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Existence of Positive Solutions for a Class of Kirchhoff Type Systems
Involving Critical Exponents

Nguyen Thanh Chunga

aDepartment of Mathematics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam

Abstract. In this paper, we consider a class of Kirchhoff type systems involving critical exponents in
bounded domains. Under appropriate conditions on the nonlinearities, we prove the existence and asymp-
totic behavior of positive solutions for the problem by using truncation argument combined with the
mountain pass theorem and a variant of concentration compactness principle related to critical elliptic
systems in [19].

1. Introduction

In this paper, we are concered with a class of Kirchhoff type systems involving critical exponents of the
form 

−M
(∫

Ω
|∇u|2 dx

)
∆u = λFu(x,u, v) + 2α

α+β |u|
α−2u|v|β in Ω,

−M
(∫

Ω
|∇v|2 dx

)
∆v = λFv(x,u, v) +

2β
α+β |u|

α
|v|β−2v in Ω,

u = v = 0 on ∂Ω,

(1)

where Ω is a bounded smooth domain of RN, N ≥ 3, α, β > 1, α + β = 2∗ = 2N
N−2 , ∇F = (Fu,Fv) is the gradient

of the C1 function F : Ω × R × R → R with respect to (u, v) ∈ R2, and λ is a positive parameter, and
M : [0,+∞)→ R is an increasing and continuous function satisfying the condition:

(M0) there exists m0 > 0 such that M(t) ≥ m0 = M(0) for all t ∈ [0,+∞).

Since problem (1) contains integrals over Ω, it is no longer a pointwise identity; therefore it is often
called nonlocal problem. This problem models several physical and biological systems, where u describes a
process which depends on the average of itself, such as the population density, see [9]. Moreover, problem
(1) is related to the stationary version of the Kirchhoff equation

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0

∣∣∣∣∣∂u
∂x

∣∣∣∣∣2 dx
)
∂2u
∂x2 = 0 (2)
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presented by Kirchhoff in 1883, see [22]. This equation is an extension of the classical d’Alembert’s wave
equation by considering the effects of the changes in the length of the string during the vibrations. The
parameters in (2) have the following meanings: L is the length of the string, h is the area of the cross-section,
E is the Young modulus of the material, ρ is the mass density, and P0 is the initial tension.

In recent years, Kirchhoff type equations have been studied in many papers, we refer to some interesting
papers [2, 5, 7, 10–12, 15, 26], in which the authors have used different methods to get the existence of
solutions. In [27, 30], Z. Zhang et al. studied the existence of nontrivial solutions and sign-changing
solutions for (1). The study of systems of Kirchhoff type equations can be found in [6, 8, 13, 14, 29, 32].
Critical problems involving nonlocal operators creat many difficulties in applying variational methods.
These come from the fact that the embedding H1

0(Ω) ↪→ L2∗ (Ω) is not compact and thus the Palais-Smale
condition fails. To overcome the difficulties brought, many authors used the concentration compactness
principle due to Lions [24, 25], we refer to [3, 16, 17, 23, 28, 31] for more details. In a recent paper [19], D.S.
Kang has established a variant of concentration compactness principle related to critical elliptic systems,
which is based on the ideads by P.L. Lions [24, 25]. This result is very useful for the study of the existence
of solutions for critical elliptic systems, see further the papers [20, 21] for the local case. In this paper,
motivated by [16, 19–21] and the ideas introduced in [1], we study the existence of positive solutions for
Kirchhoff type system (1) with critical growth. It should be noticed that we don’t need any conditions on
the Kirchhoff function M(t) except for the boundedness from below on [0,+∞) as stated in (M0). So, our
situation introduced here is different from those presented in [3, 17, 18]. We also refer the interested readers
to some results [23, 28, 31] in which the authors considered the problem in the special case M(t) = a + bt,
a > 0 and b ≥ 0. By the condition (M0), the Kirchhoff function M(t) may be unbounded. For this reason, in
order to apply the concentration compactness principle by D.S. Kang [19], we need a truncation on M(t) as
in (3). Then, an existence result for system (1) is established by using the mountain pass theorem due to A.
Ambrosetti and P.H. Rabinowitz [4].

We assume that F ∈ C1(Ω×R2,R), ∇F = (Fu,Fv), Fu,Fv : Ω×R2
→ R are continuous functions satisfying

the following conditions

(F0) F(x, s, t) = Fs(x, s, t) = Ft(x, s, t) = 0 a.e. x ∈ Ω for all s ≤ 0 or t ≤ 0;

(F1) lim|(s,t)|→0
|∇F(x,s,t)|
|(s,t)| = 0 uniformly in x ∈ Ω;

(F2) lim|(s,t)|→+∞
|∇F(x,s,t)|
|(s,t)|q−1 = 0 uniformly in x ∈ Ω, where q ∈ (2, 2∗);

(F3) There exists θ ∈ (2, 2∗) such that

0 < θF(x, s, t) ≤ Fs(x, s, t)s + Ft(x, s, t)t, ∀x ∈ Ω, s, t > 0.

