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Abstract. In this paper, we study some properties of core-EP inverse of square matrices. Firstly, we extend
the obtained theorem proved by K.M. Prasad and K.S. Mohana. Then some properties of core-EP inverse
have been given, through applying the conditions (AX)∗ = AX, XAk+1 = Ak and R(X) = R(X∗) = R(Ak).
Secondly, we get some characterizations of core-EP inverse by employing the conditions AX = PAk and XA =
P
R(Ak),N((Ak+1)∗A). Finally, we get some properties of core-EP inverse by utilizing the condition Ak+1X = AkPAk .

1. Introduction

LetCm×n be the set of m×n complex matrices. For A ∈ Cm×n, the symbolsR(A),N(A), A∗ and r(A) denote
the range space, null space, conjugate transpose and rank of A, respectively. Moreover, the identity matrix of
order n is denoted by In.

Let A ∈ Cm×n. The unique matrix X ∈ Cn×m, which satisfying the following conditions:

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA,

is called the Moore-Penrose inverse of A and written by A† [1] . If a matrix X ∈ Cn×m only satisfies the equality
AXA = A, then X is an inner inverse of A and we denote it by A− [1] . Moreover, we denote the class of
all inner inverse of A by A(1) [1] . A matrix X ∈ Cn×m that satisfies XAX = X is an outer inverse of A and
we denote it by A(2) [1] . Furthermore, let P and L be two complementary subspaces in Cn. If the matrix X
satisfies the following conditions:

(i) X ∈ A(2), (ii) R(X) = R(P), (iii)N(X) = N(L),

then X is denoted by A(2)
P,L [9] .

Here, we mainly consider the square matrices. The smallest nonnegative integer k, which satisfies
r(Ak) = r(Ak+1), is called the index of A and we denote it as Ind(A). Furthermore, the set of all index 1
matrices also known as core matrices is denoted by CCM

n . The matrix A satisfying R(A∗) = R(A), is called
EP-matrix and set of EP-matrices in Cn×n is CEP

n . The matrix A satisfying A2 = A, is called idempotent matrix
and it is denoted by CP

n . For A ∈ Cn×n, if a matrix X ∈ Cn×n satisfies the following three conditions:

(i) XAX = X, (ii) XA = AX, (iii) XAk+1 = Ak, for some positive integer k,
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then X is called the Drazin inverse of A and written as AD [1] . Moreover, when Ind(A) ≤ 1, the matrix X is
known as the group inverse and noticed by A] [1] . More on Drazin inverses and generalized Drazin inverses
see in [10, 17]. For two complementary subspaces L,M ∈ Cn, that satisfy L

⊕
M = Cn. PL,M is said to be

the oblique projector onto L along M. Additionally, if M is the subspace orthogonal to L, we denote the
orthogonal projection onto L by PL,M. For A ∈ Cn×n, PA is said to be the orthogonal projection onto R(A), i.e.
PA = AA†.

Baksalary and Trenker [6] introduced the core inverse on the set CCM
n : For A ∈ CCM

n , the core inverse of A
is defined to be the unique matrix X such that

AX = PA and R(X) ⊆ R(A),

and written as A #©. Moreover, three kinds of generalizations of the core inverses [3,19,22] were given for n×n
complex matrices, called core-EP inverse, BT-inverse, and DMP-inverse, respectively. In order to introduce
these inverses, we assume that A ∈ Cn×n and Ind(A) = k. Firstly, the unique matrix X ∈ Cn×n satisfying

XAX = X and R(X) = R(X∗) = R(Ak),

is called the core-EP inverse of A and noticed by A †© [22]. It is clear that A †©
∈ CEP

n . Secondly, for A ∈ Cn×n,
the DMP-inverse of A, written by AD,† [19], is defined as the unique matrix X ∈ Cn×n satisfying

XAX = X, XA = ADA and AkX = AkA†.

Finally, the unique matrix X ∈ Cn×n satisfying

X = (APA)†,

is called the BT-inverse of A and noticed by A� [3].
In 2017, Drazin introduced (B,C)-inverse on the ring. And then Benitez and Boasso et. al [7] researched

(B,C)-inverse on the set Cm×n.

