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Abstract. Let G be a simple connected graph with n vertices and m edges, sequence of vertex degrees
∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0 and diagonal matrix D = diag(d1, d2, . . . , dn) of its vertex degrees. Denote
by K f (G) = n

∑n−1
i=1

1
µi

, where µi are the Laplacian eigenvalues of graph G, the Kirchhoff index of G, and
by NK =

∏n
i=1 di the Narumi-Katayama index. In this paper we prove some inequalities that exhibit

relationship between the Kirchhoff and Narumi-Katayama indices.

1. Introduction

Let G = (V,E), V = {1, 2, . . . ,n}, be a simple connected graph with n vertices and m edges and let
∆ = d1 ≥ d2 ≥ · · · ≥ dn = δ > 0, di = d(i), be its vertex degree sequence. Further, let D be the diagonal matrix
of order n, whose diagonal elements are d1, d2, . . . , dn. Vertex–degree–based topological index, NK = NK(G),
known as the Narumi–Katayama index, is defined as [26]

NK = NK(G) = det D =

n∏
i=1

di.

This topological index was introduced in [26] and referred to as ”simple topological index”. For a long
period of time it was not in the spotlight. The situation has changed significantly when Todeschini and
Consonni [31] proposed a descriptor named multiplicative Zagreb index, defined as

Π1(G) =

n∏
i=1

d2
i .

One can easily observe that Π1(G) = (NK(G))2. Current name, i.e. the Narumi-Katayama index, was
proposed in [9]. Details on this topological index can be found in [8–10, 18, 34, 35].
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Denote by A the adjacency matrix of G. Then the Laplacian matrix of G is defined as L = D − A.
Eigenvalues of matrix L, µ1 ≥ µ2 ≥ · · · ≥ µn−1 > µn = 0, form the so-called Laplacian spectrum of graph.
These eigenvalues have the following properties (see for example [5])

n−1∑
i=1

µi =

n∑
i=1

di = 2m and
n−1∑
i=1

µ2
i =

n∑
i=1

d2
i +

n∑
i=1

di = M1 + 2m,

where M1 = M1(G) =
∑n

i=1 d2
i is the first Zagreb index [11]. More about this topological index one can find

in [2, 3, 12].
The Wiener index, W(G), originally termed as a ”path number”, is a topological graph index defined for

a graph on n nodes by
W(G) =

∑
i< j

di j,

where di j is the number of edges in the shortest path between vertices i and j in graph G. The first
investigations into the Wiener index were made by Harold Wiener in 1947 [32] who realized that there are
correlations between the boiling points of paraffin and the structure of the molecules. Namely, he observed
that the boiling point TB can be well approximated by the formula

TB = aW + bP + c ,

where W is the Wiener index, P the polarity number and a, b and c are constants for a given isomeric group.
Since then it has become one of the most frequently used topological indices in chemistry, as molecules are
usually modeled as undirected graphs. Based on its success, many other topological indices of chemical
graphs have been developed.

In analogy to the Wiener index, Klein and Randić [17] defined the Kirchhoff index, K f (G), as

K f (G) =
∑
i< j

ri j,

where ri j is the resistance-distance between the vertices i and j of a simple connected graph G, i.e. ri j is equal
to the resistance between two equivalent points on an associated electrical network, obtained by replacing
each edge of G by a unit (1 ohm) resistor. They proved that K f (G) ≤W(G), with equality if and only if G is a
tree, G � T. There are several equivalent ways to define the resistance distance (see for example [1, 16, 33]).
Gutman and Mohar [13] (see also [37]) proved that the Kirchhoff index can be obtained from the non-zero
eigenvalues of Laplacian matrix:

K f (G) = n
n−1∑
i=1

1
µi
.

More on the Kirchhoff index, as well as its applications in various areas, such as in spectral graph theory,
molecular chemistry, computer science, etc. can be found, for example, in [6, 7, 13, 14, 17, 20–23, 27, 32, 35, 37].

In this paper we prove some inequalities that exhibit relationship between the Kirchhoff and Narumi-
Katayama indices.

2. Preliminaries

In this section we recall some lower bounds for K f (G) reported in the literature and some analytic
inequalities for real number sequences needed for our work.