Let H1
0(Ω) be the usual Sobolev space with respect to the norm ‖u‖ =

(∫
Ω
|∇u|2 dx

) 1
2 . Set H = H1

0(Ω)×H1
0(Ω).

Then H is a Hilbert space with respect to the inner product

(w1,w2)H =

∫
Ω

(∇u1∇u2 + ∇v1∇v2) dx, ∀w1 = (u1, v1), w2 = (u2, v2) ∈ H

and the norm

‖w‖H =

(∫
Ω

|∇u|2 + |∇v|2 dx
) 1

2

, w = (u, v) ∈ H.

Denote by Sr the best constant in the embedding H ↪→ Lr(Ω) × Lr(Ω), that is, Sr‖w‖Lr(Ω)×Lr(Ω) ≤ ‖w‖H for all
w ∈ H.

Definition 1.1. We say that (u, v) ∈ H is a weak solution of system (1) if

M
(
‖u‖2

) ∫
Ω

∇u∇ϕ dx + M
(
‖v‖2

) ∫
Ω

∇v∇ψ dx − λ
∫

Ω

(Fu(x,u, v)ϕ + Fv(x,u, v)ψ) dx

−
2α
α + β

∫
Ω

|u|α−2u|v|βϕ dx −
2β
α + β

∫
Ω

|u|α|v|β−2vψ dx = 0
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for all (ϕ,ψ) ∈ H.

The main result of this paper can be stated as follows.

Theorem 1.2. Assume that (M0), (F0)-(F3) are satisfied. Then, there exists λ∗ > 0 such that for all λ ≥ λ∗, system
(1) has a positive solution. Moreover, if (uλ, vλ) is a solution of system (1) then limλ→+∞ ‖(uλ, vλ)‖H = 0.

2. Proof of the main result

Here we are assuming, without loss of generality, that the Kirchhoff function M(t) is unbounded.
Contrary case, the truncation on M(t) is not necessary. Since we are intending to work with N ≥ 3, we shall
make a truncation on M as follows. From (M0), given a ∈ R such that m0 < a < θ

2 m0, there exists t0 > 0 such
that M(t0) = a. We set

Ma(t) :=

M(t), 0 ≤ t ≤ t0,

a, t ≥ t0.
(3)

From (M0) we get

Ma(t) ≤ a, ∀t ≥ 0. (4)

As we shall see, the proof of Theorem 1.2 is based on a careful study of the solutions of the following
auxiliary problem

−Ma

(∫
Ω
|∇u|2 dx

)
∆u = λFu(x,u, v) + 2α

α+β |u|
α−2u|v|β in Ω,

−Ma

(∫
Ω
|∇v|2 dx

)
∆v = λFv(x,u, v) +

2β
α+β |u|

α
|v|β−2v in Ω,

u = v = 0 on ∂Ω,

(5)

where f ,N, α, β, λ are as in Section 1. We shall prove the following auxiliary result.

Theorem 2.1. Assume that (M0), (F0)-(F3) are satisfied. Then, there exists λ0 > 0 such that for all λ ≥ λ0 and all
a ∈ (m0, θ2 m0), system (5) has a positive solution.

From the hypothesis (F0) and we intend to find positive solutions, we recall that (u, v) ∈ H is a weak
solution of system (5) if

Ma

(
‖u‖2

) ∫
Ω

∇u∇ϕ dx + Ma

(
‖v‖2

) ∫
Ω

∇v∇ψ dx − λ
∫

Ω

(Fu(x,u, v)ϕ + Fv(x,u, v)ψ) dx

−
2α
α + β

∫
Ω

uα−1
+ vβ+ϕ dx −

2β
α + β

∫
Ω

uα+vβ−1
+ vψ dx = 0

for all (ϕ,ψ) ∈ H, where u+ = max{0,u} and v+ = max{0, v}. Hence, we shall look for positive solutions of
(5) by finding critical points of the C1

− functional Ia,λ : H→ R given by the formula

Ia,λ(u, v) =
1
2

M̂a

(
‖u‖2

)
+

1
2

M̂a

(
‖v‖2

)
− λ

∫
Ω

F(x,u, v) dx −
2

α + β

∫
Ω

(u+)α(v+)β dx,

where M̂(t) =
∫ t

0 M(s) ds. Note that

I′a,λ(u, v)(ϕ,ψ) = Ma

(
‖u‖2

) ∫
Ω

∇u∇ϕ dx + Ma

(
‖v‖2

) ∫
Ω

∇v∇ψ dx

−λ

∫
Ω

(Fu(x,u, v)ϕ + Fv(x,u, v)ψ) dx −
2α
α + β

∫
Ω

uα−1
+ vβ+ϕ dx −

2β
α + β

∫
Ω

uα+vβ−1
+ vψ dx
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for all (ϕ,ψ) ∈ H. Moreover, if the critical point is nontrival, by maximum principle, we conclude that it is
a positive solution of the system.

We say that a sequence {wn} ⊂ H is a Palais-Smale sequence for the functional Ia,λ at level c ∈ R if

Ia,λ(wn)→ c and I′a,λ(wn)→ 0 in H∗,

where H∗ is the dual space of H. If every Palais-Smale sequence of Ia,λ has a strong convergent subsequence,
then one says that Ia,λ satisfies the Palais-Smale condition ((PS) condition for short).

