Filomat 33:1 (2019), 267-280
https://doi.org/10.2298/FIL1901267C

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Existence of Positive Solutions for a Class of Kirchhoff Type Systems
Involving Critical Exponents

Nguyen Thanh Chung?

*Department of Mathematics, Quang Binh University, 312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam

Abstract. In this paper, we consider a class of Kirchhoff type systems involving critical exponents in
bounded domains. Under appropriate conditions on the nonlinearities, we prove the existence and asymp-
totic behavior of positive solutions for the problem by using truncation argument combined with the
mountain pass theorem and a variant of concentration compactness principle related to critical elliptic
systems in [19].

1. Introduction

In this paper, we are concered with a class of Kirchhoff type systems involving critical exponents of the
form

—M( [ IVul? dx) Au = AF,(x,u,0) + az—fr"ﬁlula‘zulvlﬁ inQ,
—M( R [Vol? dx) Av = AF,(x, u,v) + az—zglulalvlﬂ‘zv in Q, 1)
u=v=00ndQ,

where Q is a bounded smooth domain of RN, N > 3, ap>la+p=2"= %, VF = (F,, Fp) is the gradient
of the C! function F : Q x RXx R — R with respect to (u,v) € R?, and A is a positive parameter, and
M : [0, +o0) — Ris an increasing and continuous function satisfying the condition:

(Mp) there exists mg > 0 such that M(t) > mg = M(0) for all t € [0, +c0).

Since problem (1) contains integrals over ), it is no longer a pointwise identity; therefore it is often
called nonlocal problem. This problem models several physical and biological systems, where 1 describes a
process which depends on the average of itself, such as the population density, see [9]. Moreover, problem
(1) is related to the stationary version of the Kirchhoff equation

Pu (Py E (T 2 u
pﬁ—(f‘f‘iﬁ dX) =0 (2)
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presented by Kirchhoff in 1883, see [22]. This equation is an extension of the classical d’Alembert’s wave
equation by considering the effects of the changes in the length of the string during the vibrations. The
parameters in (2) have the following meanings: L is the length of the string, h is the area of the cross-section,
E is the Young modulus of the material, p is the mass density, and Py is the initial tension.

In recent years, Kirchhoff type equations have been studied in many papers, we refer to some interesting
papers [2, 5, 7, 10-12, 15, 26], in which the authors have used different methods to get the existence of
solutions. In [27, 30], Z. Zhang et al. studied the existence of nontrivial solutions and sign-changing
solutions for (1). The study of systems of Kirchhoff type equations can be found in [6, 8, 13, 14, 29, 32].
Critical problems involving nonlocal operators creat many difficulties in applying variational methods.
These come from the fact that the embedding Hé(Q) < L%(Q) is not compact and thus the Palais-Smale
condition fails. To overcome the difficulties brought, many authors used the concentration compactness
principle due to Lions [24, 25], we refer to [3, 16, 17, 23, 28, 31] for more details. In a recent paper [19], D.S.
Kang has established a variant of concentration compactness principle related to critical elliptic systems,
which is based on the ideads by P.L. Lions [24, 25]. This result is very useful for the study of the existence
of solutions for critical elliptic systems, see further the papers [20, 21] for the local case. In this paper,
motivated by [16, 19-21] and the ideas introduced in [1], we study the existence of positive solutions for
Kirchhoff type system (1) with critical growth. It should be noticed that we don’t need any conditions on
the Kirchhoff function M(t) except for the boundedness from below on [0, +o0) as stated in (My). So, our
situation introduced here is different from those presented in [3, 17, 18]. We also refer the interested readers
to some results [23, 28, 31] in which the authors considered the problem in the special case M(t) = a + bt,
a > 0and b > 0. By the condition (M), the Kirchhoff function M(t) may be unbounded. For this reason, in
order to apply the concentration compactness principle by D.S. Kang [19], we need a truncation on M(t) as
in (3). Then, an existence result for system (1) is established by using the mountain pass theorem due to A.
Ambrosetti and P.H. Rabinowitz [4].

