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Abstract. We find a sufficient condition for the category of entwined Hom-modules to be monoidal.
Moreover, we introduce morphisms between the underlying monoidal Hom-algebras and monoidal Hom-
coalgebras, which give rise to functors between the category of entwined Hom-modules, and we study
tensor identities for monodial categories of entwined Hom-modules. Finally, we give necessary and

sufficient conditions for the general induction functor from jféz((///k)(yb)fl to jf?,;(J//k)(yb’)g: to be separable.

1. Introduction

Entwining modules were introduced in [1], which arise from noncommutative geometry, are modules of
an algebra and comodules of a coalgebra such that the action and the coaction satisfy a certain compatibility
condition. Unlike Doi-Hopf modules, entwined modules are defined purely using the properties of an
algebra and a coalgebra combined into an entwining structure. There is no need for a “background”
bialgebra, which is an indispensable part of the Doi-Hopf construction. Entwining modules are more
general and easier to deal with, and provide new fields of applications. It is well-known that entwining
modules unify modules, comodules, Sweedler’s Hopf modules, Takeuchi’s relative Hopf modules, graded
modules, modules graded by G-sets, Long dimodules, Yetter-Drinfeld modules and Doi- Hopf modules [4].

Hom-algebras and Hom-coalgebras were introduced by Makhlouf and Silvestrov in [16] as generaliza-
tions of ordinary algebras and coalgebras in the following sense: the associativity of the multiplication is
replaced by the Hom-associativity and similar for Hom-coassociativity. They also described the structures
of Hom-bialgebras and Hom-Hopf algebras, and extended some important theories from ordinary Hopf al-
gebras to Hom-Hopf algebras in [17] and [18]. Recently, many more properties and structures of Hom-Hopf
algebras have been developed, see [5], [6], [7], [8], [9], [10], [12], [14], [20] and references cited therein.

Caenepeel and Goyvaerts studied in [3] Hom-bialgebras and Hom-Hopf algebras from a categorical
view point, and called them monoidal Hom-bialgebras and monoidal Hom-Hopf algebras respectively,
which are slightly different from the above Hom-bialgebras and Hom-Hopf algebras. In [15], Makhlouf
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and Panaite defined Yetter-Drinfeld modules over Hom-bialgebras and shown that Yetter-Drinfeld modules
over a Hom-bialgebra with bijective structure map provide solutions of the Hom-Yang-Baxter equation.
Also Liu and Shen [13] studied Yetter-Drinfeld modules over monoidal Hom-bialgebras and called them
Hom-Yetter-Drinfeld modules, and shown that the category of Hom-Yetter-Drinfeld modules is a braided
monoidal categories. Chen and Zhang [7] defined the category of Hom-Yetter-Drinfeld modules in a slightly
different way to [13], and shown that it is a full monoidal subcategory of the left center of left Hom-module
category. We have defined in [9] the category of Doi Hom-Hopf modules and we prove there that the
category of Hom-Yetter-Drinfeld modules is a subcategory of our category of Doi Hom-Hopf modules.

As a generalization of entwining modules in a Hopf algebra setting, entwined Hom-modules were
introduced by Karacuha [11]. It is natural to ask the following question: can we prove a Maschke type
theorem for entwined Hom-modules under more general assumptions? This is the motivation of this paper.

In this paper, we discuss the following questions: how do we make the category of entwined Hom-
modules into monoidal? We show in Section 3 that it is sufficient that (A4,) and (C,y) are monoidal
Home-bialgebras with some extra conditions. As an example, we consider the category of Doi Hom-Hopf
modules[9], which is well known to be a monoidal category, this category is a special of our theory.

In Section 4, we first give the maps between the underlying Hom-comodule algebras and Hom-module
coalgebras, which give rise to functors between the category of entwined Hom-modules. Moreover, we
study tensor identities for monodial categories of entwined Hom-modules. As an application, we prove
that the category of entwined Hom-modules has enough injective objects.

In Section 5, let (@, V) : (A, C, ) — (A’,C’,¢’) be a morphism of (right-right) Hom-entwining structures.
The results of [9] can be extended to the general induction functor

F: (M)W — A (M)W

In order to avoid technical complications, we will assume that the Hom-entwining map ¢ is bijective, and
write g1 = 9.

2. Preliminaries

Throughout this paper we work over a commutative ring k, we recall from [3] and [9] for some infor-
mations about Hom-structures which are needed in what follows.