In our arguments, we need the following useful result which helps us to overcome the nonlocal case.

Lemma 2.2. Let Ω ⊂ RN, N ≥ 3 be a domain (not necessary bounded). For k, l > 0, α, β > 1, α + β ≤ 2∗, let us
denote

Sk,l
α,β = inf

(u,v)∈H\{0}

∫
Ω

(k|∇u|2 + l|∇v|2) dx(∫
Ω
|u|α|v|β dx

) 2
α+β

. (6)

Then we have

Sk,l
α,β = k

α
α+β l

β
α+β


(
α
β

) β
α+β

+

(
β

α

) α
α+β

 Sα+β, (7)

where S is the best Sobolev constant, that is,

Sα+β = inf
u∈H1

0(Ω)\{0}

∫
Ω
|∇u|2 dx(∫

Ω
|u|α+β dx

) 2
α+β

. (8)

Proof. The proof of Lemma 2.2 is similar to [1, Theorem 5]. For the reader’s convenience, we present it here
in details.

We first observe that Sα+β is well defined since the embedding H1
0(Ω) ↪→ Lα+β(Ω) (2 < α + β ≤ 2∗) is

continuous. Moreover, since

|u|α|v|β ≤
α

α + β
|u|α+β +

β

α + β
|v|α+β

≤ |u|α+β + |v|α+β

and
k|∇u|2 + l|∇v|2 ≥ min{k, l}

(
|∇u|2 + |∇v|2

)
the number Sk,l

α,β is well defined.
Consider {yn} a minimizing sequence for Sα+β. Let s, t > 0 be chosen later. Taking un = syn and vn = tyn

in the quotient (6) we have that

ks2 + lt2

(sαtβ)
2
α+β

.

∫
Ω
|yn|

2 dx(∫
Ω
|yn|

α+β dx
) 2
α+β

≥ Sk,l
α,β. (9)

Observe that
ks2 + lt2

(sαtβ)
2
α+β

= k
( s

t

) 2β
α+β

+ l
( s

t

) −2α
α+β

and define the function
1(x) = kx

2β
α+β + lx

−2α
α+β , x > 0.
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A simple computation shows that the minimum of the function 1 at point x =
√

lα
kβ with minimum value

1


√

lα
kβ

 = k
α
α+β l

β
α+β


(
α
β

) β
α+β

+

(
β

α

) α
α+β

 .
Choosing s and t in (9) such that s

t =
√

lα
kβ we deduce that

k
α
α+β l

β
α+β


(
α
β

) β
α+β

+

(
β

α

) α
α+β


∫

Ω
|yn|

2 dx(∫
Ω
|yn|

α+β dx
) 2
α+β

≥ Sk,l
α,β

and hence,

k
α
α+β l

β
α+β


(
α
β

) β
α+β

+

(
β

α

) α
α+β

 Sα+β ≥ Sk,l
α,β. (10)

To complete the proof, let (un, vn) be a minimizing sequence for Sk,l
α,β. Define zn = snvn for some sn > 0 such

that ∫
Ω

|un|
α+β dx =

∫
Ω

|zn|
α+β dx. (11)

By Young’s inequality,

|un|
α
|zn|

β
≤

α
α + β

|un|
α+β +

β

α + β
|zn|

α+β

and (11) it implies(∫
Ω

|un|
α
|zn|

β dx
) 2
α+β

≤

(∫
Ω

|un|
α+β dx

) 2
α+β

=

(∫
Ω

|zn|
α+β dx

) 2
α+β

. (12)

Using (12), we have∫
Ω

(k|∇un|
2 + l|∇vn|

2) dx(∫
Ω
|un|

α|vn|
β dx

) 2
α+β

= s
2β
α+β

n

∫
Ω

(k|∇un|
2 + l|∇vn|

2) dx(∫
Ω
|un|

α|zn|
β dx

) 2
α+β

≥ ks
2β
α+β

n

∫
Ω
|∇un|

2 dx(∫
Ω
|un|

α+β dx
) 2
α+β

+ ls
2β
α+β

n .s−2
n

∫
Ω
|∇zn|

2 dx(∫
Ω
|zn|

α+β dx
) 2
α+β

≥ 1(sn)Sα+β

and hence,∫
Ω

(k|∇un|
2 + l|∇vn|

2) dx(∫
Ω
|un|

α|vn|
β dx

) 2
α+β

≥ 1


√

lα
kβ

 Sα+β. (13)

Passing to the limit in (13) we obtain

Sk,l
α,β ≥ k

α
α+β l

β
α+β


(
α
β

) β
α+β

+

(
β

α

) α
α+β

 Sα+β. (14)

From (10) and (14), the proof of Lemma 2.2 is completed.
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From Lemma 2.2, using the arguments as those presented by D.S. Kang [19, Theorem 1] we obtain the
following result.