We assume that F € C1(QXR? R), VF = (F,, F,), Fi, Fy : QX R? > R are continuous functions satisfying
the following conditions

(Fo) F(x,s,t) = Fs(x,s,t) = Fi(x,s,t) =0a.e. x€e Qforalls <0ort <0;

. VE(Gs, . :
(F1) im0 | I((sft)sl 9 = 0 uniformly in x € Q;

. VE . . .
(F2) limygs o0 ||(s,(t))6|,‘75‘,?| = 0 uniformly in x € Q, where g € (2,2°);

(F3) There exists 0 € (2,2*) such that
0 < OF(x,s,t) < Fs(x,s,t)s + Fy(x,s,t)t, ¥YxeQ, s,t>0.

1
Let H;(Q) be the usual Sobolev space with respect to the norm |ju|| = ( fQ [Vul? dx) ? SetH = Hj(Q)xH(Q).
Then H is a Hilbert space with respect to the inner product

(w1, wo)y = f(VmVuz +VoiVoo)dx, Ywi = (u,v1), w2 = (up,v2) €EH
0
and the norm )
2
llwl|g = (f [Vul? + [Vo]? dx) , w=(uv)eH.
Q

Denote by S, the best constant in the embedding H < L"(Q)) x L"(Q), that is, S,||wll xrr@) < llwlly for all
w e H.

Definition 1.1. We say that (u,v) € H is a weak solution of system (1) if

M (Jlul?) fQ VuVe dx + M (|[o|?) fg VoV dx — A fg (Fu(x, 1, 0)@ + Fy(x, u, 0)) dx

2 a-2,1 16 _2_ﬁf ap, -2 _
“+ﬁjg;|u| ulolPp dx P QIul [P oy dx = 0
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forall (p, ) € H.
The main result of this paper can be stated as follows.
Theorem 1.2. Assume that (M), (Fo)-(F3) are satisfied. Then, there exists A* > 0 such that for all A > A*, system
(1) has a positive solution. Moreover, if (1), v,) is a solution of system (1) then limy_, 4o (11, v2)llz = O.
2. Proof of the main result

Here we are assuming, without loss of generality, that the Kirchhoff function M(t) is unbounded.
Contrary case, the truncation on M(t) is not necessary. Since we are intending to work with N > 3, we shall
make a truncation on M as follows. From (M), given a € R such that my < a < gmo, there exists ty > 0 such
that M(tg) = a. We set

Mt o= {M(t), 0<t<t, o

a, t2 hy
From (Mj) we get
M,(t) <a, Yt>0. 4)

As we shall see, the proof of Theorem 1.2 is based on a careful study of the solutions of the following
auxiliary problem

-M, (fQ [Vul? dx) Au = AF,(x,1,0) + 2% |u|*2ulolf in Q,

a+f
M, ([, IVof dx) Ao = AF,(x, u,0) + Zglulfof 20 in Q, 5)
u=v=00ndQ,

where f,N, a, B, A are as in Section 1. We shall prove the following auxiliary result.

Theorem 2.1. Assume that (M), (Fo)-(F3) are satisfied. Then, there exists Ag > 0 such that for all A > Ay and all
a € (my, gmo), system (5) has a positive solution.

From the hypothesis (Fy) and we intend to find positive solutions, we recall that (#,v) € H is a weak
solution of system (5) if

M, (1lul?) f VuVe dx + M, (|lo|?) f VoV dx — A f (Fu(x, 1, 0)¢ + Fy(x, u,0)p) dx
Q Q Q
2
a+p Ja

for all (¢, ) € H, where u, = max{0,u} and v, = max{0,v}. Hence, we shall look for positive solutions of
(5) by finding critical points of the C!— functional I, : H — R given by the formula

2 _
uto o dx - ﬁ fQuivﬁ lzn,b dx=0

I PP P, 2
foa,0) = 35 1)+ 57 (100F) =1 [ Femords— 2 [ wyroyas
where ZVI(t) = fot M(s) ds. Note that