Definition 1.1. [7] Let A ∈ Cm×n and B,C ∈ Cn×m. The matrix A is said to be (B,C)-invertible, if there exist a
matrix X ∈ Cn×m, satisfying the following conditions:

XAB = B, CAX = C, N(X) = N(C) and R(X) = R(B).

Furthermore, the matrix X is called (B,C)-inverse of A. And the matrix X is unique.

In [24] , Wang introduced core-EP decomposition of A ∈ Cn×n as follows:

Lemma 1.2. [24] Let A ∈ Cn×n with Ind(A) = k. Then A can be written as the sum of matrices A1 and A2, i.e.
A = A1 + A2, where

(i) A1 ∈ CCM
n ;

(ii) Ak
2 = 0;

(iii) A∗1A2 = A2A1 = 0.
Moreover, A1 is core partial and A2 is nilpotent partial. Then we notice k is nilpotent index, moreover the nilpotent
index of A2 is equal to index of the matrix A.

Moreover, Wang [24] researched characterization of core-EP decomposition by using Schur lemma.

Lemma 1.3. [24] Let the core-EP decomposition of A ∈ Cn×n be as in Lemma 1.2. Then there exists the unitary
matrix U such that

A = U
[

T S
0 N

]
U∗, (1)
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where T is non-singular and N is nilpotent. Moreover, A1 and A2 can be represented by

A1 = U
[

T S
0 0

]
U∗ and A2 = U

[
0 0
0 N

]
U∗, (2)

and Ak can be given by

Ak = U
[

Tk S̃
0 0

]
U∗, (3)

where S̃ =
∑k−1

i=0 TiSNk−i.

Furthermore, in [24] , some characterizations of core-EP inverse were introduced.

Lemma 1.4. [24] Let A ∈ Cn×n with Ind(A) = k, and let the core-EP decomposition of A be as in Lemma 1.3. Then

A †© = A #©

1 = U
[

T−1 0
0 0

]
U∗.

In [24] , the author obtained the relationship between core-EP inverse and core inverse by using the core-EP
decomposition. In [12] , some representations for core-EP inverse have been given.

In this paper we are concerned with some properties of core-EP inverse of square matrices by using core-
EP decomposition. In Section 2, some necessary and sufficient conditions for core-EP inverse will be given by
using the conditions (AX)∗ = AX, XAk+1 = Ak andR(X) = R(X∗) = R(Ak). In Section 3, we derived necessary
and sufficient condition for core-EP inverse by using the conditions AX = PAk and XA = PR(Ak),N((Ak+1)∗A). In
Section 4, we get some properties of core-EP inverse by utilizing the condition Ak+1X = AkPAk . Also, we
devoted a new representation of the core-EP inverse. Then by the definition of (B,C)-inverse, we get a result
that the core-EP inverse is a specific (B,C)-inverse.

2. Some revisitations about core-EP inverse

In [22] , Prasad and Mohana defined core-EP inverse for square matrices and presented some properties.
In the following lemma, we provide one of its properties:

Lemma 2.1. [22] Let A, X ∈ Cn×n and Ind(A) = k. Then X is core-EP inverse of A if and only if X satisfies the
following four conditions:

XAk+1 = Ak, XAX = X, (AX)∗ = AX, and R(X) ⊆ R(Ak).

Whereas, we will see that the condition XAX = X is superfluous for Lemma 2.1. Therefore, we have the
following theorem.

Theorem 2.2. Let A, X ∈ Cn×n and Ind(A) = k. Then X is core-EP inverse of A if and only if X satisfies the
conditions:

XAk+1 = Ak (AX)∗ = AX, and R(X) ⊆ R(Ak).

Proof. Suppose that R(X) ⊆ R(Ak) and XAk+1 = Ak. We have X = AkT, for some T ∈ Cn×n. Hence,

XAX = XAk+1T = AkT = X.

According to Theorem 2.2, we can find that X satisfies XAk+1 = Ak and (AX)∗ = AX, where X is core-EP
inverse of A. Therefore, in the following theorem, we get some necessary and sufficient conditions about
core-EP inverse by (AX)∗ = AX and XAk+1 = Ak. To prove the theorem, we need the following lemma.
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Lemma 2.3. Let A, X ∈ Cn×n and Ind(A) = k. Suppose that the core-EP decomposition of A is given by A =

U
[

T S
0 N

]
U∗. If XAk+1 = Ak, then X can be written as X = U

[
T−1 X2

0 X4

]
U∗, where X2 and X4 are arbitrary.