Lemma 2.3. Assume that Ω ⊂ RN, N ≥ 3 is a bounded smooth domain, k, l > 0, α, β > 1 and α+ β = 2∗ = 2N
N−2 . Let

{(un, vn)}⇀ (u, v) in H, {k|∇un|
2 + l|∇vn|

2
}⇀ k|∇u|2 + l|∇v|2 + µ and |un|

α
|vn|

β ⇀ |u|α|v|β + ν as n→ ∞, where µ
and ν are nonnegative bounded measures onRN. Then there exist an at most countable set J and families {x j} j∈J ⊂ RN

and {µ j} j∈J, {ν j} j∈J ⊂ [0,+∞) such that

µ ≥
∑
j∈J

µ jδx j , ν =
∑
j∈J

ν jδx j , ν
2
2∗

j Sk,l
α,β ≤ µ j, ∀ j ∈ J,

where δx j is the Dirac mass at x j ∈ Ω and Sk,l
α,β is given by Lemma 2.2.

Lemma 2.4. For all λ > 0, there exist positive constants ρ and r such that Ia,λ(w) ≥ r > 0 for all w ∈ H with
‖w‖H = ρ.

Proof. From (F1) for each ε > 0, there exists δ > 0 such that

|∇F(x, s, t)| < ε|(s, t)| for all |(s, t)| < δ and all x ∈ Ω. (15)

On the other hand, from (F2), there exists C1 > 0 such that

|∇F(x, s, t)| ≤ C1(1 + |(s, t)|q−1) for all (s, t) ∈ R2 and all x ∈ Ω. (16)

From (15) and (16), for each ε > 0, there exists a constant Cε > 0 such that

|∇F(x, s, t)| ≤ ε|(s, t)| + Cε|(s, t)|q−1 for all (s, t) ∈ R2 and all x ∈ Ω. (17)

Hence,

|F(x, s, t)| = |F(x, s, t) − F(x, 0, 0)|
= |∇F(x, θ1s, θ2t) · (s, t)|
≤ |∇F(x, θ1s, θ2t)||(s, t)|

≤ ε|(s, t)|2 + Cε|(s, t)|q

(18)

for all (s, t) ∈ R2 and all x ∈ Ω, where θi ∈ (0, 1) and Cε is a positive constant.
From (18) and (M0), for all w = (u, v) ∈ H, we get

Ia,λ(w) =
1
2

M̂a

(
‖u‖2

)
+

1
2

M̂a

(
‖v‖2

)
− λ

∫
Ω

F(x,u, v) dx −
2

α + β

∫
Ω

(u+)α(v+)β dx

≥
m0

2
‖u‖2 +

m0

2
‖v‖2 − λ

∫
Ω

(
ε|(u, v)|2 + Cε|(u, v)|q

)
dx

−
2

2∗(S1,1
α,β)

2∗
2

(∫
Ω

(
|∇u|2 + |∇v|2

)
dx

) 2∗
2

≥
m0

2
‖w‖2H − λεS

−2
2 ‖w‖

2
H − λCεS

−q
q ‖w‖

q
H −

2

2∗(S1,1
α,β)

2∗
2

‖w‖2
∗

H .

For λ > 0, let ε =
m0S2

2
4λ , we get

Ia,λ(w) ≥
m0

4
‖w‖2H − λCεS

−q
q ‖w‖

q
H −

2

2∗(S1,1
α,β)

2∗
2

‖w‖2
∗

H

= ‖w‖2H

m0

4
− λCεS

−q
q ‖w‖

q−2
H −

2

2∗(S1,1
α,β)

2∗
2

‖w‖2
∗
−2

H

 .
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Since 2 < q < 2∗, there exist positive constants ρ and r such that Ia,λ(w) ≥ r > 0 for all w ∈ H with
‖w‖H = ρ.

Lemma 2.5. For all λ > 0, there exists e ∈ H with Ia,λ(e) < 0 and ‖e‖H > ρ.

Proof. Fix s, t > 0 and x ∈ Ω. For τ > τ0 > 0, from (F3), we get

d
dτ

F(x, τs, τt) = sFs(x, τs, τt) + tFt(x, τs, τt)

=
1
τ

(τsFs(x, τs, τt) + τtFt(x, τs, τt))

≥
θ
τ

F(x, τs, τt),

which gives
d

dτF(x, τs, τt)
F(x, τs, τt)

≥
θ
τ
.

Hence, integrating the above inequality from τ0 to τ implies that

ln F(x, τs, τt) − ln F(x, τ0s, τ0t) ≥ ln τθ − ln τθ0

or
F(x, τs, τt)

τθ
≥

τθ0
F(x, τ0s, τ0t)

= γ(x, s, t) > 0, ∀s, t > 0 and x ∈ Ω.

Thus, we obtain

F(x, τs, τt) ≥ γ(x, s, t)τθ, ∀s, t > 0 and x ∈ Ω. (19)

Fix w0 = (u0, v0),u0, v0 ∈ C∞0 (Ω)\{0}with u0 > 0 and v0 > 0 and ‖u0‖ = ‖v0‖ = 1. Using (4) and (19), for all
τ > 0 large enough, we have

Ia,λ(τu0, τv0) =
1
2

M̂a

(
‖τu0‖

2
)

+
1
2

M̂a

(
‖τv0‖

2
)
− λ

∫
Ω

F(x, τu0, τv0) dx

−
2

α + β

∫
Ω

(τu0)α(τv0)β dx

≤ aτ2
− λτθ

∫
Ω

γ(x,u0, v0) dx −
2τ2∗

α + β

∫
Ω

uα0 vβ0 dx.