Let us first define one special class of d-regular graphs Γd (see [27]). Let N(i) be a set of all neighbors of
the vertex i, i.e. N(i) = {k | k ∈ V, k ∼ i}, and d(i, j) the distance between vertices i and j. Denote by Γd a set of
all d-regular graphs, 1 ≤ d ≤ n − 1, with diameter 2 such that for i / j holds |N(i) ∩N( j)| = d.
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In [35] a lower bound for K f (G) depending on parameters n, d1, d2, . . . , dn was established, i.e. the
following was proven

K f (G) ≥ −1 + (n − 1)
n∑

i=1

1
di
. (1)

Equality holds if and only if G � Kn, or G � K1,n−1, or G � K n
2 ,

n
2
, or G ∈ Γd.

For the Narumi-Katayama index, NK = NK(G), in [29] the following inequalities were proven

NK(G) ≤ (n − 1)n, (2)

with equality if and only if G � Kn,

NK(G) ≤
(2m

n

)n

, (3)

with equality if and only if G is regular, and

NK(G) ≤
(M1

n

) n
2

, (4)

with equality if and only if G is regular.
Let p = (pi), and a = (ai), i = 1, 2, . . . ,n, be two positive real number sequences such that p1+p2+· · ·+pn = 1

and 0 < r ≤ ai ≤ R < +∞. In [28] (see also [24]) it was proven

n∑
i=1

piai + rR
n∑

i=1

pi

ai
≤ r + R, (5)

with equality if and only if R = a1 = · · · = an = r, or for arbitrary k (1 ≤ k ≤ n − 1) holds R = a1 = · · · = ak ≥

ak+1 = · · · = an = r.
Let a = (ai), i = 1, 2, . . . ,n, be a positive real number sequence such that 0 < r ≤ ai ≤ R < +∞. In [30] the

following inequality was proven

n
n∑

i=1

a2
i −

 n∑
i=1

ai


2

≥
n
2

(R − r)2, (6)

with equality if and only if a1 = R, an = r, and a2 = · · · = an−1 = r+R
2 .

Let a1, a2, . . . , an, be a non-negative real number sequence. In [36] (see also [19]) it was proven that

n

1
n

n∑
i=1

ai −

 n∏
i=1

ai


1
n
 ≤ n

n∑
i=1

ai −

 n∑
i=1

√
ai


2

≤ n(n − 1)

1
n

n∑
i=1

ai −

 n∏
i=1

ai


1
n
 ,

(7)

with equality holding if and only if a1 = a2 = · · · = an.
Let p = (pi), i = 1, 2, . . . ,n, be a positive real number sequence and let a = (ai), b = (bi), . . . , c = (ci),

i = 1, 2, . . . ,n, be r sequences of non-negative real numbers of similar monotonicity. In [15] (see also [25])
the following inequality was proven n∑

i=1

pi


r−1 n∑

i=1

piaibi · · · ci ≥

n∑
i=1

piai

n∑
i=1

pibi · · ·

n∑
i=1

pici, (8)
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with equality if and only if r − 1 sequences are constant.
Let a1 ≥ a2 ≥ · · · ≥ an > 0 be a positive real number sequence. The following inequality holds [4]:

n∑
i=1

ai − n

 n∏
i=1

ai


1
n

≥

(√
a1 −

√
an

)2
, (9)

with equality if and only if a2 = a3 = · · · = an−1 =
√

a1an.

3. On interplay between the Kirchhoff and the Narumi-Katayama indices

In this section we consider relations between the Kirchhoff index, K f (G), and the Narumi-Katayama
index, NK(G).

Theorem 3.1. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

K f (G) ≥
n(n − 1) − (∆ + δ)

∆ + δ
+

n(n − 1)∆δ

(∆ + δ)(NK)
2
n

+
(n − 1)(∆ − δ)2

(∆ + δ)∆δ
, (10)

with equality if and only if either G � Kn, or G ∈ Γd.

