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Abstract. In this work we consider all bounded linear operators T : ¢y — ¢ that preserve convex equivalent
relation ~. on ¢y and we denote by P..(¢) the set of such operators. If T strongly preserves convex equivalent,
we denote them by Ps..(¢p). Some interesting properties of P (cy) are given. For T € P,(¢y), we show that
all rows of T belong to ¢! and for any j € IN, we have 0 € Im(Te;), also there are a,b € Im(Te;) such that
co(Te;j) = [a, b]. It is shown that all row sums of T belong to [a, b]. We characterize the elements of P.(co),
and some interesting results of all T € Py (c) are given, for example we prove thata =0 <bora <0 =b.
Also the elements of P (¢) are characterized. We obtain the matrix representation of T € P..(¢y) does not
contain any zero row. Some relevant examples are given.

1. Introduction

Throughout this work, ¢ is the Banach space of all real sequences converge to zero with the supremum

norm. An element x € ¢y can be represented by }. x(i)e;, where e; : IN — R is defined by e;(j) = 0;;, the
ieN
Kronecker delta. For x € ¢y, we write co(x), instead of the convex combination of the set Im(x) = {x(i) : i € IN}.

Let T : ¢o — ¢o be a bounded linear operator. It is easy to show that, T is represented by a matrix (t;)); jen
in the sense that

(Tx)(i) = Z tix(j), forx e gandieN,
jEN

where t;; = (Te;)(i). To simplify, we will incorporate T to its matrix form (;); jen-

Definition 1.1. [3] For x,y € ¢, we say that x is convex majorized by y, and denoted by x <. y, if co(x) C co(y)
and x is said to be convex equivalent to y, denoted by x ~. y, whenever x <. y <. x, i.e., co(x) = co(y).

The relation ~. is an equivalent relation on ¢y. For x € ¢, if 0 € co(x), then co(x) = [a, ], for some a,b € R
witha <0 < b, and if 0 ¢ co(x), then co(x) is equal to either [a,0), for some a < 0, or (0, b], for some b > 0.
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Definition 1.2. [5] Let R be a relation on ¢y. The linear operator T : ¢y — ¢ is said preserve R if for each x, y € ¢,
R(x, y) implies R(Tx, Ty),
and T is called strongly preserve R if
R(x,y) if and only if R(Tx, Ty).

The set of all bounded linear operators T : ¢g — ¢y which preserve convex majorization, convex
equivalent, strongly preserve convex majorization and strongly preserve convex equivalent denoted by
Pem(€0), Pee(co), Psem(co) and Psee(co), respectively. Obviously, Pem(co) S Pee(€0), Posem(€0) S Pem(co) and
Psce(CO) < Pce(CO)-

Example 1.3. Let T : ¢g — ¢o be defined by Tx = (ax1,bx1,axy,bxy,...), for a,b € Rand x = (x1,x2,...) € <.
Clearly T € Pe(co).
In general case, let (ny) be a bounded sequence in IN. The operator T : ¢g — ¢q defined by

Tx = (axy,...,ax1,bxq,...,bx1,axy,...,ax3,bx;,...,bx2,...)

m na ns ny

lies in Pee(co), for x = (x1,x2,...) € ¢p.

Example 1.4. Let T : ¢g — ¢ bea bounded linear operator defined by Tx = (0, x1, X2, X3,...), for x = (x1,%2,%3,...) €
co. It is easy to show that T € P, (co).

Remark 1.5. Note that for T € P.(cp) and ji, j» € N, since co(Te;,) = co(Te;,) holds because e;, ~. ej,, the values
a := infTe; and b := sup Te; are constants, independent of chosen j € IN (similarly as in [3, Remark 2.10]). That
is, for T € Pe(co), there is a bounded real interval I, such that co(Te;j) = I, for all j € IN. Therefore a = infI, and
b =supl, for any T € Pc(co). Also, we define I" = {j € N : (Te;)(i) > 0} and I = {j € N : (Te;)(i) < 0}.

