) + 〈∇1∗(x∗) − x, y∗〉 ≤ V(x, x∗ + y∗) for all x in E and x∗, y∗ ∈ E∗.

We know the following two results from [30].

Theorem 3.5. Let E be a reflexive Banach space and 1 : E → R a convex function which is bounded on bounded
subsets of E. Then the following assertions are equivalent:

(1) 1 is strongly coercive and uniformly convex on bounded subsets of E;
(2) dom 1∗ = E∗, 1∗ is bounded and uniformly smooth on bounded subsets of E∗;
(3) dom 1∗ = E∗, 1∗ is Fréchet differentiable and ∇1∗ is uniformly norm-to-norm continuous on bounded subsets of

E∗.

Theorem 3.6. Let E be a reflexive Banach space and 1 : E → R a continuous convex function which is strongly
coercive. Then the following assertions are equivalent:

(1) 1 is bounded and uniformly smooth on bounded subsets of E;
(2) 1∗ is Fréchet differentiable and ∇1∗ is uniformly norm-to-norm continuous on bounded subsets of E∗;
(3) dom 1∗ = E∗, 1∗ is strongly coercive and uniformly convex on bounded subsets of E∗.

Definition 3.7. Let C be a nonempty, closed and convex subset of a reflexive Banach space E. Let 1 : E→ (−∞,+∞]
be a proper, lower semicontinuous and convex function. A mapping T : C→ C is said to be

(1) Bregman quasi-nonexpansive, if F(T) , ∅ and

D1(p,Tx) ≤ D1(p, x), ∀p ∈ F(T), x ∈ C.

(2) Bregman relatively nonexpansive (resp. Bregman relatively weak nonexpansive) if
i. F(T) is nonempty;

ii. D1(p,Tx) ≤ D1(p, x), ∀p ∈ F(T), x ∈ C;
iii. Fa(T) = F(T) (resp. Fsa(T) = F(T)).
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It is clear that quasi-nonexpansive (resp. relatively nonexpansive, relatively weak nonexpansive) maps
are exactly Bregman quasi-nonexpansive (resp. Bregman relatively nonexpansive, Bregman weakly quasi-
nonexpansive) with respect to the Bregman distance D1 with 1(x) = ‖x‖2. It is also clear that every Bregman
relatively nonexpansive mapping is Bregman weakly relatively nonexpansive, and every Bregman relatively
weak nonexpansive mapping is Bregman quasi-nonexpansive. However, the converses are in general not
true. For more details, we refer the readers to [20].

We call T : C → C a closed map if we have Tx0 = y0 whenever xn → x0 in C with Txn → y0. It is
easy to verify that any Bregman quasi-nonexpansive closed map T : C → C is a Bregman relatively weak
nonexpansive mapping. To this end, let {xn}n∈N be a sequence in C such that xn → x ∈ C and ‖xn −Txn‖ → 0
as n → ∞. This implies that Txn → x ∈ C as n → ∞. From the closedness of T we conclude that x ∈ F(T).
In Example 3.8 below, we see that there exists a Bregman relatively weak nonexpansive mapping which is
neither a Bregman relatively nonexpansive mapping nor a closed mapping.

Example 3.8. Let E = l2 be the infinite separable Hilbert space with the canonical orthonormal basis {e1, e2, . . .}.
Define

yn = e1 + en, ∀n = 1, 2, . . . .

Let k be an even number inN and let 1 : E→ R be defined by

1(y) =
1
k
‖y‖k, y ∈ E.

It is easy to show that ∇1(y) = Jk(y) for all y ∈ E, where

Jk(y) =
{
y∗ ∈ E∗ : 〈y, y∗〉 = ‖y‖‖y∗‖, ‖y∗‖ = ‖y‖k−1

}
.

It is also obvious that

Jk(λy) = λk−1 Jk(y), ∀y ∈ E, ∀λ ∈ R.

