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The New Revisitation of Core EP Inverse of Matrices
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Abstract. In this paper, we study some properties of core-EP inverse of square matrices. Firstly, we extend
the obtained theorem proved by K.M. Prasad and K.S. Mohana. Then some properties of core-EP inverse
have been given, through applying the conditions (AX)* = AX, XA¥! = A and R(X) = R(X") = R(AY).
Secondly, we get some characterizations of core-EP inverse by employing the conditions AX = P« and XA =
Piary k1) 4)- Finally, we get some properties of core-EP inverse by utilizing the condition ALY = ARP .

1. Introduction

Let C"™" be the set of m X n complex matrices. For A € C"™", the symbols R(A), N(A), A* and r(A) denote
the range space, null space, conjugate transpose and rank of A, respectively. Moreover, the identity matrix of
order n is denoted by I,.

Let A € C"™". The unique matrix X € C"™", which satisfying the following conditions:

() AXA=A, (i) XAX =X, (i) (AX)' =AX, (iv) (XA) = XA,

is called the Moore-Penrose inverse of A and written by A" [1]. If a matrix X € C™" only satisfies the equality
AXA = A, then X is an inner inverse of A and we denote it by A~ [1] . Moreover, we denote the class of
all inner inverse of A by A [1]. A matrix X € C™" that satisfies XAX = X is an outer inverse of A and
we denote it by A® [1] . Furthermore, let P and L be two complementary subspaces in C". If the matrix X
satisfies the following conditions:

() X e A®, (i) R(X) = R(P), (iii) N(X) = N(L),

then X is denoted by Ag,zz [9].

Here, we mainly consider the square matrices. The smallest nonnegative integer k, which satisfies
r(AF) = r(A*1), is called the index of A and we denote it as Ind(A). Furthermore, the set of all index 1
matrices also known as core matrices is denoted by C{M. The matrix A satisfying R(A*) = R(A), is called
EP-matrix and set of EP-matrices in C™" is C5". The matrix A satisfying A% = A, is called idempotent matrix
and it is denoted by Cﬁ: . For A e ™", if a matrix X € C"™" satisfies the following three conditions:

(i) XAX = X, (ii) XA = AX, (iii) XA = A, for some positive integer k,
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then X is called the Drazin inverse of A and written as AP [1] . Moreover, when Ind(A) < 1, the matrix X is
known as the group inverse and noticed by A” [1]. More on Drazin inverses and generalized Drazin inverses
see in [10, 17]. For two complementary subspaces L, M € C", that satisfy L M = C". Py is said to be
the oblique projector onto L along M. Additionally, if M is the subspace orthogonal to L, we denote the
orthogonal projection onto L by Pr . For A € C™", P4 is said to be the orthogonal projection onto R(A), i.e.
Py = AA".

Baksalary and Trenker [6] introduced the core inverse on the set CSM: For A € CSM, the core inverse of A
is defined to be the unique matrix X such that

AX = P4 and R(X) C R(A),

and written as A®. Moreover, three kinds of generalizations of the core inverses [3,19,22] were given for nxn
complex matrices, called core-EP inverse, BT-inverse, and DMP-inverse, respectively. In order to introduce
these inverses, we assume that A € C"™" and Ind(A) = k. Firstly, the unique matrix X € C"™" satisfying

XAX = X and R(X) = R(X*) = R(AD),

is called the core-EP inverse of A and noticed by A® [22]. It is clear that A® € CEP. Secondly, for A € C>",
the DMP-inverse of A, written by AP* [19], is defined as the unique matrix X € C™" satisfying

XAX =X, XA=APA and A*X = A*A".
Finally, the unique matrix X € C"" satisfying
X = (APy),

is called the BT-inverse of A and noticed by A° [3].
In 2017, Drazin introduced (B, C)-inverse on the ring. And then Benitez and Boasso et. al [7] researched
(B, C)-inverse on the set C"™*".

Definition 1.1. [7] Let A € C™" and B,C € C™™. The matrix A is said to be (B, C)-invertible, if there exist a
matrix X € C"™™, satisfying the following conditions:

XAB=B, CAX=C, N(X)=N(C) and R(X)=R(B).
Furthermore, the matrix X is called (B, C)-inverse of A. And the matrix X is unique.
In [24] , Wang introduced core-EP decomposition of A € C"™" as follows:

Lemma 1.2. [24] Let A € C™" with Ind(A) = k. Then A can be written as the sum of matrices Ay and Ay, i.e.
A = Ay + Ay, where

(i) A; € CM;

(ii) A% = 0;

(iii) AJA2 = A2A; = 0.
Moreover, A is core partial and A, is nilpotent partial. Then we notice k is nilpotent index, moreover the nilpotent
index of Ay is equal to index of the matrix A.