Fromnow ona, band I*, I~ are as in Remark 1.5.
In [3], Bayati et al. characterized the elements of #.,(¢y) and obtained some properties of them as
follows.

Theorem 1.6. [3, Theorem 2.8 and Corollary 2.9] For T € Pey(co), all rows of T lie in €'. Moreover for any fixed
i € IN, we have }. |(Te;)(i)| < |IT||. Also, independent of chosen distinct ji, j» € IN, we have ||Tej, — Tej,|| = ||T]|.
jEN

Theorem 1.7. [3, Theorem 2.13 and Lemma 2.14] Let T € Pu(co). Then [|Tej|| = ||T|| and 0 € Im(Te;), for all
j€N.

Theorem 1.8. [3, Theorem 2.19] Let T : ¢g — ¢ be a linear operator. Then T € P,(co) if and only if

(i) for any j € IN, the value of mﬁ(Tej)(i) exists and independent of j € IN is equal to a.
1€

(ii) for any j € IN, the value of mﬂa\Tx(Tej)(i) exists and independent of j € IN is equal to b.
1€

(iii) ifa < 0 < b, we have % Y. (Tey(i) + % Y. (Tej)(i) < 1;ifa < 0 = b, then we have ). (Te;)(i) > a and if
jel- jer+ jEN
a=0<b, then it implies }, (Te;)(i) < b,
jEN

where ((Te;j)(7))jen is an arbitrary row of T.
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Some of the results in this work are obtained by the similar technique developed in [3, 4, 7].

We organize this paper as follows. In Section 2 we extend some of recent results of bounded linear
preservers of the convex majorization on ¢ to the set of bounded linear operators which preserve convex
equivalent on ¢y, we denote this set by Pc(¢o). It is shown that some of the above mentioned results are
satisfied for P.(¢co). For T € Pc.(cp), we show that all rows of T belong to ¢! and for any j € IN, we have
0 € Im(Te)), also there are a,b € Im(Te;) such that co(Te;) = [a,b]. It is shown that any row sums of T
belong to [a, b]. We characterize the elements of Pc.(co). Section 3 is devoted to study of the properties of
strong preservers of convex equivalent on ¢y, we denote this set by Ps.(co). We investigate some interesting
properties of T € P(¢p), and obtain thata =0 <bora <0 =bforall T € Py (o), also we prove the matrix
representation of T does not contain any zero row. At the end, we characterize the set Psc.(¢o).

2. Some properties of the operators in P, (¢))

The topic of linear preservers is of interest to a large group of matrix theorists. For a survey of linear
preserver problems see [9], and for relative papers and book in the theory of majorization, see [1, 2, 6, 8].

In [3], Bayati et al. characterized the operators in (o). In this section, we prove some properties of
linear preservers of convex equivalent on ¢y and characterize the operators in P..(¢o).

Remark 2.1. Some general properties of Pc.(co) are as follow.
e 0,id € Pc.(cp).
o If Ty, Ty € Pee(co), then Ty o Ty € Pee(cp).
o IfT € Pe(co), then AT € Pe,(co), for all A € R.
o Any constant coefficient of a permutation on ¢ lies in Pe.(co).

We now consider some important properties of T € Pc,(co).

Theorem 2.2. Let T : ¢g — ¢ be a bounded linear operator. Then for any i € N, we have Y |(Te;)(i)| < ||T||, and
jEN

moreover each row of T belongs to €.
n n

Proof. Let i, j,n € IN. We set 0; = sgn(Te;)(i) and x, = }. 6;e; € ¢o. Then Tx, = }. 6;Te;j, and so (Tx,)(i) =
j=1 j=1

Y. 8,(Te,)(i) = . [(Te;)(i). Since |||l < 1, we have
=1 j=1
(Tx)® = Y (Tep®l = [Tx )OI < [Tx,l < [Tl < T
=1

Let n tend to infinity, so we have ). |(Te;)(i)| < [|T||, that is, all rows of T belong to O
j=1

Remark 2.3. Indeed, for a bounded linear operator T : ¢g — ¢y, we have ||T|| = sup ). |(Te;)(i)|. (see for instance
ieN jeN

[10, page 217, Theorem 4.51-])

Theorem 2.4. Let T € Pe(co). Then ||Tej, — Tejalloo = ||ITejllw for any j, jo, j; € N with jo # j.