Proof. For pi =

1
di∑n

i=1
1
di

, ai = di, i = 1, 2, . . . ,n, R = d1 = ∆, r = dn = δ, the inequality (5) becomes

n
n∑

i=1

1
di

+ ∆δ

n∑
i=1

1
d2

i
n∑

i=1

1
di

≤ ∆ + δ ,

i.e.

n∑
i=1

1
di
≥

n + ∆δ
∑n

i=1
1
d2

i

∆ + δ
(11)

For ai = 1
d2

n−i+1
, i = 1, 2, . . . ,n, the inequality (9) transforms into

n∑
i=1

1
d2

i

≥ n

 n∏
i=1

1
d2

i


1
n

+
(1
δ
−

1
∆

)2

,

that is
n∑

i=1

1
d2

i

≥
n

(NK)
2
n

+
(∆ − δ)2

(δ∆)2 . (12)

Now from (11), (12) and (1) we obtain (10).
Equality in (11) holds if and only if ∆ = d1 = d2 = · · · = dn = δ, or if for some k, 1 ≤ k ≤ n − 1, holds

∆ = d1 = · · · = dk ≥ dk+1 = · · · = dn = δ. Equality in (12) is attained if and only if d2 = · · · = dn−1 =
√

d1dn.
This means that equalities in both (11) and (12) are attained if and only if ∆ = d1 = d2 = · · · = dn = δ. In that
case (10) becomes

K f (G) ≥
n(n − 1) − d

d
. (13)

This inequality was proven in [27]. Equality in (13), and consequently in (10), holds if and only if G � Kn,
or G ∈ Γd.



E. Milovanović et al. / Filomat 33:1 (2019), 93–100 97

In the following theorem we determine lower bound for K f (G) in terms of the parameters n, m, and
invariant NK(G).

Theorem 3.2. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

K f (G) ≥ −1 +
n3(n − 1)

2m(n − 1) + n(NK(G))
1
n

, (14)

with equality if and only if G � Kn, or G ∈ Γd.

Proof. For r = 3, pi =
√

di, ai = bi = ci = 1
√

di
, i = 1, 2, . . . ,n, the inequality (8) becomes n∑

i=1

√
di


2 n∑

i=1

1
di
≥ n3. (15)

From the left-hand side of (7), for ai = di, i = 1, 2, . . . ,n, we obtain inequality

(n − 1)
n∑

i=1

di ≥

 n∑
i=1

√
di


2

− n

 n∏
i=1

di


1
n

,

i.e.  n∑
i=1

√
di


2

≤ 2m(n − 1) + n(NK(G))
1
n . (16)

From (15) and (16) follows
n∑

i=1

1
di
≥

n3

2m(n − 1) + n(NK(G))
1
n

. (17)

Now, the inequality (14) is a direct consequence of (1) and (17).
Equalities in (15) and (16) hold if and only if d1 = d2 = · · · = dn, i.e. if and only if G is regular. Equality

in (1) is attained if and only if G � Kn, or G � K1,n−1, or G ∈ Γd, therefore equality in (14) holds if and only if
G � Kn, or G ∈ Γd.

Since 2m ≤ n∆ and NK(G) ≤ ∆n, according to (3) we have the following corollary of Theorem 3.2.

Corollary 3.3. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

K f (G) ≥
n(n − 1) − ∆

∆
, (18)

and

K f (G) ≥
n2(n − 1) − 2m

2m
, (19)

with equality if and only if G � Kn, or G ∈ Γd.

Inequalities (18) and (19) were proven in [22] (see also [23]).
By a similar argument as in case of Theorem 3.2, the following results can be proved.

Theorem 3.4. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

K f (G) ≥
n − 1 − ∆

∆
+

(n − 1)4

(n − 2)(2m − ∆) + (n − 1)(NK(G))
1

n−1 ∆−
1

n−1

,

with equality if and only if either G � Kn, or G � K1,n−1, or G ∈ Γd.
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Theorem 3.5. Let G be a simple connected graph with n ≥ 2 vertices and m edges. Then

K f (G) ≥
n − 1 − δ

δ
+

(n − 1)4

(n − 2)(2m − δ) + (n − 1)(NK(G))
1

n−1 δ−
1

n−1

,

with equality if and only if G � Kn, or G � K1,n−1, or G ∈ Γd.