Let C be a category. We introduce a new category s(C) as follows: objects are couples (M, u), with
M € C and py € Autc(M). A morphism f : (M,u) — (N,v) is a morphism f : M — N in C such that
vof=fopu

{et f//k ‘L(lienotes the category of k-modules. 7 (.#) will be called the Hom-category associated to .#.
If (M, u) € A, then p : M — M is obviously a morphism in J#(.#). 1t is easy to show that L%Fz(//lk) =
(M), ®, (1), a, 1, 7)) is a monoidal category by Proposition 1.1 in [3]: the tensor product of (M, 1) and
(N,v) in ;?(///k) is given by the formula (M, 1) ® (N,v) = (M ® N, u®v).

Assume that (M, u), (N,v), (P, ) € j?i(///k). The associativity and unit constraints are given by the
formulas

aunp((m®n) @ p) = pm) @ (nen” (p)),
Tu(x®m) =Fp(m@x) = xp(m).

An algebra in J#(.#;) will be called a monoidal Hom-algebra.

Definition 2.1. A monoidal Hom-algebra is an object (A, o) € j?’((//lk) together with a k-linear mapmy : AQA — A
and an element 14 € A such that
a(ab) = a(@)a(b);  a(la) =14,

a(a)(be) = (ab)a(c);  ala =1aa = a(a),

foralla,b,c € A. Here we use the notation ma(a ® b) = ab.
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Definition 2.2. A monoidal Hom-coalgebra is an object (C,y) € (M) together with k-linear maps A : C —
C®C, Ac) = cqy ® () (summation implicitly understood) and ¢ : C — k such that

A((©) = ylew) ® () e(y() =€),

and
7 Hew) ® com ® i) = com @) ® )Y ), el = elce)cay =y ()

forallc e C.

Definition 2.3. A monoidal Hom-bialgebra H = (H, a, m, n, A, €) is a bialgebra in the symmetric monoidal category

f?’(///k). This means that (H, a, m, 1)) is a monoidal Hom-algebra, (H, a, A, €) is a monoidal Hom-coalgebra and that
A and € are morphisms of Hom-algebras, that is,

A(ﬂb) = a(l)b(l) ® ﬂ(z)b(z),‘ A(lH) =1y®1y,

e(ab) = e(a)e(b), e(ly)=1y.

Definition 2.4. A monoidal Hom-Hopf algebra is a monoidal Hom-bialgebra (H, o) together with a linear map

S:H—-Hin jﬂiz(//lk) such that
S*xI=1+*S=ne, Sa=as.

Definition 2.5. Let (A, a) be a monoidal Hom-algebra. A right (A, a)-Hom-module is an object (M, u) € jﬂiz(///k)
consists of a k-module and a linear map u : M — M together with a morphism ¢ : M® A — M, p(m-a) =m-a, in

j’?(e///k) such that
(m-a)-a(b) = p(m) - (ab); m-14 = p(m),

foralla € Aand m € M. The fact that | € A (M) means that
uGm - a) = p(m) - a(a).

A morphism f : (M, u) = (N,v) in j?;(///k) is called right A-linear if it preserves the A-action, that is, f(m - a) =
f(m) - a. S (Mi)a will denote the category of right (A, a)-Hom-modules and A-linear morphisms.

Definition 2.6. Let (C,y) be a monoidal Hom-coalgebra. A right (C,y)-Hom-comodule is an object (M, i) € ,;iz(///k)
together with a k-linear map py : M — M ® C notation pp(m) = myg ® mp in J€ (M) such that

myojo) ® (Mo ® ¥~ (mpy)) = p™" (mpoy) ® Ac(mp); mygye(mpy) =y~ (m),
forall m € M. The fact that ppy € (M) means that

pm(p(m)) = p(mpoy) ® y(my).

Morphisms of right (C, y)-Hom-comodule are defined in the obvious way. The category of right (C, y)-Hom-comodules
will be denoted by H(M)C.

Definition 2.7. A right-right Hom-entwining structure is a triple (A, C, y), where (A, B) is a monoidal Hom-algebra
and (C, y) is a monoidal Hom-coalgebra with a linear map  : C® A - A® C such that p o (y @) = (f®y) o ¢
satisfying the following conditions:

@by ®c? = ayby @ y(y 1 (O")Y),
¢(C®1A) = 1xa®c¢,
ay ®ACY) = BB @) ® ()Y ®cpy ¥),
e(cw)alp = ¢(o)a.
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Over a Hom-entwining structure (A, C, 1), a right-right entwined Hom-module (M, p) is both a right (C,y)-Hom-
comodule and a right (A, B)-Hom-module such that

pm(m-a) = u(mp) - Plmp @ B (a))
= myp-pHa)y ® V(mﬁ]),

foralla € Aand m € M. };(///k)(yb)g will denote the category of right entwined Hom-modules and morphisms
between them.