Proof. If T = 0, we are done. So suppose that T # 0. Let iy, j, jo, j € IN, with jo # jj. Put

5 = 1 if Tej(io) >0,
N | if Te;(io) < 0.
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n
Then kZ1 0j.€j, is convex equivalent to either +ej, or e;, — e;,. Since T € Pc(¢o), it follows from Theorem 2.2

that Z_ [(Tej)(ip)| < oo. Thus for any ¢ > 0, there exists n € IN such that for j* > n, we have |(Te;)(ip)| < ¢.

jEN
Define
5 = -1 if(S/-l:---:(S]-nz'l,
1 otherwise.

n
Since ) 6j.ej, +0ej ~ €j, — ej for j* # j1,..., jn, it follows that
k=1

n
Z (SjkTe]‘k + (S*Te]'» ~c Tejo - Te]‘é.

k=1
So
[(Te;,)(io)l + 6" (Tej)(io) € co [Z 0, Tej, + 6*Te]-*] =co (Tej0 - Tej(r]),
k=1 k=1
that yields

dist Z |(Te;,)(io)l, co (Tej0 — Tej())] < |6"(Tej)(io)l = [(Tej)(io)l < &.
k=1

As ¢ is arbitrary, the above distance equals zero and so

Y I(Tej)io)l € co(Tej, - Tey,),

k=1

n
which implies that }. |(Te;,)(io)| < [|Tej, — Te]-élloo. Let n tend to infinity, so we have
k=1

Y I(Tej)(io)l < IITej, - Te . (1)

k=1
The inequality (1) implies that for any i, j € N, we have |(Te;)(/)| < [|Tej, — Tej,|l, which follows that

ITejlle < ITej, — eyl (2)
It is sufficient to show that

ITej, — Tey o < [Tejlle ©
Let ¢ > 0. Since Te; € ¢, there is M € IN such that for all i > M, we have

. €

ITe;()] < 5 4)

On the other hand (1) implies that

lim(Te;)(1) = 0,..., lim(Te;)(M) = 0.
jooo

j—oo
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Hence there is N € IN such that for all j > N,
(Te))() -, [(Te)M)| < 5. ©)
The relations (4) and (5) yield that if j* # jo,1,..., N, then for all i € N, we have

(e - o] <] & ;LM
POTEEOIE el =M
< ||Tejllos + ¢,
which follows
ITej, = Tejllo = IITej, = Teplloo < [Tej oo +e.

As ¢ is arbitrary, we get (3). Therefore (2) and (3) follow the assertion. O
Theorem 2.5. For T € P.(cp) and i € N, we have

a <) (Te(i) <0< ) (Te() <b,

jeI- jert
where I = {j € N : (Te;)(i) > 0}, " = {j € N : (Te;)(i) < 0}.

Proof. Leti € N and F C I” be a nonempty finite set. Since for jo € IN, ). cr €j ~¢ €j, hence

co [Z Te]-] = co(Tej,).

jeF
It follows
Z(Te]-)(i) € Im Z Tej| S co Z Tej|=co (Tejo).
j€F j€F j€F

Hencea = ir]}\fI(Te]-O)(i) < Y. (Tej)(i) < 0. Since the latter inequality holds for all finite subsets F C I”, we have
i€ jeF

a< Y (Tej(@) <0.
jer-
The other inequality follows by a similar argument. [

Corollary 2.6. Let T € P(co). Then any row sums of T belong to [a, b].
Proof. By adding two inequalities in Theorem 2.5, we get the assertion. [
Lemma 2.7. Let j € N and T € Pe(co). Then 0 € Im(Te;).