Moreover, Wang [24] researched characterization of core-EP decomposition by using Schur lemma.

Lemma 1.3. [24] Let the core-EP decomposition of A € C™" be as in Lemma 1.2. Then there exists the unitary
matrix U such that

T S1,.
A:U[O N]u, )
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where T is non-singular and N is nilpotent. Moreover, A1 and A, can be represented by

T 5], o 0],
Al—U[O O]U andAz—U[O N]U, (2)
and A can be given by
=
Ak=U['](; g:|u*/ (3)

where S = Y.\} TISNK-,
Furthermore, in [24] , some characterizations of core-EP inverse were introduced.

Lemma 1.4. [24] Let A € C™" with Ind(A) = k, and let the core-EP decomposition of A be as in Lemma 1.3. Then

T 0
® - A® _ *
A _Al_u[ 0 O]U.

In [24] , the author obtained the relationship between core-EP inverse and core inverse by using the core-EP
decomposition. In [12] , some representations for core-EP inverse have been given.

In this paper we are concerned with some properties of core-EP inverse of square matrices by using core-
EP decomposition. In Section 2, some necessary and sufficient conditions for core-EP inverse will be given by
using the conditions (AX)* = AX, XA¥! = AFand R(X) = R(X*) = R(A). In Section 3, we derived necessary
and sufficient condition for core-EP inverse by using the conditions AX = Py and XA = Pgear parya)- In
Section 4, we get some properties of core-EP inverse by utilizing the condition A**1X = A*P,. Also, we
devoted a new representation of the core-EP inverse. Then by the definition of (B, C)-inverse, we get a result
that the core-EP inverse is a specific (B, C)-inverse.

2. Some revisitations about core-EP inverse

In [22] , Prasad and Mohana defined core-EP inverse for square matrices and presented some properties.
In the following lemma, we provide one of its properties:

Lemma 2.1. [22] Let A, X € C™" and Ind(A) = k. Then X is core-EP inverse of A if and only if X satisfies the
following four conditions:

XA = AF XAX =X, (AX)'=AX, and R(X)C R(A").

Whereas, we will see that the condition XAX = X is superfluous for Lemma 2.1. Therefore, we have the
following theorem.

Theorem 2.2. Let A, X € C™" and Ind(A) = k. Then X is core-EP inverse of A if and only if X satisfies the
conditions:
XA = AR (AX) = AX, and R(X) C R(A").

Proof. Suppose that R(X) € R(AF) and XAM! = Ak, We have X = AFT, for some T € C"™". Hence,
XAX = XAMIT = AFT = X.
[

According to Theorem 2.2, we can find that X satisfies XA¥*! = AF and (AX)* = AX, where X is core-EP
inverse of A. Therefore, in the following theorem, we get some necessary and sufficient conditions about
core-EP inverse by (AX)* = AX and XA*! = AF. To prove the theorem, we need the following lemma.
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Lemma 2.3. Let A, X € C™" and Ind(A) = k. Suppose that the core-EP decomposition of A is given by A =

r -1
u rs ] u:. IfXAk+1 = AX then X can be written as X = U[ TO ;Z

0N } U, where X, and Xy are arbitrary.

Proof. We assume that A can be written as (1). Then AF can be written by (3). Assume that X =
u X % ] U. If X satisfies XA = Ak, we get

| X3 X4
X X |[m 1s|_[1T s
X3 X4 0 0 0 0f

T X 7S | _[ 1% S
X3T' X3TS 0 0|

Therefore, we can obtain the following equalities

X, T = Tk @)

X,TS =S, 5)

X;T! =0, (6)

X;TS = 0. (7)
It can be easily seen that X; = T7! and X3 = 0. Therefore, X can be written as X = U[ T(; ' §i ] u. o

Theorem 2.4. Let A, X € C™" and Ind(A) = k. If A = Ay + A is the core-EP decomposition of A(from Lemma
1.2), where A; is core partial of A and A, is nilpotent partial of A. Then the following conditions are equivalent:

(i) X = A%;

(i) (AX)" = AX, XA = AK and r(A¥) = r(X);

(iii) (AX)* = AX, XA = Ak and A1 X2 = X;

(iv) (AX)" = AX, XAM1 = AF and AX**! = X, for some positive integer s;

(v) (AX)* = AX, XA = AFand XA X = X.