I, ,(1,0)(@, ) = My (Ilul?) fQ VuVe dx + M, (|lo|P?) L VoV dx

2 -
—)\f(Fu(x, u, )@ + Fy(x, u, 0)¢) dx — _2a_ f uso o dx - P fuivﬁ 101/) dx
Q a+pJo Q

a+p
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for all (¢, ¢) € H. Moreover, if the critical point is nontrival, by maximum principle, we conclude that it is
a positive solution of the system.
We say that a sequence {w,} C H is a Palais-Smale sequence for the functional I, 1 at level ¢ € R if

Lip(wy) = cand I} , (wy) — 0in HY,

where H* is the dual space of H. If every Palais-Smale sequence of I, 5 has a strong convergent subsequence,
then one says that I, ) satisfies the Palais-Smale condition ((PS) condition for short).
In our arguments, we need the following useful result which helps us to overcome the nonlocal case.

Lemma 2.2. Let Q ¢ RN, N > 3 be a domain (not necessary bounded). Fork,1 >0, a,p>1, a+p <27, let us
denote

J, IVl + 11VoP) dx

gkl —
2
(J luteolf dx) ™"

@B (wo)eH\(0)

(6)

Then we have

B a
s o]

where S is the best Sobolev constant, that is,

2
Sep= inf fQ|Vu| dx
a+p —

HEHU(Q)\[O} (fQ |M|a+ﬁ dx) a+p

Proof. The proof of Lemma 2.2 is similar to [1, Theorem 5]. For the reader’s convenience, we present it here
in details.

We first observe that S, is well defined since the embedding Hé(Q) — LY"Q) 2 <a+p <2)is
continuous. Moreover, since

04
ul*[off < ——[u|**F + F [o]**F < |ul**F + o+
[04

+p a+p

and
KVul? + [[Vol* > min{k, I} (|Vu|2 + |Vv|2)

the number S’;”’ is well defined.

Consider {y,} a minimizing sequence for S,,4. Let s, t > 0 be chosen later. Taking u,, = sy, and v, = ty,
in the quotient (6) we have that

ksz+lfz‘ Jo [yl dx _ > ©)
(s*th) 7 ( [yl dx)m wp
Observe that
ks + 12 _ k(g)ffﬁ +l(§)a3‘é
(Satﬁ)ﬁ t t

and define the function .
=2a
g(x) = kx=f +Ixa%, x> 0.
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A simple computation shows that the minimum of the function g at point x = ,’(—‘; with minimum value
5 (g
N 8 a a+
g ) s () L (B)7
kp B a

Choosing s and t in (9) such that = ,’(% we deduce that

b _a
g
Pl (L desay™ "

B a_
R

To complete the proof, let (u,,v,) be a minimizing sequence for Sl;lﬁ Define z,, = s,v, for some s, > 0 such

that
Llunl""'ﬁdx:jg;lznlwﬁdx. (11)

By Young’s inequality,

and hence,

a P
Jca+p [ a+p

p

(04
IunI‘H'B + _Iznlaﬂg

+p a+p

|Mn|a|zn|ﬁ <

and (11) it implies

( f ITHLENC dx) < ( f | dx) - ( f lzal**F dx) : (12)
Q Q Q

Using (12), we have

J, V2 + V0, %) dx _ S% J, V2 + 11Vo,?) dx

(fQ 1[0y, |P dx)“%ﬁ " (fg 212, dx)“zTﬁ

2 [Vu,|? dx 2 [Vz,|? dx
> ks, —fQ + [s2*F s‘z—fQ

( f0|u,q|oc+ﬁdx)ﬁ C ( fQ|zn|a+ﬁdx)“%ﬁ
Zg(sn)swrﬁ

and hence,

(klvun|2 + llvvnlz) dx l
b 2o i [ (13)
(e lenl ol )7

Passing to the limit in (13) we obtain

B a_
Kl o B a a+p ﬁ a+p
Syp > kFTIT [(E) + (E) ]SMﬁ. (14)

From (10) and (14), the proof of Lemma 2.2 is completed. O
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From Lemma 2.2, using the arguments as those presented by D.S. Kang [19, Theorem 1] we obtain the
following result.