A morphism between right-right entwined Hom-modules is a k-linear map which is a morphism in

the categories A (My)p and € (///k)c at the same time. .7 ()W) % will denote the category of right-right
entwined Hom-modules and morphisms between them.

3. Making the Category of Entwined Hom-Modules into a Monoidal Category
Now suppose that (4, f) and (C, y) are both monoidal Hom-bialgebras.

Proposition 3.1. Let (M, u) € %Z///@(gb)%, (N,v) € L%’}i(./%k)(lp)g. Then we have M ® N € L%";(///k)(lj/)g with
structures:
(men)-a=m-aqy®@n-ap),

Pyen (11 ® 1) = 1o} ® njo) @ Mgy
if and only if the following condition holds:
aayy ®apy ® cvad¥ = ay(1) ®ayp) ® (Cd)lp, (3. 1)

foralla € Aand c,d € C. Furthermore, the category C = E%FZ(///k)(lp)i is a monoidal category.

Proof. It is easy to see that M ® N is a right (A, f)-module and that M ® N is a right (C, y)-comodule.
Now we check that the compatibility condition holds:

pmen((m ®n) - a)
= (m-aq)po;® (1 -ag)po ® (m - aq))ny(n - ae)n
= gy BN )y @ gy - B @)y ® (rOmyy )y ()
mio) - B @)y ® njoy - B @ye) ® Y((mpyn)Y)
= (m®np) - B~ @)y ® y((mpynpy)?).

So M®N € (M) W)S.

Conversely, one can easily check that A® C € jf(///k)(#,)g, letm=1®candn =1®dforanyc,d € C
and easily get (3.1).

Furthermore, k is an object in j?(///k)(lp)g with structures:
x-a=¢ex(@x, px)=x®1c,

for all x € k if and only if the following condition holds:
ea@lc = e @y (10)), (3.2)

for alla € A. Then it is easy to get that (C = f?’(/@(@j, ®, k,E,T,?) is a monoidal category, where 2,17 are
given by the formulas:
aynp(men) ®p) = u(m) @ (e (p)),
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l~M(x ®@m) =rp(m® x) = xu(m),

for (M, 1), (N,v), (P, m) € C. O
We call G = (A, C, ) a monoidal Hom-entwining structure if G is a Hom-entwining structure, and A, C are
monoidal Hom-bialgebras with the additional compatibility relations (3.1) and (3.2).
If (A, C, ¢) is a monoidal Hom-entwining structure, then (A4, f) and (C,y) can be made into objects of

HMYWY)S.

Proposition 3.2. Let (A, C, ¢) be a monoidal Hom-entwining structure. On (A,p) and (C,y), we consider the
following right (A, B)-action and right (C, y)-coaction:

b-a=baand p'(b) = v(1c @ b) = B\ (by) ® 1%,
c-a = ealay)y(c¥) and p(c) = cay ® c).-
Then (A, B) and (C, y) are entwined Hom-modules.

Proof. We will show (A, ) € f%;’(///k)(gb)i, and leave the other statement to the reader. First, (4,p) is a
right (C, y)-comdule, since

(ids ® e)p’(b) = ec(12)B 1 (by) = ec(1o)p ™ (b) = b,

(B ®AP () = B(by) ® Ac(1?) = B2 (byy) ®1E B 1L = (0" (D) @ y )P’ (),
and
b~ (ap) @ ¥ (b)) = B (by)B " (ap) @ y(1L) = B (ba)y) ® Y(17) = o' (ba),

Thus (A, p) € H( M) W) o

Example 3.3. Let (H, o) be a monoidal Hom-Hopf algebra, (C,y) a right (H, a)-Hom module bialgebra, and that (H, «t)
acts on (C, y) in such a way that (C,y) is an (H, «)-Hom module algebra and (H, at)-Hom module coalgebra. Now let
(A, B) be a monoidal Hom-bialgebra and a right (H, a)-Hom comodule algebra such that the following compatibility
relation holds, for all a € A:

aqyo) ® Ayo) ® A ® (@) = ajo)) @ ao)e) @ ) @ A1)
We know that (H,A,C) is a right-right Doi Hom-Hopf datum in [9]], and we have a corresponding right-right
Hom-entwining structure (A, C, V). It is straightforward to check that (A, C, ) is monoidal.
4. Tensor Identities

Theorem 4.1. Given two Hom-entwining structures (A, C,y) and (A’,C’, "), suppose that two maps ® : A — A’
and ¥V : C — C’ which are respectively monodial Hom-algebra and monodial Hom-coalgebra maps satisfying