Since θ > 2, the result follows by considering e = τ∗w0 for some τ∗ > 0 large enough.

Using a version of the Mountain pass theorem due to Ambrosetti and Rabinowitz [? ], without (PS)
condition, there exists a sequence {wn} ⊂ H such that

Ia,λ(wn)→ ca,λ, I′a,λ(wn)→ 0 as n→∞,

where
ca,λ = inf

γ∈Γ
max
t∈[0,1]

Ia,λ(γ(t))

and
Γ =

{
γ ∈ C([0, 1],H) : γ(0) = 0, Ia,λ(γ(1)) < 0

}
.

Lemma 2.6. It holds that
lim
λ→+∞

ca,λ = 0.
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Proof. Since the functional Ia,λ has the Mountain pass geometry, it follows that there exists tλ > 0 ver-
ifying Ia,λ(tλw0) = maxt≥0 Ia,λ(tw0), where w0 = (u0, v0) is the function given by Lemma 2.5. Hence,
d
dt Ia,λ(tλw0)(tλw0) = 0 or

0 = Ma

(
‖tλu0‖

2
) ∫

Ω

|∇tλu0|
2 dx + Ma

(
‖tλv0‖

2
) ∫

Ω

|∇tλv0|
2 dx

− λ

∫
Ω

(Fu(x, tλu0, tλv0)tλu0 + Fv(x, tλu0, tλv0)tλv0) dx − 2t2∗
λ

∫
Ω

uα0 vβ0 dx.

Hence,

2t2
λMa(|tλ|2) = λ

∫
Ω

(Fu(x, tλu0, tλv0)tλu0 + Fv(x, tλu0, tλv0)tλv0) dx + 2t2∗
λ

∫
Ω

uα0 vβ0 dx. (20)

From (4), (20) and (F3), we get

a ≥ t2∗−2
λ

∫
Ω

uα0 vβ0 dx,

which implies that {tλ} is bounded. Thus, there exist a sequence λn → +∞ and t ≥ 0 such that tλn → t as
n→∞. Consequently, there is C2 > 0 such that

t2
λn

Ma(t2
λn

) ≤ C2, ∀n ∈N,

and ∀n ∈N,

λn

∫
Ω

(Fu(x, tλn u0, tλn v0)tλn u0 + Fv(x, tλn u0, tλn v0)tλn v0) dx + 2t2∗
λn

∫
Ω

uα0 vβ0 dx ≤ C2. (21)

If t > 0, by (17) and the Dominated Convergence Theorem,

lim
n→∞

∫
Ω

(Fu(x, tλn u0, tλn v0)tλn u0 + Fv(x, tλn u0, tλn v0)tλn v0) dx

=

∫
Ω

(Fu(x, tu0, tv0)tu0 + Fv(x, tu0, tv0)tv0) dx

and thus (21) leads to

lim
n→∞

(
λn

∫
Ω

(Fu(x, tλn u0, tλn v0)tλn u0 + Fv(x, tλn u0, tλn v0)tλn v0) dx + 2t2∗
λn

∫
Ω

uα0 vβ0 dx
)

= +∞,

which is an absurd. Thus, we conclude that t = 0. Now, let us consider the path γ∗(t) = te for t ∈ [0, 1],
which belongs to Γ, to get the following estimate

0 < ca,λ ≤ max
t∈[0,1]

Ia,λ(γ∗(t)) = Ia,λ(tλw0) ≤ M̂a(t2
λ).

In this way,
lim
λ→+∞

M̂(t2
λ) = 0,

which leads to limλ→+∞ ca,λ = 0.

Lemma 2.7. Let {wn} = {(un, vn)} ⊂ H be a sequence such that

Ia,λ(wn)→ ca,λ, I′a,λ(wn)→ 0 as n→∞. (22)

Then {wn} is bounded.
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Proof. Assuming by contradiction that {wn} is not bounded in H, up to a subsequence, we may assume that
‖wn‖H → +∞ as n→∞. By (22), (M0), (F3) and 2a

m0
< θ < 2∗, we deduce that for n large enough,

1 + ca,λ + ‖wn‖H

≥ Ia,λ(wn) −
1
θ

I′a,λ(wn)(wn)

=
1
2

M̂a(‖un‖
2) +

1
2

M̂a(‖vn‖
2) − λ

∫
Ω

F(x,un, vn) dx −
2
2∗

∫
Ω

|un|
α
|vn|

β dx

−
1
θ

Ma(‖un‖
2)

∫
Ω

|∇un|
2 dx −

1
θ

Ma(‖vn‖
2)

∫
Ω

|∇vn|
2 dx

+
λ
θ

∫
Ω

(Fu(x,un, vn)un + Fv(x,un, vn)vn) dx +
2
θ

∫
Ω

|un|
α
|vn|

β dx

≥

(m0

2
−

a
θ

)
(‖un‖

2 + ‖vn‖
2) −

λ
θ

∫
Ω

(Fu(x,un, vn)un + Fv(x,un, vn)vn − θF(x,un, vn)) dx

+
( 2
θ
−

2
2∗

) ∫
Ω

|un|
α
|vn|

β dx

≥

(m0

2
−

a
θ

)
‖wn‖

2
H − C3,

where C3 is a positive constant. Therefore, the sequence {wn} is bounded in H.