Let S = (0,+∞). For any s ∈ S, we define Ts : E→ E by

Ts(y) =


n

n + 1
y, if y = yn for any n = 1, 2, . . .,

−s
s + 1

y, if x , yn for all n = 1, 2, . . ..

It is clear that F(Ts) = {0} for all s in S.
Let s ∈ S. For any n inN, we have

D1(0,Tsyn) = 1(0) − 1(Tsyn) − 〈0 − Tsyn,∇1(Tsyn)〉
= − nk

(n+1)k 1(yn) + nk

(n+1)k 〈yn,∇1(yn)〉

= nk

(n+1)k [−1(yn) + 〈yn,∇1(yn)〉]

= nk

(n+1)k [D1(0, yn)]
≤ D1(0, yn).

If y , yn for all n ≥ 1, then

D1(0,Tsy) = 1(0) − 1(Tsy) − 〈0 − Tsy,∇1(Tsy)〉
= − sk

(s+1)k 1(y) − sk

(s+1)k 〈y,−∇1(y)〉

= sk

(s+1)k [−1(y) − 〈−y,∇1(y)〉]
≤ D1(0, y).



H.Y. Chen et al. / Filomat 33:1 (2019), 147–161 154

Therefore, Ts is a Bregman quasi-nonexpansive mapping.
We claim that Ts is a Bregman relatively weak nonexpansive mapping. Indeed, for any sequence {zn}n∈N in E

such that zn → z0 and ‖zn − Tszn‖ → 0 as n → ∞, by passing to a subsequence we can assume that zn , ym for
any n,m = 1, 2, . . .. This implies that Tszn = − s

s+1 zn for all n. It follows from ‖zn − Tszn‖ = 2s+1
s+1 ‖zn‖ → 0 that

zn → z0 = 0 ∈ F(Ts). Thus, Ts is a Bregman relatively weak nonexpansive mapping.
However, Ts is not Bregman relatively nonexpansive. In fact, although yn ⇀ e1 and

‖yn − Tsyn‖ =
∥∥∥∥yn −

n
n + 1

yn

∥∥∥∥ =
1

n + 1
‖yn‖ → 0, as n→∞,

we have e1 < F(Ts) for all s in S. Therefore, Fa(Ts) , F(Ts) for all s in S.
Finally, we verify that Ts is not a closed map. Let un = (1 + 1

n )y2. Then un → y2 and Tsun = −s
1+s un →

−s
1+s y2 as

n→∞ (since un , ym for all n,m inN). But Tsy2 = 2
3 y2 ,

−s
1+s y2 for all s in S.

4. Strong convergence theorems

In this section, we prove strong convergence theorems in a reflexive Banach space. We start with the
following simple lemma which has been proved in [22].

Lemma 4.1. Let E be a reflexive Banach space and 1 : E→ R a convex, continuous, strongly coercive and Gâteaux
differentiable function which is bounded and uniformly convex on bounded subsets of E. Let C be a nonempty, closed
and convex subset of E. Let T : C→ C be a Bregman quasi-nonexpansive mapping. Then F(T) is closed and convex.

Theorem 4.2. Let E be a reflexive Banach space and 1 : E → R a strongly coercive Bregman function which is
bounded, uniformly convex and uniformly smooth on bounded subsets of E. Let C be a nonempty, closed and convex
subset of E. Let {Tn}n∈N be a family of Bregman relatively weak nonexpansive mappings from C into C such that
F :=

⋂
∞

n=1 F(Tn) , ∅. Let {αn}n∈N be a sequence in (0, 1) such that limn→∞ αn = 0.
Let {xn}n∈N be a sequence generated by

x0 = x ∈ C chosen arbitrarily,
C1 = C,
x1 = proj1C1

x0

yn,k = ∇1∗[αn∇1(x1) + (1 − αn)∇1(Tkxn)], k = 1, 2, . . . ,n,

Cn+1 = {z ∈ Cn : max1≤k≤n D1(z, yn,k) ≤ αnD1(z, x1) + (1 − αn)D1(z, xn)},

xn+1 = proj1Cn+1
x1.