Proof. The proofs of (i)=(ii), (i)=(iii), ()= (iv) and (i)=(v) are a direct consequences of Lemma 1.4.
(i)=() If XAM! = AF then R(AF) € R(X). Since r(A*) = r(X), we get R(A¥) = R(X). Hence due to

Theorem 2.2, we have X = A®.

X1 X

(iii)=(i) Suppose that X = U| Xs X,

] U*. Let A be of the form (1). Moreover according to Lemma

TF S
0 0

T S

1.3, it follows that A = U[ 0 0

] U* and Af = U[ ] U*. From Lemma 2.3, we set that X can be

-1
given by X = U[ TO ;gi ] u-. By A1X? = X, we obtain
T S T! X5 T-1 X> _ T! Xo (8)
0 0 0 X4 0 Xg| | O Xy
7! Xo + TXo X4 + SXi _ T-1 Xo (9)
0 0 - 0 Xy |-

So we get X3 = 0. From (AX)" = AX we get X, = 0. Hence X = A®.
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-1
(iv)=(i) By XA¥! = A, we obtain X = U[ TO §z ] U*. Also, by A*X**! = X, we have that
T ST[T! %" [T X 10)
0 N 0 Xe| ~| 0 X4 |
sty M| [T X .
0 N° 0 X0 X (11)

where S = Y73 T'SN*" and M = Y5 TX, X5, So we get

T TM+Sx5 | _[ T X
0 NSXZ+1 10 Xy
Hence N°X5'! = Xy. If s > k, then it is easy to check that Xy = 0. If s < k, then Xj = N°X§*! = N®X3* = ... =
-1
NkSX’f“. Due to N¥ = 0, we obtain X4 = 0. Thus, we have X = LI[ TO )(()2
we get X, = 0. Therefore, X = A%.
The proof of (v)=(i) is the same as (iii)=(i). O

] U*. Then, from (AX)* = AX

The following example shows that we can’t lead to X = A® by substituting XAX = X for XA1X = X in
Theorem 2.4(v).

Example 2.5. Let

and X = .

1 00
0 0O
010

It is easy to see that Ind(A) = 2. Also, we can verify that X satisfies (AX)" = AX, XA® = A? and XAX = X.
However, we can easily check that R(X) # R(X*) # R(AX). Therefore, X # A®.

In [22], the author introduced the definition of core-EP inverse which satisfies R(X) = R(X*) = R(A¥) and
XAX = X. In the following theorem, we show the other properties of core-EP inverse by using the condition
R(X) = R(X*) = R(AY). To prove the theorem, we need the following lemma.

Lemma 2.6. Let A, X € C"™" and Ind(A) = k. Let the core-EP decomposition of A be given by A = U[ g Ifl ] u-.
IFR(X) = R(X*) = R(AX), then X can be expressed as X = U[ }({)1 8 ] U, where X; is invertible.

x . : X1 Xo |,
Proof. By Lemma 1.3, we have that A* can be written by (3). Let X be given by X = U X X U:. Due

to R(AF) = R(X), then there exists a matrix Y satisfying X = AFY. So we divide the matrix Y into four blocks

asYzll[ MRS

* f— k
Ys Y, ]U.FromX—A Y, we get

X1 Xo |, ™™ s][vi Y2 l,.
U[X3 X4]u_u[ 0 0]|Y3 vi |1

[ X1 X ]:[ T, +SY; TFY, +5Y, ]

X3 Xy 0 0
Thus, X3 = 0 and X4 = 0. Similarly, according to R(X*) = R(A¥), it follows that X, = 0. Thus the matrix X
can be writtenas X = U [ }él 8 ] ¥, where Xj is invertible. [
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Theorem 2.7. Let A, X € C"™" and Ind(A) = k. Then the following are equivalent:
(i) X = A%
(i) R(X) = R(X*) = R(AF) and XA = AK;
(iii) R(X) = R(X*) = R(A¥) and ASX*+! = X, for some positive integer s;
(iv) R(X) = R(X*) = R(A¥) and XA € CF;
(v) R(X) = R(X*) = R(AF) and AX € CF;
(i) R(X) = R(X") = R(AF) and AXAF = Ak,