Proof. Let j1,j» € N be distinct. If a = b = 0, then Te;, = 0 and the assertion follows. Otherwise, a < 0 or
b>0.ForjeN,asa= irI}g(Tej)(i) and b = sup(Te;)(i), we have ||Tej||c = max{b, —a} > 0.
1€ ieN
Now if [|[Tej,|lc = b > 0, then there is iy € IN such that (Te},)(ip) = b. Applying Theorem 2.2, we conclude
that

b =|(Tep,)io)l < ), (Te;)(io)l < IITeplls = b.
j=1

The latter inequalities lead to |(Te;)(ip)| = O for any j # j. Therefore (Te;,)(ip) = 0, it implies that 0 € Im(Te;,).
For ||Tej,||lc = —a > 0, the assertion follows by a similar argument. [J
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Lemma 2.8. Let j € N and T € Pe.(c). Then a, b € Im(Te;) and co(Te;) = [a, b].

Proof. According to Remark 1.5 we have co(Te;) = I, where I is a bounded interval and @ = infl and

b = sup . Since Te; € ¢, it follows that zero can be at most a limit point of Im(Te;) anda <0 < b. Ifa <0,

then a can not be a limit point of Im(Te;). Asa = ir]}\fI(Te (i), we have a € Im(Te;)). If a = 0, Lemma 2.7 implies
1€

that a = 0 € Im(Te)). By a similar argument, b € Im(Te;). Therefore co(Te;) = [a,b]. O

Corollary 2.9. For j € Nand T € P,(cp), we have mﬁ(Te (i) = aand mﬂa\lx(Te]-)(i) =b.
1€ 1€
Theorem 2.10. Let T € P(co) and a < 0 < b. Then for distinct ji, j» € IN, we have
max{l(Te- i) + S (Te: )(i)} -1
ieN la° /! b P T
Proof. By Lemma 2.8, it follows that
max{l(T « )(i)} = ma {l(T ~ )(z')} —1 ©)
ol PR BRE AT -
Since Tej, € ¢, it follows that for arbitrary 0 < ¢ < 1, there is m € IN such that

<eg, foralli > m. (7)

1 .
[2re)

Theorem 2.2 implies that } |(Te;)(i)| < oo, for all i € IN. So there exists n € IN such that
jEN

<eg, forallie{l,...,m}and j > n. (8)

1 .

[T
Assume that jo > n and jo # ji, then (7) and (8) imply that for all i € N,

1 N . .

E(Tejl)(l) + E(Tejo)(l) <l+eg, forie{l,...,m}, 9)

1 L1 . .

E(Teh)(l) + E(Te]-o)(z) <e+1, fori > m. (10)

As 1Te; + 3Tej, ~c 1Te;j + 1 Tej,, for all ¢ > 0, the relations (9) and (10) imply that
1 ~ 1 . 1 ~ 1 .
sup {—(Tejl)(z) n E(Tejz)(z)} = sup {—(Tejl)(z) T -(Tejo)(z)} <e+l.
ieN \4 ieN \4 b
Since ¢ > 0 is arbitrary, we have
1 ~ 1 . 1 ~ 1 .
sup {+(Te, )() + 3 (Te, )0 = sup { (e, () + 1 (Tej )} < 1. 1)
ieN \4 b ieN \4 b

On the other hand, (6) yields that there is iy € IN such that %(Tejl)(io) = 1. In (7), as ¢ < 1, we have
io € {1,...,m} and so (8) concluds 1(Te;,)(io) + $(Tej,)(io) = 1 — ¢, thus for all ¢ > 0, we have