Proof. [Proof of Theorem 2.1] From Lemma 2.4, we have

lim
λ→+∞

ca,λ = 0. (23)

Therefore, there exists λ0 > 0 such that

ca,λ <
( 2
θ
−

2
2∗

) Sk,l
α,β

2


N
2

, (24)

for all λ ≥ λ0, where Sk,l
α,β is given by (7). Now, fix λ ≥ λ0 and let us show that system (5) admits a positive

solution. From Lemmas 2.4 and 2.5, there exists a bounded sequence {wn} = {(un, vn)} ⊂ H verifying

Ia,λ(wn)→ ca,λ, I′a,λ(wn)→ 0 as n→∞. (25)

Since ‖wn‖
2
H = ‖un‖

2 + ‖vn‖
2, the sequences {un} and {vn} are bounded in H1

0(Ω). Hence, up to subsequences,
there are α0, β0 ≥ 0 such that

‖un‖ → α0, ‖vn‖ → β0 as n→∞.

Since Ma(t) is a continuous function, we obtain

Ma(‖un‖
2)→Ma(α2

0) > 0, Ma(‖vn‖
2)→Ma(β2

0) > 0 as n→∞. (26)

Assume that {wn} = {(un, vn)} converges weakly to w = (u, v) ∈ H. We claim that ‖un‖
2
→ ‖u‖2 and

‖vn‖
2
→ ‖v‖2 as n → ∞, which imply that un → u and vn → v in H1

0(Ω) as n → ∞, and then we conclude
that w = (u, v) is a nontrival solution of problem (5). Indeed, assuming the claim and using the fact that Ia,λ
is C1 we obtain

Ia,λ(wn)→ Ia,λ(w) and I′a,λ(wn)→ I′a,λ(w)

and so letting n→∞,
Ia,λ(w) = ca,λ and I′a,λ(w) = 0.
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This means that the result follows.
In order to prove the claim, choosing k = Ma(α2

0) > 0 and l = Ma(β2
0) > 0, taking a subsequence, we may

assume that

Ma(α2
0)|∇un|

2 + Ma(β2
0)|∇vn|

2 ⇀ Ma(α2
0)|∇u|2 + Ma(β2

0)|∇v|2 + µ,

|un|
α
|vn|

β ⇀ |u|α|v|β + ν,
(27)

in the weak∗−sense of measures, where µ and ν are nonnegative bounded measures on RN. Using Lemma
2.3, we obtain an at most countable index set J, two families {x j} j∈J ⊂ RN and {ν j} j∈J ⊂ [0,+∞) such that

ν =
∑
j∈J

ν jδx j , µ ≥
∑
j∈J

µ jδx j , Sk,l
α,βν

2
2∗

j ≤ µ j, ∀ j ∈ J, (28)

where δx j is the Dirac mass at x j ∈ Ω and

Sk,l
α,β = M

α
α+β

a (α2
0)M

β
α+β

a (β2
0)


(
α
β

) β
α+β

+

(
β

α

) α
α+β

 Sα+β. (29)

Now, we claim that J = ∅. Arguing by contradiction, assume that J , ∅ and fix j ∈ J. Consider
φ j ∈ C∞0 (Ω, [0, 1]) such that φ j ≡ 1 on B1(0), φ j ≡ 0 on Ω\B2(0) and |∇φ j|∞ ≤ 2. Defining φ j,ε(x) = φ j(

x−x j

ε ),
where ε > 0 we deduce that the sequence {φ j,εwn} = {(φ j,εun, φ j,εvn)} is bounded in the space H. It then
follows from (25) that I′a,λ(wn)(φ j,εwn)→ 0 as n→∞, that is,

Ma

(
‖un‖

2
) ∫

Ω

un∇un∇φ j,ε dx + Ma

(
‖vn‖

2
) ∫

Ω

vn∇vn∇φ j,ε dx

= −Ma

(
‖un‖

2
) ∫

Ω

φ j,ε|∇un|
2 dx −Ma

(
‖vn‖

2
) ∫

Ω

φ j,ε|∇vn|
2 dx

+ λ

∫
Ω

(Fu(x,un, vn)φ j,εun + Fv(x,un, vn)φ j,εvn) dx

+ 2
∫

Ω

|un|
α
|vn|

βφ j,ε dx + on(1)

= −
(
Ma(α2

0) + on(1)
) ∫

Ω

φ j,ε|∇un|
2 dx −

(
Ma(β2

0) + on(1)
) ∫

Ω

φ j,ε|∇vn|
2 dx

+ λ

∫
Ω

(Fu(x,un, vn)φ j,εun + Fv(x,un, vn)φ j,εvn) dx

+ 2
∫

Ω

|un|
α
|vn|

βφ j,ε dx + on(1)

= −Ma(α2
0)

∫
Ω

φ j,ε|∇un|
2 dx −Ma(β2

0)
∫

Ω

φ j,ε|∇vn|
2 dx

+ λ

∫
Ω

(Fu(x,un, vn)φ j,εun + Fv(x,un, vn)φ j,εvn) dx

+ 2
∫

Ω

|un|
α
|vn|

βφ j,ε dx + on(1).