Proof. The proofs of (i)=(ii), (i)=(iii), ()=(iv), (i)=(v) and (i)=(vi) are trivial by Lemma 1.4.
" S

(ii)=(i), (iii)=(i), and (vi)=(i). We suppose that A is written asin (1). Then A* = U [ 0 0

] U*. Assume

that X = U[ ))2 ii ] U*. By Lemma 2.6, we have R(X) = R(X*) = R(AF), which yields X = U[ )él 8 ] u,

where Xj is invertible. Then following the other conditions, we can obtain X; = T-1 by a direct calculation.
-1

Hence we have X = LI[ TO 8 ] U = A%.

X1
0

SRR ERTER 1]
|

XiTXiT XiTX;3S XiT X3S
0 0 0 ’

(iv)=(i) By Lemma 2.6, we have X = U [ 8 ] U*, where Xj is invertible. Due to XA € CL, we get

0

Thus we have X3 TX;T = X;T. Since X; and T are invertible, we conclude X;T = I. Then we have X; = T~1.
-1
Hence we have X = U[ TO 8 ] u = A°.

The proof of (v)=(i) is similar to the proof of (iv)=(i). O

Remark 2.8. We obtain X = A® by substituting Ay for A in Theorem 2.7 (ii)-(vi).

3. Some properties of core-EP inverse under the condition AX = P4«

In this section, we mainly show several characterizations of core-EP inverse by applying some properties
in [12]. Ferreyra, Levis, et. al [12] have presented some new characterizations about the core-EP inverse of a
square matrix. In the following lemma, the important conclusion from [12] is given:

Lemma 3.1. [12] Let A, X € C™" and Ind(A) = k. Then X is core-EP inverse of A if and only if AX = P and
R(X) € R(A).

From this lemma we can obtain AX = Py, if the matrix X is core-EP inverse of the square matrix A.
Therefore, in the following theorem, we get some necessary and sufficient conditions about core-EP inverse
by taking AX = P4 into consideration.

Theorem 3.2. Let A, X € C™" and Ind(A) = k. And A = A; + A, is the core-EP decomposition of A(from Lemma
1.1), where A; is core partial of A and A, is nilpotent partial of A. Then the following conditions are equivalent:

(i) X = A%;

(ii)) AX = Py and AX? = X;

(iii) AX = Ppe and A1 X? = X;

(iv) AX = Py, X € CEP and XAX = X.
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Proof. The proofs of (i)=(ii) and (i)=(iii) are trivial by applying Lemma 1.4.

(i)=(@v) By Lemma 3.1, we have AX = P4. And due to the definition of core-EP inverse, we can
conclude R(X) = R(X*) and XAX = X. Also, since R(X) = R(X*), we get X € CEP.

(ii)=(i) If AX = P4, then by AX? = X we conclude P4 X = X. Also, we have R(X) C R(A¥). Hence from
Lemma 3.1 we have X = A®.

(iii)=(i) Assume that X = u[ XX

X X, ] U*. Let Abe asin (1). Then A; can be written as the equality (2)

TF S

and write A = U[ 0 0

] U*. Due to Lemma 3.1, we have

T S T1 0 I 0
— ® * *
Py = AA _u[o NH 0 O]U_U[O O]U.

Therefore, we have P = U| I 8 ] U*. From A1 X% = X, we obtain

T S X: X5 X1 X | | Xi X2

0 0 X3 Xy X3 X4 || X3 Xu4 |
By a direct calculation, we get

[ TX? + SXa3Xy + TXo X3 + SXuXs  TX1 Xz + SX3Xz + TXp X4 + SX? ] _ [ X1 X2 ]

0 0 X3 X4
which yield
TX? + SX3X1 + TXo X3 + SXu X3 = X3, (12)
TX1Xo + SX3Xo + TXo Xy + SX5 = Xo, (13)
X3 =0, (14)
Xy =0. (15)

Therefore, X5 = 0 and X4 = 0. So the matrix X is of the form

qu[ X1 X ]u*.