(4.1)

Then, all {xn}n∈N, {Tnxn}n∈N, and {yn,k}n∈N converge strongly to proj1Fx1, where k is any fixed positive integer.

Proof. We divide the proof into several steps.
Step 1. We show that Cn is closed and convex for each n inN.
By assumption, C1 = C is closed and convex. Suppose that Cm is closed and convex for some m in N.

For z ∈ Cm+1, by definition, z ∈ Cm, and

D1(z, ym,k) ≤ αmD1(z, x1) + (1 − αm)D1(z, xm), ∀k = 1, 2, . . . ,m.

This implies that

1(z) − 1(ym,k) − 〈z − ym,k,∇1(ym,k)〉 ≤αm[1(z) − 1(x1) − 〈z − x1,∇1(x1)〉]
+ (1 − αm)[1(z) − 1(xm) − 〈z − xm,∇1(xm)〉], ∀k = 1, 2, . . . ,m,

which is equivalent to

〈z − ym,k,−∇1(ym,k)〉 + αm〈z − x1,∇1(x1)〉 + (1 − αm)〈z − xm,∇1(xm)〉
≤ 1(ym,k) − αm1(x1) − (1 − αm)1(xm), ∀k = 1, 2, . . . ,m.
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Now, it is plain that the closedness and convexity of Cm ensure those of Cm+1. By the principle of induction,
Cn is closed and convex for each n inN.

Step 2. We claim that F ⊂ Cn for all n inN.
Noticing that F ⊂ C1 = C, we assume F ⊂ Cm for some m inN. Owing to Lemma 3.4, for any w ∈ F ⊂ Cm

and k = 1, 2, . . . ,m we obtain

D1(w, ym,k) = D1(w,∇1∗[αm∇1(x1) + (1 − αm)∇1(Tkxm)])
= V(w, αm∇1(x1) + (1 − αm)∇1(Tkxm))
= 1(w) − 〈w, αm∇1(x1) + (1 − αm)∇1(Tkxm)〉

+1∗(αm∇1(x1) + (1 − αm)∇1(Tkxm))
≤ αm1(w) + (1 − αm)1(w) − αm〈w,∇1(x1)〉 − (1 − αm)〈w,∇1(Tkxm)〉

+αm1
∗(∇1(x1)) + (1 − αm)1∗(∇1(Tkxm))

= αmV(w,∇1(x1)) + (1 − αm)V(w,∇1(Tkxm))
= αmD1(w, x1) + (1 − αm)D1(w,Tkxm)
≤ αmD1(w, x1) + (1 − αm)D1(w, xm).

(4.2)

Thus we have w ∈ Cm+1. The assertion follows from induction.
Step 3. We shall show that {xn}n∈N, {Tkxn}n∈N and {yn,k}n∈N are bounded sequences in C.
Using (3.3), we get

D1(xn, x1) = D1
(
proj1Cn

x1, x1

)
≤ D1(w, x1) −D1(w, xn)

≤ D1(w, x1), ∀w ∈ F ⊂ Cn, n ∈N.

This entails the boundedness of the sequence {D1(xn, x1)}n∈N and hence there exists M1 > 0 such that

D1(xn, x1) ≤M1, ∀n ∈N. (4.3)

In view of Lemma 3.3(3), we conclude that the sequence {xn}n∈N is bounded. Since Tk is Bregman relatively
weak nonexpansive, for any q in F one has

D1(q,Tkxn) ≤ D1(q, xn), ∀k,n ∈N.