1 1 . 1 1 .
sup {—(Tej])(z) + E(Tejz)(z)} = sup {—(Tej])(z) + E(Tejo)(z)} >1—¢,
ieEN a ieN a

since ¢ > 0 is arbitrary, so

1 L1 . 1 N1 .
sup {(Te; )0 + 1 (Tey )0 = sup { (Tey ) + 5 (Te )0} 2 1,
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together (11) follow that sup { (Tej))(@) + (Tejz)(z)} =1.AsTej € ¢p,s0lisnotalimit point of Im {I%Tej1 + %Tejz} ,
ieN

sole Im{%Te]-1 + %Tejz}, that is

max{ (Te;,)i) + (Tejz)(z)}

Theorem 2.11. Let T € P(co) and a < 0 < b. Then for i € IN, we have

% Y (Tep@) + % Y (Tep® <1,

jeI- jeI*
Proof. By Theorem 2.5, for I* =0, and i € IN, we havea < }’ (Te;)(i) < 0. Multiplying the latter inequalities
jeI-
by 1, we get the assertion. For I~ = 0, the assertion follows by a similar argument.
We now suppose that I* and I~ are both nonempty Let EC " and F C I”, where E and F are nonempty

l 1 1
finite sets. For distinct jq,j» € N, as — Z e+ Z ej ~ | + —ej,, it follows that - Z Tej + = ). Tej ~
a jer b j€E ﬂ b a jer b j€E
1
%Te it ETe j,- Theorem 2.10 together the latter formula follow that for i € IN, we have
- Z(Te])(l) ‘e Z(Te] i) < max{ (Tej,)(0) + (Te]z)(z)} ~1.
jEE
Since the above inequality holds for any finite subsets F C I~ and E C I, we get
L Tej)(i ! Tej)(i) <1
= Y (Tep(i) + 5 Y (Te)(i) < 1.
jeI- jert
0

Corollary 2.12. Let T € Pe(co) and T consider in the matrix form. Then the following sentences hold.
i) Ifa <0, then in any row of T which appears a, the other entries equal zero.

(ii) Ifb > 0, then in any row of T which appears b, the other entries equal zero.

Proof. For part (i), let a < 0 and it appears in the row i € IN.
If b =0, then I" = 0 and I # 0. On the other hand, Theorem 2.5 implies that a < }_ (Te;)(i), where

jel-
(Tej)(i) < 0, for all j € I” and one of them is equal to 4, then we have }_ (Te;)(i) = a. Let jo € I” be such that
jel-
(Tej,)(i) = a, it follows thata = }_ (Te;)(i) + a. This concludes that (Te;)(i) = 0, for all j € N with j # jo.
jer-
J#jo

If b > 0, Theorem 2.11 follows that

(Te))(@) (Te))(@)
Z ; +Z é <1

jel- jeIr

As all the elements of both series are nonnegative and there is jo € I” such that (Te;))(i) = 4, it gives
(Tej)(@) = 0, for all j € IN with j # jo. This completes the proof of part (i).
By applying similar arguments, the assertion (ii) follows. [
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The following theorem and Theorem 1.8 characterize the set P.(co).
Theorem 2.13. We have P,(cg) = Pee(co)-

Proof. Obviously, Pen(co) € Pee(to). Now suppose that T € Pe.(cp). Corollary 2.9 implies that m}%\r}l(Tej)(i) =a
1€
and m%x(Tej)(i) =b,forany j € N.If a < 0 < b, according to Theorems 1.8 and 2.11, we have T € Pc(co),
1€

andifa <0 =0, itfollowsI" =0, and ifa = 0 < b, it follows I~ = 0, now we can use Theorems 1.8 and 2.5 to
get T € Peon(co). That is Pre(co) € Pem(co), which follows that Py (co) = Pee(co). O

3. Characterization of strong preservers of convex equivalent on ¢,

As we mentioned, the set of all bounded linear operators T : ¢¢ — ¢y which strongly preserve convex
majorization is denoted by Pisn(to), that is f <. g if and only if Tf <. Ty, for f,g € ¢, and the set of all
bounded linear operators T : ¢ — ¢y which strongly preserve convex equivalent is denoted by Ps(¢p), that
is

f~cyg if and only if Tf~:Tg.

The aim of this section is to study some important properties of Ps.(co) and characterize the elements of
Pscm(CO) and Psce(CO)-
Obviously the following sentences are satisfied.

o Pon(c0) C Psce(cn) S Peel(cp).
® Pon(co) and Psce(co) are both closed under the combination and nonzero scalar multiplication.
o If T € Py(p), then Ker(T) = {0}.