Lemma 2.3. Assume that Q C RN, N > 3 is a bounded smooth domain, k,1 >0, o, > Land a+p = 2* = 5. Let
{(n, vn)} = (u,0) in H, {kIVuy|* + |V, |} = kKIVul? + [[Vo? + p and |u,|*o,f — [ul*lof + v as n — oo, where p
and v are nonnegative bounded measures on RN. Then there exist an at most countable set | and families {x}je; € RN
and {pj}jey, (vj}jey C [0, +00) such that

/JZZ‘u]ﬁxj, V=Zvj6xj, v S];lﬁﬁyj, Vie],
j€l jel
where by, is the Dirac mass at x; € Q and Sﬁ’,’ﬁ is given by Lemma 2.2.

Lemma 2.4. For all A > 0, there exist positive constants p and r such that I, \(w) > r > 0 for all w € H with
llwlle = p
Proof. From (F;) for each € > 0, there exists 0 > 0 such that
[VE(x,s, t)| < €l(s, t)| for all |(s,t)| < 6 and all x € Q. (15)
On the other hand, from (F;), there exists C; > 0 such that
IVF(x,s,t)] < C1(1 + (s, £)]""!) for all (s, t) € R* and all x € Q. (16)
From (15) and (16), for each € > 0, there exists a constant C. > 0 such that
IVE(x, s, )] < €l(s, t)| + Cel(s, )" for all (s, t) € R?* and all x € Q. (17)
Hence,
|F(x,s, )| = |F(x,s,t) — F(x,0,0)|
= |VF(x, 01s, 02t) - (s, 1)l
< |VF(x, 015, 0210)|I(s, )|
< €l(s, b + Cel(s, DI

(18)

for all (s, t) € R? and all x € Q, where 0; € (0,1) and Ee is a positive constant.
From (18) and (M), for all w = (u,v) € H, we get

Ion(@) = 58 (JulP) + 55, (JolP) - A fQ Pl u0)de - fQ (1) (@) dx

[\

Mo, w2, Moy 2 2
5 Il + =2l - A fQ (€lts, 0)F + Cel(u, 0)17) dx

z*(si)z (f (P + V<) dx)z

Mo ) — 2 o
TIIWIIH — AeSy?lwllf; = ACS,"|lwllf, - — Iz T llewlly;-
a,f

v

For A >0, lete = f,weget

my 2 — 2 o+
Lip(w) > ZIIWIIH — ACS Nl — — 7 Ilwllf;
* ’ 7
a,p

2 .
= Il ||H{ ~ A, Ml - —= T||w||%,-2].
(i)
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Since 2 < g < 27, there exist positive constants p and r such that I,,(w) > r > 0 for all w € H with
lwlly =p. O

Lemma 2.5. Forall A > 0, there exists e € H with I, ,(e) < 0 and |le||lg > p.

Proof. Fixs,t > 0and x € Q. For 7 > 79 > 0, from (F3), we get

d
d—TF(x, s, tt) = sFs(x, s, tt) + tFi(x, Ts, Tt)

1

= o (tsFs(x, ts, tt) + TtF(x, T8, Tt))
0

> ;F(x, Ts, Tt),

which gives
%F(x, Ts, Tt) S Q
F(x,ts,tt) — 1’

Hence, integrating the above inequality from 7 to T implies that

In F(x, ts, tt) — In F(x, 795, Tot) > In7% — In ’Cg

or
F(X, s, Tt) ’T.'g
= 7 It > 0, ’ Q.
70 ~ F(x, tos, T0t) )/(x 5 ) Vs, t >0and x €
Thus, we obtain
F(x, s, 78) > y(x,5,8)t%, V¥s,t>0and x € Q. o