This, together with Definition 3.1(2) and the boundedness of {xn}n∈N implies that the sequence {Tkxn}n∈N is
bounded for any fixed k = 1, 2, . . .. Indeed, from the boundedness of {xn}n∈N we conclude that {∇1(xn)}n∈N
is bounded (see, e.g., [4]). Also {1(xn)}n∈N is bounded too by the assumption. On the other hand, from the
definition of Bregman distance, we know that

D1(q, xn) = 1(q) − 1(xn) − 〈q − xn,∇1(xn)〉 ≤ |1(q)| + |1(xn)| + ‖1(q)‖‖∇1(xn)‖,

which ensures the boundedness of D1(q, xn).
It follows from Lemma 3.3 and (4.2) that the sequence {yn,k}n∈N is bounded.
Step 4. We show that xn → u for some u in F, and u = proj1Fx1.

By the construction of Cn, we conclude that Cm ⊂ Cn and xm = proj1Cm
x1 ∈ Cm ⊂ Cn for any positive integer

m ≥ n. This, together with (3.3), implies that

D1(xm, xn) = D1
(
xm,proj1Cn

x1

)
≤ D1(xm, x1) −D1

(
proj1Cn

x1, x1

)
= D1(xm, x1) −D1(xn, x1). (4.4)

In view of (3.3) again, we conclude that

D1(xn, x1) ≤ D1(xm, xn) + D1(xn, x1) ≤ D1(xm, x1), ∀m ≥ n.

This proves that {D1(xn, x1)}n∈N is an increasing sequence inR and hence by (4.3) the limit limn→∞D1(xn, x1)
exists. Letting m,n → ∞ in (4.4), we deduce that D1(xm, xn) → 0. Since {xn}n∈N is bounded, Lemma 3.2
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ensures that ‖xm − xn‖ → 0 as m,n→∞. In other words, {xn}n∈N is a Cauchy sequence. Since C is complete,
there exists u in C such that

lim
n→∞
‖xn − u‖ = 0. (4.5)

Let us show that u ∈ F. As xn+1 ∈ Cn+1, we are led to

D1(xn+1, yn,k) ≤ αnD1(xn+1, x1) + (1 − αn)D1(xn+1, xn), ∀k = 1, 2, . . . ,n.

It follows from (4.4) that

lim
n→∞

D1(xn+1, xn) = 0. (4.6)

Hence,

lim
n→∞

D1(xn+1, yn,k) = 0, ∀k = 1, 2, . . . . (4.7)

Employing Lemma 3.2 and (4.6)-(4.7), we deduce that

lim
n→∞
‖xn+1 − xn‖ = 0 and lim

n→∞
‖xn+1 − yn,k‖ = 0, ∀k = 1, 2, . . . .

Consequently, it turns out from (4.5) that for any fixed k = 1, 2, . . . we have

lim
n→∞
‖yn,k − u‖ = 0.

Also, in view of (4.1), for any fixed k = 1, 2, . . ., we have

∇1(yn,k) − ∇1(Tkxn) = αn(∇1(x1) − ∇1(Tkxn)).

Because {Tkxn} is bounded and αn → 0, we have

lim
n→∞
‖∇1(yn,k) − ∇1(Tkxn)‖ = 0, ∀k = 1, 2, . . . .

Since ∇1∗ is uniformly norm-to-norm continuous on any bounded subset of E by Theorem 3.6, we obtain
form Lemma 3.3 that

lim
n→∞
‖yn,k − Tkxn‖ = 0, ∀k = 1, 2, . . . .

Moreover, the triangle inequality

‖xn − Tkxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − yn,k‖ + ‖yn,k − Tkxn‖

implies that

lim
n→∞
‖xn − Tkxn‖ = 0, ∀k = 1, 2, . . . .

Therefore, u is the strong limit of all sequences {xn}, {yn,k} and {Tkxn}, for all fixed k = 1, 2, . . .. In particular,
u is a strong asymptotic fixed point of the Bregman relatively weak nonexpansive mapping Tk. Therefore,
Tku = u, for all k = 1, 2, . . ., and thus u in F.