0 0
Since AX = P4r, we have

T S X3 X | | IO

0 N 0 o0 | |0 0}
So we get X; = T~ and X, = 0. Above all, we conclude X = A®.

(iv)=(i) According to AX = Py, we get XAX = X, whichyields XP 4 = X. So wehave[ i; ii ] [ (I) 8 ] =

Xy X X3 0 | Xi X . _ _ . EP
l Xs X, ] and [ X 0 ] = [ Xs X, ] Therefore, we obtain X; = 0 and X4 = 0. According to X € C;;",

we have X3 = 0. Then since AX = P, it follows that X = A®. O

In Theorem 3.2 (iii), X € CE” is necessary to check X = A®. In the following example, we will demonstrate
it.
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0
0.
0

AX = X. However, we have R(X) # R(X*)

Example 3.3. Let

1 00 1
0 0 1]andX=]1
0 00 0

o oo

<

We can easily check that Ind(A) = 2. Also, X satisfies AX = Py and
by a direct calculation. So X # A®.

Furthermore, in [12], the authors have provided other properties of core-EP inverse. In the following
lemma, one of properties in [12] will be recalled.

Lemma 3.4. [12] Let A € C™" and Ind(A) = k. Then,
(i) AA® = P ;
(11) A®A Pﬂ(Ak),N((Ak”)”A)'
Moreover, combining the equality (ii) in Lemma 3.3 with the condition N((A%)*A) = N((A¥*1)*A) lead to

A®A = P’R(Ak N ((AF)A)+ It is clear that AX = PAk and XA = PR(AI‘) N((AF) A) by X = A%, HOWeVer the conditions
AX = PAk and XA = P‘R(Ak) N((AF)A) can’t deduce that X = A®.

Example 3.5. Let

1 00
0 0 1 JandX =
0 0O

We can easy to check that Ind(A) = 2. Also, X satisfies AX = Py and XA = Pgazy na2ya). However, we have
R(X) # R(X*) # R(A?) by a direct calculation. So X # A®.

From Example 3.5, we see that the matrix X only satisfying AX = P4 and XA = Pg 4k x4y 4) Can not be
core-EP inverse of A. Consequently, from the following theorem, we obtain various representions of core-EP
inverse by AX = PAk and XA = PR(A"),N((A")*A)'

Theorem 3.6. Let A, X € C™" and Ind(A) = k. If A = Ay + A; is the core-EP decomposition of A(from Lemma
1.2), where A; is core partial of A and A, is nilpotent partial of A. Then the following conditions are equivalent:

(i) X = A%;

(ll) AX = PAk, XA = PR(A"),N((A")*A) and XAX = X,

(lll) AX = PAk, XA = PR(Ak),N((Ak)*A) and r(X) = r(Ak),

(I'U) AX = PAk, XA = PR(Ak),N((Ak)*A) and XAlX = X,

(U) XA = Pﬂ(Ak),N((Ak)*A)/ Xe CEP and XAX = X.
Proof. The proofs of ()= (ii), (i)=(iii) and (i)=(iv) can be showed by using Lemma 3.3 and Lemma 2.1.

(i)=(v) If (i) holds, by Lemma 3.4 we have XA = Pgx) (ay4)- By the definition of core-EP inverse, we
have R(X) = R(X*) and XAX = X. Also, X € CEP by R(X) = R(X").

(ii)=(1) Write X = U[ §1 §2 ] U*. Suppose that the core-EP decomposition of A be as in (1), then A,
3 X4
and AF can be written as equalities (2) and (3). From XA = Pgar) N(aky4), We can obtain XAM! = AF. From
T-! X5

the following Lemma 2.3, the matrix X can be written as X = U 0 x U*. Then due to AX = Py
4

and XAX = X, we have XPy = X. So it can be easily checked that X, = 0 and X4 = 0. Therefore,

_ Tt ol,.._ ®
X—U[ 0 O}U—A

-1
(iii)=(i) From (ii)=(i) and XA = Pg 4 x4y 4), the matrix X can be expressed as X = U[ TO ;i ] u-.

As r(X) = r(AF), we obtain Xy = 0. For AX = P4, we have the following equality

T s T X I 0
[0 NHO oz]z[o o]' (16)
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T1 0

So X, =0. Thus,X=U[ 0 0

[ =

(iv)=(i) From (ii)=(i) and combining XA = Pgar x(ary4), the matrix X canbe writtenas X = U [
And thanks to XA X = X, we have

7! X5 T S T-! Xo _ T! X5
0 Xy 0 0 0 Xy | | 0 Xy |

[ T' X, +T7'SX, ]_[ 1 X, ]

T-1 X5 .
e

0 0 0 X4
PN T 0|,
So we have X4 = 0. Then following (i)=(iii), we have X = U 0 0 u: = A%.