Fix wo = (1o, v0), to, vo € Cy’(Q)\{0} with 1 > 0 and v > 0 and [[ug|| = [lvo|| = 1. Using (4) and (19), for all
7 > 0 large enough, we have

1~ 1-—~
I (Tug, T09) = =M, (lITuoll) + =M, (lltvoll?) = A | F(x, tuo, Too) dx
2 2 0
- ﬁL(Tuo)“(wo)ﬁ dx
<a12—/119f (x, ug, vo) dx — 2e7 fu"‘vﬁdx
hSS QV s, 10, 00 Oé+‘8 o 0“0 .

Since 0 > 2, the result follows by considering e = 7.w for some 7, > 0 large enough. [

Using a version of the Mountain pass theorem due to Ambrosetti and Rabinowitz [? ], without (PS)
condition, there exists a sequence {w,} C H such that

IoyA (W) = Cap, I;/A(w,,) —0asn — oo,

W] 1ere
C = inf max [ V(t
aA yer te[0,1] E'A( ( ))

and
I'={yeC(0,1] H) : y(0) =0, La(y(1)) <0}.

Lemma 2.6. It holds that

lim Ca ) = 0.
A—>+00
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Proof. Since the functional I, has the Mountain pass geometry, it follows that there exists t; > 0 ver-
ifying I, A(faowo) = maxeso lo 1 (twp), where wy = (ug,vg) is the function given by Lemma 2.5. Hence,
L1, (tawo)(tawo) = 0 or

0 = M, (lltauolP) f

Vtruo dx + M, (lIE220lP) f VErool? dx
Q

Q

-A L(Pu(x, tatg, tAvo) AU + Fu(x, tatg, tAT0)EA D) dX — Zti* fQ ugvg dx.

Hence,
28 M, (It = A L (Fulx, tatto, trvo)tauio + Fo(x, tatlg, tr0o)trvo) dx + 25 fQ ugvfj dx. (20)

From (4), (20) and (F3), we get
a> tf‘zf ug‘vg dx,
Q

which implies that {t,} is bounded. Thus, there exist a sequence A, — +o0 and t > 0 such that th, — t as
n — oo. Consequently, there is C; > 0 such that

5 Mo(t; ) <Cy, VYneN,
and Vn € N,

A L(Pu(x, £, U0, £1,00)EA, Uo + Fu(x, ta, o, tr,00)Er, Do) dX + Zti L ugvg dx < C,. (21)
If £ > 0, by (17) and the Dominated Convergence Theorem,

lim (Fu(x, t,\”uo, l’)\nvo)t/\n Uy + Fv(x, t,\nug, t)\nvo)t)‘nvo) dx

n—.oo Q
= f(Fu(x,fuo,fvg)Euo + PU(X,EM(),EU())EU()) dx
Q

and thus (21) leads to

n—oo

lim (/\n f(Fu(x, t)\nuo, i'/\”U())t)\nLlO + Fv(x, t)\nuo, i’,\ﬂl)o)t/\nvo) dx + 21'%*” f ug‘vg dx) = +o09,
Q Q

which is an absurd. Thus, we conclude that t = 0. Now, let us consider the path y.(t) = te for t € [0,1],
which belongs to I', to get the following estimate

0 < o1 < Maxloa(ye() = Lua(taiwo) < M5y
In this way,
/\l—i}}—‘loo M(ti) =0
which leads to limy 100 czp =0. O
Lemma 2.7. Let {wy,} = {(uy, v,)} C H be a sequence such that
I a(wy) = can, I;,A(wn) —0asn — oo. (22)

Then {w,} is bounded.
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Proof. Assuming by contradiction that {w,} is not bounded in H, up to a subsequence, we may assume that
lw,llg — +00 as n — oo. By (22), (My), (F3) and i—‘(’) < 0 < 2*, we deduce that for n large enough,