Finally, we show that u = proj1Fx1. From xn = proj1Cn
x1, we conclude that

〈z − xn,∇1(xn) − ∇1(x1)〉 ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn, for each n inN, we have

〈z − xn,∇1(xn) − ∇1(x1)〉 ≥ 0, ∀z ∈ F. (4.8)

Letting n→∞ in (4.8), we deduce that

〈z − u,∇1(u) − ∇1(x1)〉 ≥ 0, ∀z ∈ F.

In view of (3.2), we have u = proj1Fx1, which completes the proof.
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Here is the correct version of Assertion 1.1. Note that the construction of the closed convex sets Cn is
a bit different from those in [10, Theorem 4.1]. Moreover, we can now deal with the more general case of
weakly relative nonexpansive representations than that of relative nonexpansive representations in [10].

Theorem 4.3. Let C be a nonempty, closed and convex subset of a uniformly convex and uniformly smooth Banach
space E. Let T = {T(s) : s ∈ S} be a representation of a left reversible semigroup S as maps from C into C with
common fixed point set F(T ) , ∅. Assume that every point in C is almost periodic for T . Let X be a rich subspace of
`∞(S) for T , and let {µn}n∈N be an asymptotically left invariant sequence of means on X. Let Tµn be the barycenter
representation of T associated to each µn. Assume one of the following conditions holds.

(a) all Tµn are relatively weak nonexpansive.
(b) all T(s) are nonexpansive.
(c) all T(s) are norm-to-weak continuous and quasi-nonexpansive.

Let {αn}n∈N be a sequence in (0, 1) such that limn→∞ αn = 0. Let {xn}n∈N be a sequence generated by the following
algorithm

x0 = x ∈ C chosen arbitrarily,
C1 = C,
x1 = ΠC1 x0,
yn,k = J−1[αn Jx1 + (1 − αn)JTµk xn)], ∀k = 1, 2, . . .n,
Cn+1 = {z ∈ Cn : max1≤k≤n φ(z, yn,k) ≤ αnφ(z, x1) + (1 − αn)φ(z, xn)]},
xn+1 = ΠCn+1 x1.

(4.9)

Then {xn}n∈N converges strongly to the common fixed point ΠF(T )x1 of T .

Proof. (a) Assume that all Tµn are relatively weak nonexpansive. We consider here the Bregman distance
D1(x, y) = φ(x, y) with 1(x) = ‖x‖2. Then Tµ is Bregman relatively weak nonexpansive mappings from C
into C for D1. Applying Theorem 4.2 to the family {Tµn }, we get a strong limit u = limn xn = Π⋂

∞

n=1 F(Tµn )x1,
which is a common fixed point of all Tµn . It follows from (1.2) that F(T ) =

⋂
∞

n=1 F(Tµn ). Hence, we have
u = ΠF(T )x1.

(b) Assume to start with all T(s) being nonexpansive, and thus quasi-nonexpansive. Let Tµ be a
barycenter of {T(s) : s ∈ S} for a mean µ on X. We consider µ as a norm one functional of functions in s. Let
xn → u and limn ‖Tµxn − xn‖ = 0. As in [10, p. 3416], we have ‖Tµx‖ ≤ µ‖T(·)x‖ for all x in C. Thus,

‖Tµu − u‖ = lim
n
‖Tµu − Tµxn‖ ≤ lim

n
µ‖T(·)u − T(·)xn‖ ≤ lim

n
µ‖u − xn‖ = 0.

Therefore, Tµu = u. This says that all barycenters Tµk are weak relatively nonexpansive. We apply case (a).
(c) Assume in the beginning that all T(s) are quasi-nonexpansive maps from C into C. The arguments

in [10, p. 3417] shows that the barycenter representation Tµ of the family T is also quasi-nonexpansive for
any mean µ on X. Now suppose further that all T(s) are norm-to-weak continuous, and thus so are their
barycenters Tµk . If xn → u and limn ‖Tµk xn − xn‖ = 0, then by the norm-to-weak continuity of Tµ we have
Tµxn ⇀ Tµu, and thus Tµk u = u. Therefore all Tµk are relatively weak nonexpansive. We apply case (a) to
finish the proof.