(30)

Since the support of φ j,ε is B2ε(x j), using the Hölder inequality and the boundedness of the sequence
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{wn} = {(un, vn)}, we have∣∣∣∣∣∫
Ω

un∇un∇φ j,ε dx
∣∣∣∣∣ =

∣∣∣∣∣∣
∫

B2ε(x j)
un∇un∇φ j,ε dx

∣∣∣∣∣∣
≤

∫
B2ε(x j)

|un∇un∇φ j,ε| dx

≤

∫
B2ε(x j)

|∇un|
2 dx


1
2
∫

B2ε(x j)
|un∇φ j,ε|

2 dx


1
2

≤ C3

∫
B2ε(x j)

|un|
2
|∇φ j,ε|

2 dx


1
2

≤ C3

∫
B2ε(x j)

|un|
2∗ dx


1
2∗

∫
B2ε(x j)

|∇φ j,ε|
N dx


1
N

≤ C3

∫
B2ε(x j)

|un|
2∗ dx


1
2∗

→ 0 as n→∞ and ε→ 0.

(31)

From (31) and the fact that Ma(‖un‖
2)→Ma(α2

0) as n→∞we have

lim
n→∞, ε→0

Ma

(
‖un‖

2
) ∫

Ω

un∇un∇φ j,ε dx = 0. (32)

Similarly, we have

lim
n→∞, ε→0

Ma

(
‖vn‖

2
) ∫

Ω

vn∇vn∇φ j,ε dx = 0. (33)

On the other hand, by (F2) and the boundedness of the sequences {un}, {vn} in H1
0(Ω) we also have

lim
n→∞

∫
Ω

(Fu(x,un, vn)φ j,εun + Fv(x,un, vn)φ j,εvn) dx = 0. (34)

From (30)-(34), letting n→∞, we deduce that

2
∫

Ω

dν ≥
∫

Ω

φ j,εdµ + oε(1).

Letting ε→ 0 and using the standard theory of Radon measures, we conclude that 2ν j ≥ µ j. Using (28) we
have

ν j ≥

Sk,l
α,β

2


N
2

, (35)

where Sk,l
α,β is given by (29).

Now, we shall prove that (35) cannot occur, and therefore the set J = ∅. Indeed, arguing by contradiction,

let us suppose that ν j ≥

(
Sk,l
α,β

2

) N
2

for some j ∈ J. Since {wn} = {(un, vn)} is a (PS)ca,λ for the functional Ia,λ, from
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the conditions (F3) and (M0), and m0 < a < θ
2 m0 we have

ca,λ = Ia,λ(wn) −
1
θ

I′a,λ(wn)(wn) + on(1)

≥
1
2

M̂a(‖un‖
2) +

1
2

M̂a(‖vn‖
2) −

1
θ

Ma(‖un‖
2)‖un‖

2
−

1
θ

Ma(‖vn‖
2)‖vn‖

2

+
( 2
θ
−

2
2∗

) ∫
Ω

|un|
α
|vn|

β dx + on(1)

≥

(m0

2
−

a
θ

)
(‖un‖

2 + ‖vn‖
2) +

( 2
θ
−

2
2∗

) ∫
Ω

|un|
α
|vn|

β dx + on(1)

≥

( 2
θ
−

2
2∗

) ∫
Ω

|un|
α
|vn|

β dx + on(1)

≥

( 2
θ
−

2
2∗

) ∫
Ω

|un|
α
|vn|

βφ j,ε dx + on(1).

(36)

Letting n→∞ in (36), we get

ca,λ ≥

( 2
θ
−

2
2∗

) ∫
Ω

φ j,εdν

and then

ca,λ ≥

( 2
θ
−

2
2∗

) Sk,l
α,β

2


N
2

, (37)

which contradicts (24). Thus, J = ∅ and it follows that

lim
n→∞

∫
Ω

|un|
α
|vn|

β dx =

∫
Ω

|u|α|v|β dx. (38)

We also have un(x)→ u(x) and vn(x)→ v(x) a.e. x ∈ Ω as n→∞, so by the condition (F2) and the Dominated
Convergence Theorem, we deduce that

lim
n→∞

∫
Ω

(Fu(x,un, vn)un − Fu(x,u, v)u) dx = 0. (39)

Similarly,

lim
n→∞

∫
Ω

(Fv(x,un, vn)vn − Fv(x,u, v)v) dx = 0. (40)