1+ con + |lwalle

1,
> [y (wy) — élgl/\(wn)(wn)
1- 2 1~ 2 2 a B
= =Mu(llunll”) + sMa(loall) = A | F(x, uy,vp)dx = o2 | unloal” dx
1 1
= Ma(llw?) f IVt dx = = Ma(llonl”) f Vo, dx
Q Q
A 2 “
+ — (Fu(x, Uy, U)Wy + Fu(x, uy, vy)v,) dx + 3 [t *[0,|P dx
Q

2 (% - 5)(”“11“2 + ”vn“ )— % f (Fux, Uy, gty + Fo(x, thy, 0)0y — OF(x, Uy, 0y)) dx

5—5 flunl o,lf dx

g
> (2 - 5 ) lwulfy - Cs,

where C; is a positive constant. Therefore, the sequence {w,} is bounded in H. [

Proof. [Proof of Theorem 2.1] From Lemma 2.4, we have

lim ¢,p =0. (23)

A—+00

Therefore, there exists Ay > 0 such that

- G ¥
ap
Ca) < (6 2*)[ > ] ’ (24)

for all A > Ag, where S’;lﬁ is given by (7). Now, fix A > Ay and let us show that system (5) admits a positive
solution. From Lemmas 2.4 and 2.5, there exists a bounded sequence {w,} = {(u,, v,)} C H verifying

IoA(@n) = op, I, (w,) = 0asn — oo, (25)

Since ||w,,||H ll2,|% + |[v,] 12, the sequences {u,} and {v,} are bounded in Hl(Q) Hence, up to subsequences,
there are a, fo > 0 such that
[[nll = a0, lloall = Boasn — oo.

Since M,(t) is a continuous function, we obtain
Ma(llital?) = Ma(ag) > 0, Ma(l[oall) — Ma(B5) > 0 as n — co. (26)

Assume that {w,} = {(u,,v,)} converges weakly to w = (4,0) € H. We claim that [|u,|* — |Jul* and
l[0all> = [[v]* as n — oo, which imply that 1, — u and v, — v in Hj(Q)) as n — oo, and then we conclude
that w = (u, v) is a nontrival solution of problem (5). Indeed, assuming the claim and using the fact that I,
is C! we obtain

Io 2 (wy) = Ip 2 (w) and I;,A(wn) - I;,/\(w)

and so letting n — oo,
I, 2(w) = ¢z 1 and I;,A(w) =0
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This means that the result follows.

In order to prove the claim, choosing k = M, (ag) >0and ! =M, (ﬁ%) > 0, taking a subsequence, we may
assume that

Mo(02)|Vitn? + My(B2)Vou > — My(a?)|Vul® + Ma(B2)IVol? + g, o
it oalf — [0l + v,

in the weak*—sense of measures, where u and v are nonnegative bounded measures on RN. Using Lemma
2.3, we obtain an at most countable index set |, two families {x;};; C RN and {v i}ies C [0, +00) such that

2 .
v=Y vide, @2 Y pdy, SSvT <w, Vie], (28)
j€l j€l

where 6y, is the Dirac mass at x; € Q and

/)’ a
Sl[(xl,lﬁ = M, (a5)M, (B)) [(E) + (g) ] Sa+p- (29)

Now, we claim that ] = 0. Arguing by contradiction, assume that | # 0 and fix j € J. Consider
$; € C2(Q,[0,1]) such that ¢; = 1 on B1(0), ¢; = 0 on Q\B,(0) and [V¢hjle < 2. Defining ¢;e(x) = ¢j(==2),

€

where € > 0 we deduce that the sequence {¢p;cw,} = {(Pjcttn, Pjcvn)} is bounded in the space H. It then
follows from (25) that I , (w,)(¢jcw,) — 0 as n — oo, that is,