Example 3.1. In Example 1.4, we get the right shift operator on ¢y defined by

sz (0,f1/f2,--~)/ fUI" allfe Co,

preserves convex equivalent. Nowlet f = (1,3,%,...)and g = (0,1, %, 1, ...). Then we have co(T f) = co(Tg) = [0,1]
and so Tf ~. Tg. But f +. g. Therefore T ¢ Psce(co). That is Psce(co) is a proper subset of Pee(co).

Lemma 3.2. If T € Pg(co), then a # —b.
Proof. On the contrary suppose that, a = —b. Then we have
co(Tej) = co(T(—e;)) = [a, b],
which implies that Te; ~. T(—e;), but we have e; +. —e;. This is a contradiction. [J

For T € Psc(cp), we need some lemmas to prove thata =0 <bora <0=>b.

Lemma 3.3. Let T € Pr(cp),a <0 <band a < min{%, S} . Let j1, jo € IN be distinct and g = aej, + ej,, then we
have ab < inf Tg < sup Tg < aa.

Proof. Suppose that 0 < ¢ < min{-a, b}. Since Te;, € ¢, there is an n € IN, such that for all i > n, we have
|(Te;,)(H)] < % < e. Theorem 2.2 implies that all rows of the matrix form of T belong to ¢'. Hence there is
Jjo € N, (jo # j1) such that |(Tej,)(i)| < ¢, for all i € {1,...,n}. We now investigate the following two cases for
ieN:

Case1: Leti € {1,...,n}. Asa < (Te;)(i) < band |(Tej,)(i)| < ¢, we have

ab — & < a(Te;,)(i) + (Tej,) (i) < aa +e. (12)
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Case 2: Leti € N\ {1,...,n}. Since |(Te;)())| < £ and a < (Tej,)(i) < b, it follows

a—¢e < a(Tej)(i) + (Tej)(i) < b +e. (13)
Therefore (12) and (13) deduce that

ab — ¢ = minfab — ¢,a — ¢} < a(Te;,)(i) + (Tej))()) < max{aa + &,b+ e} = aa + ¢.
Since ¢ is arbitrary, it follows that

co(Tg) = co(aTe;j, + Tej,) = co(aTe;, + Tej,) C [ab, aa].
This gives the assertion. [J

Lemma 3.4. If T € Pe(cp) and minTe; = a < 0 < b = maxTej, then T ¢ Pg..(co).

Proof. Leta = min {%, i—’} and for distinct natural numbers ji, jo, define f = ae;, and g = aej, +ej,. Thus Tf =
aTej,, which implies co(Tf) = co(aTe;,) = ala,b] = [ab, aa]. Corollary 2.9 implies that there are i1,7; € N
such that (Te;,)(i1) = a and (Te},)(i]) = b. Also, Corollary 2.12 concludes that (Te;,)(i1) = (Te},)(i]) = 0 and so

aa = a(Tej,)(ir) + (Tep,)(i1) € co(Ty), (14)
ab = a(Te;,)(1)) + (Te},)(i}) € co(Tg). (15)

Lemma 3.3 together (14) and (15) imply that co(Tg) = [ab,aa] = co(Tf). Which follows that Tf ~, Ty,
although f +. g. This means that T ¢ Ps(c0). O

In the following, we obtain some results of Lemma 3.4.
Theorem 3.5. If T € Py(co), thena=0<bora<0=0>.

Proof. Obviously a <0 < b. Lemma 3.4 implies thata =0 < bora <0 = b. Itis impossiblea = b = 0, because
it follows that T = 0 and so T is not in P (¢p). This completes the proof. [J

Theorem 3.6. If T € Py.(co), then the matrix representation of T does not contain zero row.