Day) ® W(c¥) = Pa)y ® V(0)¥',
then the induction functor F : e%ﬂz(//lk)(lp)g — 5%7(//11()(1/}’)%, defined as follows:
F(M)=M®4 A,
where (A’, B’) is a left (A, B)-module via ® and with structure maps defined by
(m®ad') -V = u(m) @ a7 V), (4. 1)
pro(m @4 a') = myg ®4 (B (@))y & Wy~ (mp)?"), 4. 2)

foralla’, b € A’ and m € M.
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Proof. Let us show that M ®4 A’ is an object of 4.7 (.#)(H')C . It is routine to check that F(M) is a
right (A’, ’)-module. For this, we need to show that M ®4 A’ is a right (C’, y’)-comodule and satisfy the
compatible condition, for any m € M and a’, b’ € A’, we have

pran(u(m) ®4 a'p'~1 (b))
= p(mpy) @4 (B~ @B V) ® Wim)

= [m ®a (B (@))y ® Yy (mu)? )b’
= prap(meaa’)lt’,

pran((m®aa’)-b')

i.e., the compatible condition holds. It remains to prove that M ®4 A’ is a right (C’, y")-comodule. For any
meManda € A’, we have

(Pravy ® idc ) prany (M ®4 ")
= (praw ®idg)(my; @4 (B (@))y ® Wy (mp)?"))
= myy0) ®4 (B'72@))yrer ® V(o (myo)?”) @ W~ (mp)?)
= [m ®a (B @)y ] ® Yy (mpm)?) @ Wy~ (mpe)?)
= mp ®a (B @)y @Y mp)Y )y © W )
= (idrar) ® Ac)prony(m ®4 '),

and
(idrony ® €)prony(m ®@a a’)
= (idpon) ® €)(myo) @4 (B @)y @ Wy~ (mp)?))
= m®ad,
as desired. This completes the proof. ]

Theorem 4.2. Under the assumptions of Theorem 4.1, we have a functor G : E}Fiz(//lk)(lp’)g, — ,%F;(//lk)(z/})g which
is right adjoint to F. G is defined by

G(M') = M'ocC,

with structure maps

(m' ®c)-a=m'-B(a)y @), 4. 3)
peany(m’ ®c) = p' = (m") ® cay ® y(c), 4. 4)
foralla € A.

Proof. We first show that G(M’) is an object of %?%@(1/))2. It is not hard to check that G(M’) is a right
(A, B)-module. Now we check that G(M’) is a right (C, y)-comodule and satisfy the compatible condition.
Forany m’ € M’ and a € A, c € C, we have

poary((m’ ®c)-a) = pgaw(m’ - @)y ® y(c?))
= wm') B 2ay) @ y(c)ay ® y(r(c¥)e)

= (u'm)@cyy®y(ce)a
= pcory(m’ ®ca,

i.e., the compatible condition holds. It remains to prove that M'O¢ C is a right (C, )-comodule. For any
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m' e M’ anda € A, we have

(pcawr) ® ide ) peaur) (M’ @4 c)
= (poom) ®ide)(u' ™ (m') ® cay ® ¥(c))
= Wm) @ cayn ® Y(cayw) ® ¥ (ce)
= Wm) @y ea) ® Y(cpm) ® V(o)
= Wi m) ®ca) ® [ylcm) ® Y(cp)]
= (idcow) ® Ac)pcau)(m’ ®c),
and
(idcom) @ &)pean(m’ ®c)

= (ideor) ® €)'~ (m") ® cay ® y(c2))
= [.1'_1(111,) ® C(l)é'(C(z)) ®lc=m'®c,

as required.
GM') e 7 (///k)(lp)f;; and the functorial properties can be checked in a straightforward way. Finally, we

show that G is a right adjoint to F. Take (M, u) € t%’z(///k)(lp)g, define ny; : M — GF(M) = (M ®4 A”)OcC as
follows: for allm € M,
nM(m) = mjo] ®a 14 ® mp].

It is easy to see that ny € %J/Zk)(tp)g. Take (M’, 1) € %%k)(lp,)g,, define 6y : FG(M’) — M’, where
om((m' ®c)®aa’) = ec(c)y’(m’) - a’,

It is easy to check that 6y is (A, f)-linear and therefore 6pr € jg(//lk)(gb’)g:. We can also verify 1 and 6
defined above are all natural transformations and satisfy

G(Om) o ey =1, Orguy o F(nm) =1,

for all M € (M) ()G and M’ € (M) (Y')S,- And this completes the proof. mi

A morphism (®, W) between two monoidal Hom-entwining structures is called monoidal if ® and W are
monoidal Hom-bialgebra maps. We now consider the particular situation where A = A’ and @ = I4. The
following result is a generalization of [4].