M, (IlunHZ)f unvunV(Pj,e dx + M, <||Un||2)f Unvvnv¢j,e dx
Q Q
= M, (|l |?) f jelVie P dx = My (llonl?) f eIV dx
Q Q
+A L(Fu(x/ Uy, vn)(Pj,sun + Fv(xr Uy, vn)(;bj,evn) dx
42 f il lonlPbe dx + 04(1)
Q
- - (M) +0,(0) [ @iV - (63 +0,(1) [ pilvon P
Q Q (30)
+A f (Fu(x, tn, 0n)Pjetin + Fo(X, tn, Un)Pjevn) dx
Q
+2 f 1l 10alP D dx + 04(1)
Q
- M) f@ & 3elVinl? dx — My(B2) fQ ¢3¢l Vou P dx

+A f(Fu(x, Up, Un)Pjetin + Fo(X, Un, 0n)Pjevn) dx
Q

+ 2f [1al* [P e dx + 04(1).
Q

Since the support of ¢je is By(x;), using the Holder inequality and the boundedness of the sequence



N. T. Chung / Filomat 33:1 (2019), 267-280 277

{wy} = {(uy,v,)}, we have

f Uy Vi, Vpje dx f Uy Vi, Vpje dx
Q BZE(X/)

< f lunVu, Vel dx
BZE(Xi)

L 3
< (f Ve, dx] (f 1 Vel dx]
Bzg(x]') BZe(xj)

1

2 31
<G f |un|2|V<¢>,-,s|2dx) G
BZe(xj)

1 1
2 N
<GCs f [uul? dx] (f Iquj,elN dx]
Boe(x;) Bae(x)
_ ¥
<G| [ wP dx]
Boe(x;)

—0asn > ooand e — 0.

From (31) and the fact that M,([|u,*) = M,(a?) as n — co we have

lim M, (Jlu?) f U, VitV dx = 0. (32)
n—oo0, €0 Q

Similarly, we have

lim M, (|lo.l?) f 0, V0,V dx = 0. (33)
n—o0, €0 Q
On the other hand, by (F;) and the boundedness of the sequences {u,}, {v,} in Hé(Q) we also have

Lim | (Fu(x, ttn, 00)Pjetin + Fo(x, thn, 04)Pje0y) dx = 0. (34)

—00
n Q

From (30)-(34), letting n — oo, we deduce that

2deZf¢j,ed}l+05(1)-
Q Q

Letting € — 0 and using the standard theory of Radon measures, we conclude that 2v; > u;. Using (28) we

have
G g
a,p
Vi —{ > J ’ (35)

where S';',lﬁ is given by (29).
Now, we shall prove that (35) cannot occur, and therefore the set | = (. Indeed, arguing by contradiction,

k1 \ 2
ap

let us suppose that v; > ( 5 ) for some j € J. Since {w,,} = {(u,, v,)}is a (PS),,, for the functional I, 5, from
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the conditions (F3) and (My), and mg < a < gmo we have

ST @)@,) + 0,(1)

1- 1 1
> EMH(IIunII )+ _Ma(”Un”z) - —Ma(llun||2)||un||2 - gMu(”UnHZ)”Un”z

Ca ) = Iu,)\(wn)

+ =5 f Iunlalvn|ﬁ dx +0,(1)
(36)

\%

M _a 2 £_Z p
(2 )(Ilunll + [[ogl* )+ 9 > flunl [0,]F dx + 0,(1)

IV

=T A f |un|a|vn|ﬁ dx +0,(1)

IV

AT Ae f |un|a|vn|ﬁ¢]e dx + On(l)

2 2
>[= - = .
2 (5 2*)f@¢f'€dv
and then

2 2[5 :
=
which contradicts (24). Thus, | = 0 and it follows that
lim f 1|0, dx = f [ul*[olf dx. (38)
= Ja Q

We also have u,(x) — u(x) and v,(x) — v(x) a.e. x € Qasn — oo, so by the condition (F;) and the Dominated
Convergence Theorem, we deduce that