-1
(v)=(@) Due to XA = Prary n(akyay, We have XA**! = Ak, Then X can be writtenas X = U TO i((z } u-
4

by Lemma 2.2. And due to XAX = X, we have R(X) € R(XA). According to XA = Pgr) n(akya), We
have R(XA) = R(A¥). 1t follows that R(X) € R(AF). So we have X; = 0. By applying X € CE?, we have

-1
R(X) = R(X"). So it is simple to show that X, = 0. And the matrix X can be written as X = LI[ TO 8 ] u-.

Then from Lemma 1.3, we can obtain X = A®. [

4. The other characterizations for core-EP inverse

In this section, we provide other properties of core-EP inverse. In fact, the following theorem will be
useful to obtain the other revisitations of core-EP inverse.

Theorem 4.1. Let A, X € C"™" and Ind(A) = k. Then the following conditions are equivalent:
(i) X = AY;
(i) XAX = X, R(X) = R(A¥) and XP 4 = X;
(iii) XA = AF, R(X) = R(AF) and XP e = X;
(iv) XA = AK and R(X*) = R(AF);
(Z)) X = PAkX = XPAk Lli’ld PAk = XAPAk,‘
(Ul) X = PAkX = XPAk and PAk = PAkAX.

Proof. The proof of (i)=(iv) is easy to check, by Lemma 1.4.
I 0
00
(i)=(v) and (i)=(vi), by using the definition of core-EP inverse.

(ii)=(i) A can be written as the equality (1). Also, A* can be written as the equality (2). Partitioning of

By Lemma 1.3, we have Py = U u*, where r(I) = r(A¥). Then we can check (i)=(ii), (i)=(iii),

Xas X = U[ §; §Z U conformable for matrix with the partition of A. We know P4« = ll[ é 8 ] u.
And since XP 4 = X, we conclude the following equalities
X % |[10],,. X X%]|[1 0],.

ul X %o o Jr=ul % ][0 0w @

X; 0 X; X
[X; 0]:[)(; Xi] (18)
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Hence X, = 0 and X4 = 0. Then from Theorem 2.7 (ii)=(i), we have X3 = 0 by R(X) = R(A¥). So the matrix
X1 0

X can be written as X = U[ 0 0

] U, where the matrix Xj is invertible. Therefore, for XAX = X, we get

T' 0

*— AD
N

X; = T~! by a simple calculation. Therefore, X = U[

(iii)=(i) The proof is similar to (ii)=(i).
71 X5

(iv)=(i) Following Lemma 2.3, the matrix X can be written as X = U[ 0 X
4

] U*. Then we have

-1
X, = 0 and Xy = 0 by using R(X*) = R(AF). Above all, the matrix X can be written as X = U[ 0 ] u.

0 0
_ 70 0 | o
SoX—U[ 0 O]U_A'
(V)=(i) As Py ZU[(I) 8 U, then we get X, = 0 and Xy = 0 by XP4 = X. So we obtain X =

X1 0

U| X O]U*. Thus from X = P4 X, we have X3 = 0. HenceX:U[ 0 0
0 . X 0 T S I 0 .
o]u‘u[o oHo NHO o]u'

s
Bsk!

have
Hence X;T = I. Note that the matrix T is invertible, so we obtain X; = T~!. Thus we get the conclusion that
-1 0
— * ®
SRR

(vi)=(i) The proof is similar to (v)=(i). O

] U*. From Py« = XAP 4, we

O~

In the previous arguments, we always concern on the condition XA*! = A, Now, we will take the
condition A**1X = A¥P, into consideration. According to Lemma 3.1, we can obtain A*!1X = AP, by
X = A®. Therefore, in the following theorem, we will present some characterizations in reference to core-EP
inverse by using the condition AF1X = A¥P .

Theorem 4.2. Let A, X € C™" and Ind(A) = k. And A = A1 + A, is the core-EP decomposition of A(from Lemma
1.1), which Ay is core partial of A and A, is nilpotent partial of A. Then the following conditions are equivalent:

(i) X = AY;

(ii) A1 X = ARP 5 and R(X) = R(AF);

(iii) AM1X = APy and Py X = X;

(iv) A1 X = AKP 4 and A1 X? = X;

(v) A1 X = APy and AX? = X.