Theorem 4.3. Let (I4, V) : (A, C,¢) = (A, C’',y") be a monoidal morphism of monoidal Hom entwining structures.
Then

G(C) =C. (4. 5)

Let (M, u) € %FZ(///;()(IP)S;; be flat as a k-module, and take (N,v) € jpiz(///k)(l/}’)g. If (C,y) is a monoidal Hom-Hopf
algebra, then

M®G(N) = G(F(M)® N) in %/fk)(ll})g. 4. 6)
If (C,y) has a twisted antipode S, then
G(N)® M = G(N ® F(M)) in (M) W)S. (4.7)

Proof. We know that ec®idc : C’'OcC — Cisanisomorphism; the inverse map is (W®idc)Ac : C — C'OcC.
It is clear that e ® idc is (A, B)-linear and (C, y)-colinear. And this prove (4.5).
Now we define the map

I:M®GN)=M®e NocC) — GEM)® N) = (F(M) ® N)dc G,
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which is given by
I'(m® (n; ®c;)) = (o] ® n;) ® myyc;.

Recall that F(M) = M as an (A, f)-module, with (C’, y’)-coaction given by
pran(m) = oy @ W(rmpy).
(1) T is well-defined, we have to show that
I'(m; ® (n; ®c;)) € (F(M) ® N)o.C.
This may be seen as follows: for any m € M and n;0c.c € NOcC, we have

(ProeN ® idc)((myo ® 1) ® mpci)
= (moj01 ® 1igop) ® W(mpojp)niy ® mpci
((mpon) ® v(ni)) @ W (o) W(cin) ® ¥~ (mpicie)
(myo) ® 1;) ® [Pp(myoy1)) W(cir)) ® my1ci)]
(idranen ® po)((mpg) ® 1;) ® mc;).

(2) I'is (A, )-linear. Indeed, for any a € A,m € M and n;0cc € NOcC, we have
[(m® (n;®ci))-a)
= T(m-aq)® ;- @)y ® V(C:P)))
= (mpor- B @) @ 1i- B @) ® Y y(E)
= (myy - B (ay) ® ni - B @y) ® y(mpei)?)

= (my®mn)- B (ay) ® y((mpe)?)
= Im®n ®c)):a.

(3) I'is (C, y)-colinear. Indeed, for any m € M and n;0c.c € NOc C, we have

pol'(m® (n; ®c;))
= p((my) ® n;) ® mp\ci)
= (u " (myo) ® v (m) @ mpayciy ® Y(mpecie)
= (mpo ® Vv~ (m) ® mpojuiciny ® mpyy(ci)
= ([ ®idc)(mp ® (v (n) ® ciy) ® mpyy(cigy)
= ([T®idc)o p(m® (n; ®c;)).

Assume (C, y) has an antipode and define

® : (F(M) ® N)oeC — M ® (NoeC),
O((m; ® nj) ® ¢i) = p(migoy) ® (m; ® S(mipy)y~2(ci)).-

We have to show that W is well-defined. (M, p) is flat, so M ® (NO¢ C) is the equalizer of the maps
idy®idy®pc: MOIN®C->MON®C ®C,

and
idy®pn®idc: MON®C ->MeN®C ®C.