Theorem 3.6. Let G be a simple connected graph with n ≥ 3 vertices and m edges. Then

K f (G) ≥
(n − 1)(∆ + δ) − ∆δ

∆δ

+
(n − 1)(n − 2)3

(n − 3)(2m − ∆ − δ) + (n − 2)(NK(G))
1

n−2 ∆−
1

n−2 δ−
1

n−2

,

with equality if and only if G � Kn, or G � K1,n−1, or G ∈ Γd.

In the next theorem we determine lower bound for K f (G) in terms of parameters n, ∆, δ, and invariant
NK(G).

Theorem 3.7. Let G be a simple connected graph with n ≥ 2 vertices. Then

K f (G) ≥ −1 +
n(n − 1)

(NK(G))
1
n

+
n
(√

∆ −
√
δ
)2

2∆δ
, (20)

with equality if and only if G � Kn, or G ∈ Γd.

Proof. For ai = 1
√

di
, i = 1, 2, . . . ,n, R = 1

√
dn

= 1
√
δ
, and r = 1

√
d1

= 1
√

∆
, the inequality (6) becomes

n
n∑

i=1

1
di
≥

 n∑
i=1

1
√

di


2

+
n
2

(
1
√
δ
−

1
√

∆

)2

. (21)

From the right-hand side of inequality (7), for ai = 1
di

, i = 1, 2, . . . ,n, we get n∑
i=1

1
√

di


2

≥

n∑
i=1

1
di

+ n(n − 1)

 n∏
i=1

1
di


1
n

. (22)

According to (21) and (22) we have that

(n − 1)
n∑

i=1

1
di
≥

n(n − 1)

(NK(G))
1
n

+
n
(√

∆ −
√
δ
)2

2∆δ
. (23)

Finally, from (1) and (23) we obtain (20).
Equality in (22) holds if and only if d1 = d2 = · · · = dn, that is if and only if graph G is regular. Equality

in (1) is attained if and only if G � Kn, or G � K1,n−1, or G ∈ Γd, therefore equality in (20) holds if and only if
G � Kn, or G ∈ Γd.

From (20), (2), (3) and (4) we have the following corollary of Theorem 3.7.

Corollary 3.8. Let G be a simple connected graph with n ≥ 2 vertices. Then

K f (G) ≥ n − 1 +
n
(√

∆ −
√
δ
)2

2∆δ
,
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with equality if and only if G � Kn,

K f (G) ≥
n
√

n(n − 1) −
√

M1
√

M1
+

n
(√

∆ −
√
δ
)2

2∆δ
,

with equality if and only if G � Kn, or G ∈ Γd,

K f (G) ≥
n2(n − 1) − 2m

2m
+

n
(√

∆ −
√
δ
)2

2∆δ
, (24)

with equality if and only if G � Kn, or G ∈ Γd.

Remark 3.9. The inequality (24) is stronger than (19). Since 2m ≤ n∆, from (24) we get

K f (G) ≥
n(n − 1) − ∆

∆
+

n
(√

∆ −
√
δ
)2

2∆δ
,

which is stronger than (18).

In a similar way as in Theorem 3.7, the following results can be proved.

Theorem 3.10. Let G be a simple connected graph with n ≥ 3 vertices. Then

K f (G) ≥
n − 1 − ∆

∆
+ (n − 1)2


(

∆

NK(G)

) 1
n

+

(√
∆2 −

√
δ
)2

2(n − 2)∆2δ

 ,
with equality if and only if G � Kn, or G � K1,n−1, or G ∈ Γd.

Corollary 3.11. Let G be a simple connected graph with n ≥ 3 vertices. Then

K f (G) ≥
n(n − 1) − ∆

∆
+

(n − 1)2
(√

∆2 −
√
δ
)2

2(n − 2)∆2δ
,

with equality if and only if G � Kn, or G ∈ Γd.

Theorem 3.12. Let G be a simple connected graph with n ≥ 4 vertices. Then

K f (G) ≥
(n − 1)(∆ + δ) − ∆δ

∆δ

+ (n − 1)(n − 2)


(

∆δ
NK(G)

) 1
n−2

+

(√
∆2 −

√
δ2

)2

2(n − 3)∆2δ2

 ,
with equality if and only if G � Kn, or G � K1,n−1, or G ∈ Γd.
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