Letting n — oo in (36), we get

lim (F (x, ty, )ty — Fy(x, u,0)u) dx = 0. (39)
Similarly,

lim (F (x, uy, vy)vy — Fo(x, u,v)v)dx = 0. (40)

n—oo

Combining (38)-(40) with the fact that I A(un, 0,)(uy,0) = 0and I’ A(un, v,)(0,v,) = Oasn — oo we get

tim M (|l 2) el = A f Fu, o) dy + — f julol’ dx, (41)
n—oo Q o+ .B Q

: 2 2 Zﬁ

tim M, (loalP?) lloal® = A | Fo(x,u,0)vdx = |u|a|v|ﬁ dx. (42)
n—o0o Q

On the other hand, by (25), for (¢, ) € H, I’ A(un,v,,)((p, 0) —0and I’ A(un,vn)(O ) = 0asn — oo, that is,

2a _
Ma(llunllz)fQVunV@dxzALFu(x,un,vn)wdHm |l 2unlonlPep dx,

M, (IloalP?) f Vo,Vipdx = A f Fu(X, thy, 0,)0 dx + f it [0 P20, dx.
Q Q Q

2p
a+p
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By (17) and (26), using Dominated Convergence Theorem, we reach

2a

ul*2ulolPe dx,
g el

M, (aé)f VuVedx = /\fPu(x,u,v)(pdx+
Q Q

2
M, (82) L VoVipdx = A fo Fu(x, u, o) dx + a—fﬂ fg ul* ol 2o dx, (p,9) € H

and so
20
M, (@) |ul? = A f Fo(x,u,0)udx + —— | [ul*/o)f dx, (43)
( 0) Q a+p Ja
M, (.32) ol = A f Fo,(x,u,v)vdx + 2—5 [ul*v]f dx. (44)
0 Q a+p Ja
Now, using (41)-(44) we get
Mo (1lealP) Nt = M (@) 1l Mo (loal?) lfonl* — M (83) l10] as n — co. (45)

From (26) and (45) we conclude that |[u,||> — |[u||* and |[v,|[* — |[o||* as n — oo. This completes the proof of
Theorem 2.1. [

Now, we are in the position to prove Theorem 1.2.

Proof. [Proof of Theorem 1.2] Let A be as in Theorem 2.1 and, for A > Ay, let wy = (u;,v4) € H be the
nontrival solution of problem (5) found in Theorem 2.1. We claim that there exists A* > Ay such that
luall> < to and |[val> < to, for all A > A*. If this is the case, it follows from the definition of M,(t) that
M, (lluall®) = M(lluall?). Thus, wy = (uy,v,) is a weak solution of problem (1).

We argue by contradiction that, there is a sequence {A,} C R such that A, — +c0 as n — oo and either
llu, I> = to or |[va, || = to. Then we have

1 1 1 1
Cat, 2 EMa(””/\nHZ) + EMa(”U/\nnz) - éMa(“”/\,,HZ)“”/\n”z - 5Ma(||mn||2)||0A,,||2

> (52 = 2 (I, P + o, ) (46)
my a

>= - =

‘( 2 e)to’

which is a contradiction since lim,,,« ¢, 1, = 0 and a € (my, gmg).

Finally, we shall prove that lim, 1« ||| = limj— e [|01]] = 0. Indeed, by (M) and the fact that |[u;|[*> < ¢,
and |[va|* < to, it follows that M(||u,||*) < M(to) = a and M(||vAll*) < M(to) = a. Hence, using (M) and (F)
we have

1- 1-— 1 1
Cap 2 EM(IIuAIIZ) + EM(HUAHZ) - 51\/I(Iluallz)llu;\ll2 - 51\/I(II?JA||2)IIZmlI2

My 2 mo 2 a 2 a 2
> - - — - —
> Pl + =P loall = gl = Sl 47)
_ (Mo a 2 2
—(—2 6)(||uA|| +lloall?).

Using Lemma 2.5 again we have that lim) e csn = 0. Therefore, it follows since a € (my, gmo) that
limj 40 lJuall = imyo 40 [[0al] = 0. The proof of Theorem 1.2 is now completed. [
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