Proof. (i)=(ii)-(v) are obvious by Lemma 1.4 and Lemma 3.1.

e T S
(i)=(@{) Let A = U[ 0 N
X1 X3
X3 Xy

T TS || X1 X |, [T S|[I O],.
u[o 0HX3X4u‘uoo 0 o |4

T¢ 0
0 0}

]U*. Then we have A; = U[ T f)

T S
* k — *
0 ]U and A —U[O O]U.We

suppose that X = U[ ] U. For AM1X = A*P ., we have

[ TF1X; + TSX; TF1X, + TSXy ] B [
0 0 -
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Therefore, we obtain the following equalities:
TH1X; + TSX; = TF, (19)

TH1X, + TSX, = 0. (20)

Then from Lemma 2.6 and R(X) = R(A*), we have X3 = 0 and X, = 0. By equalities (19) and (20), we have
TH1X; = T and T*!X, = 0. Since the matrix T is invertible, we can get X; = T~! and X, = 0. So we have
_ T' 0 . _ e
X = U[ 0 0 ]U = A%.
(iii)=(i) By A*1X = AP, we get equalities (19) and (20). Then, by P4 X = X, we have

I 0] X2 Xz |0 _ X1 X2 |y
ulo ol 3 8 Ju=u X R
X1 X | | X X
Xs Xg |7 0O 0|
Hence X3 = 0 and X4 = 0. Then we can obtain X = A® by (ii)=(i).
(iv)=(i) From (ii)=(i) we have equalities (19) and (20). According to A;X? = X, we have

T S X1 X5 X1 X5 - X1 X +
u[o 0”)(3 X4HX3 X4]U_U[X3 X4}u’

[ TX? + SXaXy + TXo Xy + SXuXs  TX1 Xz + SX3Xz + TXp X4 + SX? ] _ [ X1 X2 ]

0 0 X3 Xy
Hence we obtain X3 = 0 and X; = 0. Then the following is same as (ii)=(i).
(v)=(ii) By AX? = X, we conclude X = AX? = A2X3 = ... = AKX¥1 Thus, we have R(X) C R(AF), which

implies P X = X. Hence (ii) holds. [J

Then, in the following theorem, a simpler version of characterization about core-EP inverse by comparing
with the matrix of Theorem 2.4 will be provided.

Theorem 4.3. Let A € C™" and Ind(A) = k. Then A® = A

RAR),N(AF))'
Proof. Let X satisfies X = A,{;(] AR N(ARY then the theorem will be proved by showing that X = A®. From
X = A{;(}Ak)’N(Ak), we obtain XAX = X, R(X) = R(A¥) and N(X) = N((A¥)"). For any A € C™", we always

have N(A) = R(A")*. Therefore, we get N((AF)) = R(A*)* and N(X) = R(X*)*. Then, according to
N(X) = N((A5), we get RAR)*: = R(X)*L. Taking the complementary subspace of both sides, we have
R(AF) = R(X*). Therefore, we get R(AF) = R(X) = R(X*) and XAX = X. So X = A®. O

According to the definition of (B, C)-inverse and core-EP inverse, we can show that core-EP inverse is a
specific (B, C)-inverse of A.

Theorem 4.4. Let A € C™" and Ind(A) = k, then core-EP inverse of A is a specific (B, C)-inverse of A, where B = A*
and C = (A"~

Proof. Suppose that the core-EP decomposition of A is A = U :g If] U*. Then A can be written as
K ™ S|, : T 0], . .
A =U 0 0 U*. By applying Lemma 1.4, we get A® = U 0 o [U- Thus it can be easily verified

that A°AF*1 = AF and (A")FAA® = (A*)r. By the definition of core-EP inverse we have R(A®) = R(A*) and
N(A®) = N((A*)"). Therefore, according to the uniqueness of (B, C)-inverse, we obtain that core-EP inverse
of A is a specific (B, C)-inverse of A, where B = A¥and C = (A")f. O
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Remark 4.5. Moreover, if the matrix A € C™" satisfies Ind(A) < 1, then A® = A®. All of the results obtained in
this paper generalize the relevant ones in [16] .
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