Proof. Suppose, contrary to our claim, that all the entries of the igth row of T are equal to zero. Let
f=@1,3,14...) € «.Sofor any j € N, Theorem 3.5 implies that

co(Tej) = [a,0] = co(Tf), or co(Te;)=[0,b] = co(Tf),
which follows Te; ~. Tf, but f . e;. Thatis T ¢ Psc(cp), which is a contradiction. [J
Example 3.7. Let T : ¢g — o be a bounded linear operator defined by

Tf =2f,2f,2f,2f,2f3,2f3,...),  forall f € .
Then we have co(T f) = 2co(f) and obviously T € Psc(cp).

In this part, we recall the generalization of convex combination.

Definition 3.8. Let X be a normed linear space and A C X. The countable convex hull of A is defined as follows

(o) (o) [ee)
cco(A) = {Z aixi: x;i €A, a; >0, Z a; =1, Z ;X converges}.
=1 i=1 i=1

It is easy to check that for A C R, we have cco(A) = co(A).
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Lemma 3.9. [3, Lemma 2.6] Let x € ¢y, ; > 0and 0 < Y, a; < 1. Then Y, a;x(i) € co(x).
i=1 i=1

Let & denote the set of all bounded linear operators T : ¢ — ¢ satisfy co(Tf) = co(f), for all f € ¢;. In [3],
Bayati et al. proved that & C P.,(¢9) and any permutation lies in &, also proved the following theorems.

Theorem 3.10. [3, Theorem 2.20] If T € &, then
(i) forall j€N, rirelﬁ{(Tej)(z)} =0, and %%X{(Tej)(l)} =1

(ii) if ((Tej)(7))jen is the ith row of the matrix form of T, then ). (Te;)(i) < 1.
jEN

Theorem 3.11. [3, Theorem 2.22 and Remark 2.23] If T € &, then the matrix form of T has no zero row and any row
sum of T belongs to [0, 1].

Theorems 3.10 and 3.11 imply the following theorem.
Theorem 3.12. Let T : ¢y — ¢o be a bounded linear operator. Then T € & if and only if
(i) forall j € N, we have mgl{(Tej)(i)} =0, and m&x{(Tej)(i)} =1
1€ 1€
(ii) any row sum of T belongs to (0,1],i.e., 0 < }. (Te;)(i) < 1, for any i € N.
jEN
Proof. LetT € & Theorems 3.10 and 3.11 imply (i), (ii). Now let (i), (ii) hold and f € ¢. By (i), for jo € N there
is ip € N, such that (Te;,)(ip) = 1. Part (ii) implies that }’ (Te;)(ip) < 1and 0 < (Tej)(ip) < 1, (Tej,)(io) = 1, so
jEN
(Tej)(ip) = 0, for all j € IN'\ {jo}. Therefore (Tf)(io) = ¥ (Te;)(io)f(j) = f(jo) and so Im(f) € Im(Tf), and so
jEN
co(f) € co(Tf).
Now for any i € IN, we have 0 < } (Tej)(i) < 1. According to Lemma 3.9 we have (Tf)(i) =
jEN

f (Tej)(@) f(j) € co(f) and so co(T f) € co(f). Therefore co(Tf) = co(f),i.e, T€&E. O
j=1

In the following theorem, we characterize the elements of Ps.(co).
Theorem 3.13. P..(cp) ={AT: A e R\ {0}, T € &}.

Proof. 1t is easy to show that {AT: A € R\ {0}, T € &} € Pyee(c0). Now, let T € Py(cp). The fact Py(co) S
Pee(o) and Theorems 1.8,2.13, 3.5, 3.6 and 3.12 imply that %T € E& whenevera =0 < band %T € & whenever
a<0=b. O

As a consequence of Theorem 3.13, we obtain the next theorem.
Theorem 3.14. Py (o) = Psce(co).

Proof. 1t is easy to show that Psyu(co) € Psce(c0). Now suppose that T € Pye(co). Theorem 3.13 implies that
T = ATy, for some A # 0 and T; € & Hence co(T f) = co(AT1(f)) = Aco(T1(f)) = Aco(f). So f <. g if and only
if co(Tf) = Aco(f) C Aco(g) = co(Tyg), thatis T € Pem(co). O

The above two theorem characterize the elements of P,(¢o).
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