Now take (m; ® n;) ® ¢; € (F(M) ® N)Oc C, then

(mifo) ® nijo)) ® Plmipniy ® ¢ = (U™ (my) @ v~ (7)) ® W(cipy) ® ¥ (ciw)-

34

(4. 8)
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Therefore, we get
idy ® idy ® pe(u® (i) ® (n; ® S(mip1))y ~(ci)))
= @ (mio) ® (n; ® W(S(mipye)y (ciqy)) ® Stmipay)y 2 (ci)))
= mio ® v (1) ® W(S(y(mip))y ™ (ciqy) ® SO (mi)))cic),
and
idy ® pn ® idc(u® (i) ® (n; ® S(mip))y ~(ci)))
= uP(mio)) ® (nijo) ® 1y ® S(mipay)y (i)
= i) ® i) ® Y(1ipay) ® S (mi)))y (i)
Applying (idy ® ¥ ® idc) o (idy ® (Ac © Sc)) © pum to the first factor of (4.8), we obtain
mojo] ® W(S(mijoy112))) ® S(mioqay) ® i} ® W (mipay)nipy ® ¢;
= (mie) ® WSO min)) ® SO (mipy) © v (1) ® Peiny) © Y(ci)-
Applying idy ® y* ® idc ® idy ® Y~ ® ™! to the above identity, we have
miojo] ® W(S(*(mioyn12))) ® S(mioyym)) ® i) ® ¥~ (P (min) i) ® ¥~ (ci)
= u  mige) ® W(S(y(min2)) ® SO~ mimy)) @ v (i) ® ¢(r " (ciqry)) @ cica)-
Multiplying the second and the fifth factor, and also the third and sixth factor, we have
p(miop) ® 1o ® Y (mipny) ® S/ (mipy))y ™ (ci)
= w(miy) ® v (1) ® W(S(y(miny)y ™ (€i)) ® SO/ (minyn)))Cica).
and applying p~! ® idy ® idc ® idc to the above identity, we obtain
mifo) ® nifo) ® y (1ipay) ® S(y(mipy))y ™ (ci)
= myo ® v (1) ® V(SO (miye))y (i) ® SO (mipyy))ci),
or
idy ® pn ® idc o (O((m; ® n;) ® ¢;)) = idpy Q idy ® pc © (BO((m; ® n;) ® ¢;)).
Let us point out that I and © are each other’s inverses. In fact,
I'o®((m; @ n;) ®c;)
= T(u*(migo)) ® (n; ® S(mipnyy ~(ci))))
= (1P (mioygo7) ® 1) ® Y (migoyn))S(migy)y~(ci))
= (U (mioyo) ® 1) ® [y (mipoy)) Stmip) 1y~ (ci))

= (p(mio) ® m) ® [y (miya) SQ(mime) 1y (ci)
= (mi®n;)®c,

and
OoT(m® (n;®c;))
= O((my ® n;) ® myy)ci)
= 3(myoqon) ® (i ® [SO/ (mpoyay))y > (mpap)ly ™ (i)

= p(mp) ® (n; ® [S(y " (mpy)y ™ (mpe)ly (@)
= m®nc).

The proof of (4.7) is similar and left to the reader. O
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Corollary 4.4. Let (A, C,¢) be a monoidal Hom-entwining structure, A\: <%F;(///k)(1]b)[cl - Q%FZ(///;()A the functor
forgetting the (C, y)-coaction. For any flat entwined Hom-module (M, u), we have an isomorphism

M®C=AM)®C

in e%ﬂz(//lk)(lp)g. Ifkis afield, then };(//lk)(t/})g has enough injective objects, and any injective object in e%FZ(lﬂk)(l{l)g
is a direct summand of an object of the form I ® C, where I is an injective (A, f)-module.

We have already proved that the category of Doi Hom-Hopf modules may be viewed as the category
of entwined Hom-modules corresponding to a monoidal Hom-entwining structure. Then we have the
following corollary.

Corollary 4.5. Let (H,A,C) be a monoidal Doi Hom-Hopf Datum. If k is a field, then %FZ(//Z;()(H)IE has enough

injective objects, and any injective object in g%pz(//lk)(H)g is a direct summand of an object of the form I ® C, where |
is an injective (A, B)-module.

We continue with the dual version of Theorem 4.3.

Theorem 4.6. Let (D,1¢) : (A, C, ¢) — (A’, C, ¢) be a monoidal morphism of monoidal Hom-entwining structures.
Then

F(A) = A" 4.9)
Let (M, u) € %///k)(l,b)i be flat as a k-module, and take (N,v) € %FZ(///;()(QZJ)S,. If (A, B’) is a monoidal Hom-Hopf
algebra, then

F(M)®N = F(M® G(N)) in A(M))S. (4. 10)
If (A’, B') has a twisted antipode S, then

N ® F(M) = F(G(N) ® M) in A(M))S. (4. 11)

Proof. We only prove (4.10) and similar for (4.9) and (4.11). Assume that (A’, ") is a monoidal Hom-Hopf

algebra and define

I:FIM®G(N) =MQGN)® A" > FIM)N = (M®4 A)®N

by

I(men)®a')=(me® “El)) ®n -y,

foralla’ €e A’”,m e M and n € N. T is well-defined since
I(men)@d@)a’) = me® (D(ﬂ(l))ﬂfl)) n- (I)(a(z))agz)
(m-aq)® 6121)) ®n- fD(a(z))aEz)
I((m-aqy@n- D)) @)
I(men)-a®a).