Combining (38)-(40) with the fact that I′a,λ(un, vn)(un, 0)→ 0 and I′a,λ(un, vn)(0, vn)→ 0 as n→∞we get

lim
n→∞

Ma

(
‖un‖

2
)
‖un‖

2 = λ

∫
Ω

Fu(x,u, v)u dx +
2α
α + β

∫
Ω

|u|α|v|β dx, (41)

lim
n→∞

Ma

(
‖vn‖

2
)
‖vn‖

2 = λ

∫
Ω

Fv(x,u, v)v dx +
2β
α + β

∫
Ω

|u|α|v|β dx. (42)

On the other hand, by (25), for (ϕ,ψ) ∈ H, I′a,λ(un, vn)(ϕ, 0)→ 0 and I′a,λ(un, vn)(0, ψ)→ 0 as n→∞, that is,

Ma

(
‖un‖

2
) ∫

Ω

∇un∇ϕ dx = λ

∫
Ω

Fu(x,un, vn)ϕ dx +
2α
α + β

∫
Ω

|un|
α−2un|vn|

βϕ dx,

Ma

(
‖vn‖

2
) ∫

Ω

∇vn∇ψ dx = λ

∫
Ω

Fu(x,un, vn)ψ dx +
2β
α + β

∫
Ω

|un|
α
|vn|

β−2vnψ dx.
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By (17) and (26), using Dominated Convergence Theorem, we reach

Ma

(
α2

0

) ∫
Ω

∇u∇ϕ dx = λ

∫
Ω

Fu(x,u, v)ϕ dx +
2α
α + β

∫
Ω

|u|α−2u|v|βϕ dx,

Ma

(
β2

0

) ∫
Ω

∇v∇ψ dx = λ

∫
Ω

Fu(x,u, v)ψ dx +
2β
α + β

∫
Ω

|u|α|v|β−2vψ dx, (ϕ,ψ) ∈ H

and so

Ma

(
α2

0

)
‖u‖2 = λ

∫
Ω

Fu(x,u, v)u dx +
2α
α + β

∫
Ω

|u|α|v|β dx, (43)

Ma

(
β2

0

)
‖v‖2 = λ

∫
Ω

Fv(x,u, v)v dx +
2β
α + β

∫
Ω

|u|α|v|β dx. (44)

Now, using (41)-(44) we get

Ma

(
‖un‖

2
)
‖un‖

2
→Ma

(
α2

0

)
‖u‖2, Ma

(
‖vn‖

2
)
‖vn‖

2
→Ma

(
β2

0

)
‖v‖2 as n→∞. (45)

From (26) and (45) we conclude that ‖un‖
2
→ ‖u‖2 and ‖vn‖

2
→ ‖v‖2 as n→ ∞. This completes the proof of

Theorem 2.1.

Now, we are in the position to prove Theorem 1.2.

Proof. [Proof of Theorem 1.2] Let λ0 be as in Theorem 2.1 and, for λ ≥ λ0, let wλ = (uλ, vλ) ∈ H be the
nontrival solution of problem (5) found in Theorem 2.1. We claim that there exists λ∗ ≥ λ0 such that
‖uλ‖2 ≤ t0 and ‖vλ‖2 ≤ t0, for all λ ≥ λ∗. If this is the case, it follows from the definition of Ma(t) that
Ma(‖uλ‖2) = M(‖uλ‖2). Thus, wλ = (uλ, vλ) is a weak solution of problem (1).

We argue by contradiction that, there is a sequence {λn} ⊂ R such that λn → +∞ as n → ∞ and either
‖uλn‖

2
≥ t0 or ‖vλn‖

2
≥ t0. Then we have

ca,λn ≥
1
2

M̂a(‖uλn‖
2) +

1
2

M̂a(‖vλn‖
2) −

1
θ

Ma(‖uλn‖
2)‖uλn‖

2
−

1
θ

Ma(‖vλn‖
2)‖vλn‖

2

≥

(m0

2
−

a
θ

) (
‖uλn‖

2 + ‖vλn‖
2
)

≥

(m0

2
−

a
θ

)
t0,

(46)

which is a contradiction since limn→∞ ca,λn = 0 and a ∈ (m0, θ2 m0).
Finally, we shall prove that limλ→+∞ ‖uλ‖ = limλ→+∞ ‖vλ‖ = 0. Indeed, by (M0) and the fact that ‖uλ‖2 ≤ t0

and ‖vλ‖2 ≤ t0, it follows that M(‖uλ‖2) ≤ M(t0) = a and M(‖vλ‖2) ≤ M(t0) = a. Hence, using (M0) and (F4)
we have

ca,λ ≥
1
2

M̂(‖uλ‖2) +
1
2

M̂(‖vλ‖2) −
1
θ

M(‖uλ‖2)‖uλ‖2 −
1
θ

M(‖vλ‖2)‖vλ‖2

≥
m0

2
‖uλ‖2 +

m0

2
‖vλ‖2 −

a
θ
‖uλ‖2 −

a
θ
‖vλ‖2

=
(m0

2
−

a
θ

) (
‖uλ‖2 + ‖vλ‖2

)
.

(47)

Using Lemma 2.5 again we have that limλ→+∞ ca,λ = 0. Therefore, it follows since a ∈ (m0, θ2 m0) that
limλ→+∞ ‖uλ‖ = limλ→+∞ ‖vλ‖ = 0. The proof of Theorem 1.2 is now completed.
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