Remark 4.4. 1. As been pointed out earlier, closed quasi-nonexpansive maps are relatively weak nonexpansive,
and thus so are norm-to-weak continuous quasi-nonexpansive maps. On the other hand, nonexpansive maps
are norm-to-norm continuous, and thus (b) is indeed a special case of (c).

2. Suppose instead all T(s) are relatively weak nonexpansive. We do not know, however, if the barycenter Tµ for a
mean µ on X is relatively weak nonexpansive as well.

Remark 4.5. Theorems 4.2 and 4.3 improve Assertion 1.1 in the following aspects.

(1) We extend the duality mapping J to the more general case, that is, the gradient ∇1 of a convex, continuous and
strongly coercive Bregman function 1 which is bounded, uniformly convex and uniformly smooth on bounded
subsets.
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(2) We extend our discussion from relatively nonexpansive mappings to Bregman weakly relatively nonexpansive
mappings. We replace the assumption Fa(T) = F(T) with the weaker one Fsa(T) = F(T). Here, Fa(T) and Fsa(T)
are the set of asymptotic fixed points and the set of strong asymptotic fixed points of T, respectively.

Remark 4.6. The main result of [29] gave a strong convergence theorem to approximate common fixed points of
a family of closed relatively nonexpansive mappings, while the present paper give a strong convergence theorem to
approximate common fixed points of a family of Bregman relatively weak nonexpansive mappings. We note that the
proof of [29, Theorem 3.2], more precisely, line 15 where the authors used the closedness of the mappings Sλ, is not
valid in our discussion, as Example 3.8 demonstrates. We note also that the proof of [12, Theorem 3.2], where the
authors used the relatively nonexpansivity of the mappings Sλ, is not valid in our discussion, either. In fact, our result
extends and improves the corresponding results of [12, 29].

Let E be a reflexive Banach space with the dual space E∗. Let A : E→ 2E∗ be a set-valued mapping with
dom A = {x ∈ E : Ax , ∅}. The graph of A is G(A) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Ax}. The mapping A ⊂ E × E∗

is said to be monotone if 〈x − y, x∗ − y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ A. It is said to be maximal monotone
if its graph is not contained in the graph of any other monotone operator on E. If A ⊂ E × E∗ is maximal
monotone, then the set A−10 = {z ∈ E : 0 ∈ Az} is closed and convex. See [23] for details.

Let 1 : E → (−∞,+∞] be a proper, lower semicontinuous and convex function. Let A be a maximal
monotone operator from E to 2E∗ . For any r > 0, define the 1-resolvent Res1rA : E→ dom A by

Res1rA = (∇1 + rA)−1
∇1.

It is known that Res1rA is Bregman relatively weak nonexpansive and A−1(0) = F
(
Res1rA

)
for each r > 0.

Examples and some important properties of such operators are discussed in [1, 2, 25].
An application of Theorem 4.2 gives the following.

Theorem 4.7. Let E be a reflexive Banach space and 1 : E → R a strongly coercive Bregman function which is
bounded, uniformly convex and uniformly smooth on bounded subsets of E. Let A be a maximal monotone operator
from E to E∗ such that A−1(0) , ∅. Let {rn}n∈N ⊂ (0,+∞) be a sequence of positive real numbers. Let {αn}n∈N be a
sequence in (0, 1) such that limn→∞ αn = 0. Let {xn}n∈N be a sequence generated by

x0 = x ∈ E chosen arbitrarily,
C1 = E,
x1 = proj1C1

x0,

yn,k = ∇1∗
[
αn∇1(x1) + (1 − αn)∇1

(
Res1rkAxn

)]
, ∀k = 1, 2, . . .n,

Cn+1 = {z ∈ Cn : max1≤k≤n D1(z, yn,k) ≤ αnD1(z, x1) + (1 − αn)D1(z, xn)},

xn+1 = proj1Cn+1
x1, ∀n = 1, 2, . . . .