It is easy to check that I is (A’, §’)-linear. Now we shall verify that I' is (C, y)-colinear based on (3.1). For
anya’ € A’,m € Mand n € N, we have

pT(men)®a’)) p((m®@agy,)) @n - aj,)

(mpo ® B'_l(ﬂfw)) ® (o] - 5'—1(a22)¢)) ® y(mpy)yy )y

(3.1) _ _
= (m[O] ® ,B, 1(’1:;,(1))) ® (”[0] : ,B, 1(‘1:;,(2))) ® )/(111[1]7”![1])1#

(T ®id.)(((myo) ® nyoy) ® B~ (@)y) ® y(mpynpy)¥)
T®id)p(men)®a).
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The inverse of I' is given by
T((m@a')@n) = (mev>(n)S ' (ay)) ® f(a)
foralla’ € A’,m € M and n € N. One can check that I'T is well-defined similar to I'. Finally, we have

I(T'(m®n)®a’))

[((m ®ag)) @n - aj,)
_ -2 ’ ’ 2/ 7
= (mev=(n-ap)Say)p)) ® B (a0

= (m® v (n)- [ﬁ/_l(ﬂzz)(z)s_l(ﬁ,_l(ﬂzz)(l)))]) ® ,B,(a&))
= (men)ed,

and
MM ea)em) = I(mev>s @y)® F )
m® B(a(yy 1)) ® V(1) - S @)y B (@)

(
= (B @m) @V (1) - [STNB @y o) (@y)]
(mead)en,

as needed. The proof is completed. O

5. The General Induction Functor

Let (®,V¥): (A C ¢) = (A, C’,¢") be amorphism of (right-right) Hom-entwining structures. The results
of [9] can be extended to the general induction functor

F: A(M)W)S — A (M)

and its right adjoint G (see Theorem 4.2). In order to avoid technical complications, we will assume that
the Hom-entwining map ¢ is bijective, and write ¢! = 9.

Proposition 5.1. Let (O,V) : (A,C ¢) — (A’,C’,¢’) be a morphism of (right-right) Hom-entwining structures.
With 1 invertible, and 8 : A® C — C® A its inverse. Let V, consist of all left and right (A, B)-linear maps
A : GF(C® A) — A satisfying
-1 ’ _ / -1 2 4
Ay~ () ® @) ® diry) ® y(diz)) = Z A(cig) ® ;) ® Y~ (di)y ® v~ (ciwy) 6. 1)
forall (c;®a)) ®d; € GF(C® A). We have a k-linear isomorphism

fi: Vi =SHomS(GF(C®A),CR®A) > Vo, fi(0) = (¢®I4) 070.

Proof. A = fi(v) is left and right (A, f)-linear since v and ¢ ® I, are left and right (A, §)-linear. Take
Yi(ci®a) ®d; € GF(C® A), and we write

E(Z(ci ®d)®d) = Z c;j®a.

]

Using the left (C, y)-colinearity of 7, we have

]

Y2(ciy) ® E(Z(C’m @B @)@y (d)) = Z Y(cj) @ (cj) ® B~ (4))),
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and applying ec to the second factor

V(i) @A) (i @B a) @y @) = ) cj@ 7 (ay),

]

v is also right (C, y)-colinear, hence

5(Z:(V_l(ci) ® B~ (a)) ® dir)) ® y(dip) = Z[Cj(l) ®p ' (ajy)l® V(C;{J(z))

i
Applying ec to the first factor, we obtain

A0 @B @) @ diny) ® y(di) = ) f @) @<,
i i
and we have shown that A satisfies (5.1), and f; is well-defined. The inverse of f; is given by
7Y (c@a)ed) =Y i) @AY (e @7 @) @ 7 (d).
i i i

It is obvious that v = g;(A) is left (C, y)-colinear and right (A, f)-linear. v is right (C, y)-colinear since
3Q) (7 @) @B @) @ i) © V(di)

Z y(ciy) ® X(Z(V_l(ci(Z)) ®B (@) ®y (i) ® y(diz)

() @ AQ (o ®F @) ® @)y ® ()

P(Z Y2 (ciny) @ M(cip ® B (@) @ ¥~ (d)))

p((c; ®a) ®dy)),

and v is left (A, f)-linear since

o(a() (e ®@a)) @ dy)
= B0 @D @) @) ® y(d)

= (i) @ A(y(cly) ® DB(ae))B () © )
= (i) @ A((cy) ® DB (o)) (@) ® i)
= Vi) ® AB(@s)(ciy ® B (@) ® dy)

= () 7)) ® Acipy ® B~ (@) @y (d)

ai(Z(Ci ®a)®d;).

We have it to the reader to show that g; = f; 1.

Theorem 5.2. Let (O, W) : (A,C, ¢) — (A’,C’, ") be a morphism of (vight-right) Hom-entwining structures. With
Y invertible, and 9 : A® C — C ® A its inverse. Define the A-action on C® A’ by

a-(ceb’) = Z Y1) ®pB Na) ', whereac A, ceC b €B.
If (C,p) is left (C’,y")-coflat, then V1 and V; are isomorphic as k-modules.
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Proof. In view of the previous results, it suffices to show that f o f; : V — V; is surjective. Starting from

A € V,, we have to construct a natural transformation v, that is, for all (M, u) € jﬂ?(//&)(l{f)ﬁ, we have to
construct a morphism

um : GF(M) = (M ®4 A")oc C — M.
First we remark that the map
P:M@s A > M®y(CRA'), Pp(m®sa’) = p(myp) @4 (mp ®p (@)

is well-defined. Indeed,

u((ma)) ®4 (ma)y ® B~ (a'))

Y utmio)) - BB (@),) @4 (y(mp¥) @ 7 @)
Y umpo) ®4 BB (@),) - () © @)

= Z w(mye) ®a (" (y(mpy¥)*) @ @)y f 7 (@)
w(mpg) ®a (mpy ® B~ (aa")) = p(m ®4 aa’).

Pp(ma®sa’)

From the fact that (C, y) is left (C’, y’)-coflat, so we have
M4 (C®AN))O-C=M®, (C®A)I:0),
and we consider the map
om = (Im®a A) oao (pOclc) : GF(M) > M@y A =M

given by
om() (i @a) @ci) = Y iimio)) - Ay @ 7 (@) ® Y7 (ci).

Let us first show that v is right A-linear.

om(()_(m®a) @cy) - )

om()_ (10m) @ aif " (@(B™@),)) ® ¥(ci*))

Y i mion) - A mip) @ B @) 2B @),)) @ i)

Y 2 0mio) - A Omipy) ® @) @™ (B @), ) @ vy (@)
Y i mion) - A mi) ® B @) @@, ) @ 707 (@))
Y #mo) - A(Omiy @ B @) @77 (e) - @)

Y 1 mion) - MOmi @ 7 @) © 7 (€)™ (@)

Y (o)) - Mm@ B~ @) @y (ci))) -

UM(Z(m,- ®a))®c;) - a.
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v is right C-colinear since

P (om() | (mi @ a)) @ c)
Pr(z w2 (migop) - A(mipyy © B~ (@) ® Yy~ (ci))
= Z 2 miogo)) - (BN (A((mi ® B~ (@) ® Y~ ey ® Y (o))
= ) ) - A(Onye) @ B2@) @y 2(@)y @ (0 min)”)
DY wmgo) - A mp) ® B2(@) © 7 (en) © (i)
Z om((p~! (mi) @ B~ (@) ® cipy) @ y(cipa)
= Y ou(} (mea) @i ®om() (moa)®c.

Let us show that v is natural. Let g : (M, ) — (N,v) be a morphism in %’Z(//lk)(w)g, and take x =
Y.(mi®a))®c; € (M®4 A')OcC. Then

on(GF@)®) = Y on((glm) @d) @c)
= ) iAgm) - Mm@ B (@) @ Y7 (e)
Y 9o - Mm@ B @)) @ 97 (c0)

Y gm)).

Finally, we have to show that fi(f(v)) = A. Indeed, we have

(Ia o (ec ® L)) (vcoa(}_((ci ® 14) @) ® )

(Ia o (ec ® L)Y (02 (cin) ® 1a) - M(cieny ® B~ (@) @y (d)
Y LA @) @ p @) @y @)

Y Aci@d) @dy),

as needed.

Corollary 5.3. Let (®,W¥) : (A, C ¢) — (A, C',¢’) be a morphism of (right-right) Hom-entwining structures.
with 1 invertible, and ¥ : A® C — C® A its inverse. If (C,y) is left (C’,y’)-coflat, then induction functor
F: (M) = A (M)W, is separable if and only if there exists A € Vs such that

A ew) @ 1a) @) = e()1a (5.2)
forall c € cand a € A. Fis full and faithful if and only if ncea is an isomorphism.

Proof. If F is separable, then there exists v € V such that v o 7 is the identity natural transformation, in
particular

Ucwa © Ncea = Icga.

Write v = f(v) and A = £1(0), and apply both sides to ¢ ® 14:

WO ) ®D((1a)y) ® ) = c® 1y,
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and (5.2) follows after we apply ¢ to the first factor. Conversely, if A € V; satisfies (5.2), and v is the natural
transformation corresponding to A, then

om((u™" (mpoy) ® 1) ® 1))

= p(mpygop) ® Ay~ (myoyy) ® 1) ® y~ (mpy))
= g ® A (mpy) ® 1) ® mipaa)

= myp)e(mpuy)la = m.

om(nm(m))

The second statement is proved in the same way.
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