Then the sequence {xn}n∈N converges strongly to proj1
A−1(0)

x1 as n→∞.

5. A numerical example

In this section, in order to demonstrate the effectiveness, realization and convergence of Algorithm (4.1)
in Theorem 4.2, we consider the following simple example.

Example 5.1. Let E = R, C = [0,+∞) and Tk : C→ C be defined by

Tk(x) =

{
0, if x ∈ [0, 2],
e−kx, otherwise.
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Then {Tk}k∈N is a family of quasi-nonexpansive mapping from C into C such that F =
⋂+∞

k=1 F(Tk) = {0}.
Indeed, for any x ∈ (2,+∞), we have

|Tkx − 0| = e−kx ≤ |x − 0|, ∀k ≥ 1.

It is worth mentioning that Tk is neither nonexpansive nor continuous for all k in N. Let 1(t) = t2 be the
Bregman function on R.

In this case, Algorithm (4.1) in Theorem 4.2 states as follows:

x0 = x ∈ (0,+∞) chosen arbitrarily,
C1 = C,
x1 = PC1 x0,
yn,k = αnx1 + (1 − αn)Tkxn, k = 1, 2, · · · ,n,
Cn+1 = {z ∈ Cn : max1≤k≤n |z − yn,k|

2
≤ αn|z − x1|

2 + (1 − αn)|z − xn|
2
},

xn+1 = PCn+1 x.

(5.1)

We set
Hn,k = {z ∈ E : |z − yn,k|

2
≤ αn|z − x1|

2 + (1 − αn)|z − xn|
2
}.

Observe that

|z − yn,k|
2 =|αn(z − x1) + (1 − αn)(z − Tkxn)|2

=αn(z − x1)2 + (1 − αn)(z − Tkxn)2
− αn(1 − αn)(Tkxn − x1)2.

It follows

Hn,k = {z ∈ E : z ≤
αn(Tkxn − x1)2

2(xn − Tkxn)
+

xn + Tkxn

2
}.

Note that xn − Tkxn > 0 if xn > 0. Hence, Cn+1 = Cn ∩ (
⋂n

k=1 Hn,k) is a closed interval for all n = 0, 1, 2, . . ..
Write Cn+1 = [an+1, bn+1]. Then

xn+1 = PCn+1 x =


x, if x ∈ [an+1, bn+1];
bn+1, if x > bn+1;
an+1, if x < an+1.

Choose x0 = x = 2.5. The iteration process (5.1) produces

xn+1 = min
1≤k≤n

{
αn(Tkxn − x1)2

2(xn − Tkxn)
+

xn + Tkxn

2

}
. (5.2)

With different choices of the weights αn = n−1,n−2,n−3, we demonstrate in Figure 1 the convergence of
the sequence {xn}n∈N generated by (5.2) to the unique common fixed point 0. Note that using smaller values
of αn means that the effect of x1 in producing Cn is weakening. In this easy example, the efficiency of the
algorithm is improved drastically. But this might be different for other situations.
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Figure 1: The plots of the sequence {xn}n∈N in Example 5.1 with initial value x0 = 1 under different weight parameters αn.

6. Conclusions

Let T := {T(s) : s ∈ S} be a multiplicative representation of a possibly uncountable semigroup S
as Bregman relatively weak nonexpansive mappings on a nonempty closed and convex subset of a real
Banach space. In this paper, a correct version, Theorem 4.3, of Kim’s convergence theorem in [10] is given,
to locate the common fixed points of T . As an application, we provide an algorithm to locate the zeros of
a maximal monotone operator in Theorem 4.7. Our results improve and extend some recent results in the
literature.
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