Proof. We assume that A can be written as (1). Then Ak can be written by (3). Assume that X =

U
[

X1 X2
X3 X4

]
U∗. If X satisfies XAk+1 = Ak, we get

[
X1 X2
X3 X4

] [
Tk+1 TS̃

0 0

]
=

[
Tk S̃
0 0

]
,

[
X1Tk+1 X1TS̃
X3Tk+1 X3TS̃

]
=

[
Tk S̃
0 0

]
.

Therefore, we can obtain the following equalities

X1Tk+1 = Tk, (4)

X1TS̃ = S̃, (5)

X3Tk+1 = 0, (6)

X3TS̃ = 0. (7)

It can be easily seen that X1 = T−1 and X3 = 0. Therefore, X can be written as X = U
[

T−1 X2
0 X4

]
U∗.

Theorem 2.4. Let A, X ∈ Cn×n and Ind(A) = k. If A = A1 + A2 is the core-EP decomposition of A(from Lemma
1.2), where A1 is core partial of A and A2 is nilpotent partial of A. Then the following conditions are equivalent:

(i) X = A †©;
(ii) (AX)∗ = AX, XAk+1 = Ak and r(Ak) = r(X);
(iii) (AX)∗ = AX, XAk+1 = Ak and A1X2 = X;
(iv) (AX)∗ = AX, XAk+1 = Ak and AsXs+1 = X, for some positive integer s;
(v) (AX)∗ = AX, XAk+1 = Ak and XA1X = X.

Proof. The proofs of (i)⇒(ii), (i)⇒(iii), (i)⇒(iv) and (i)⇒(v) are a direct consequences of Lemma 1.4.
(ii)⇒(i) If XAk+1 = Ak then R(Ak) ⊆ R(X). Since r(Ak) = r(X), we get R(Ak) = R(X). Hence due to

Theorem 2.2, we have X = A †©.

(iii)⇒(i) Suppose that X = U
[

X1 X2
X3 X4

]
U∗. Let A be of the form (1). Moreover according to Lemma

1.3, it follows that A1 = U
[

T S
0 0

]
U∗ and Ak = U

[
Tk S̃
0 0

]
U∗. From Lemma 2.3, we set that X can be

given by X = U
[

T−1 X2
0 X4

]
U∗. By A1X2 = X, we obtain

[
T S
0 0

] [
T−1 X2

0 X4

] [
T−1 X2

0 X4

]
=

[
T−1 X2

0 X4

]
, (8)

[
T−1 X2 + TX2X4 + SX2

4
0 0

]
=

[
T−1 X2

0 X4

]
. (9)

So we get X4 = 0. From (AX)∗ = AX we get X2 = 0. Hence X = A †©.
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(iv)⇒(i) By XAk+1 = Ak, we obtain X = U
[

T−1 X2
0 X4

]
U∗. Also, by AsXs+1 = X, we have that

[
T S
0 N

]s [
T−1 X2

0 X4

]s+1

=

[
T−1 X2

0 X4

]
, (10)[

Ts S̃
0 Ns

] [
T−(s+1) M̃

0 Xs+1
4

]
=

[
T−1 X2

0 X4

]
, (11)

where S̃ =
∑s−1

i=0 TiSNs−i and M̃ =
∑s

i=0 T−iX2Xs−i
4 . So we get[

T−1 TsM̃ + S̃Xs+1
4

0 NsXs+1
4

]
=

[
T−1 X2

0 X4

]
Hence NsXs+1

4 = X4. If s ≥ k, then it is easy to check that X4 = 0. If s < k, then X4 = NsXs+1
4 = N2sX2s+1

4 = · · · =

NksXks+1
4 . Due to Nk = 0, we obtain X4 = 0. Thus, we have X = U

[
T−1 X2

0 0

]
U∗. Then, from (AX)∗ = AX

we get X2 = 0. Therefore, X = A †©.
The proof of (v)⇒(i) is the same as (iii)⇒(i).

The following example shows that we can’t lead to X = A †© by substituting XAX = X for XA1X = X in
Theorem 2.4(v).

Example 2.5. Let

A =

 1 0 0
0 0 1
0 0 0

 and X =

 1 0 0
0 0 0
0 1 0

 .
It is easy to see that Ind(A) = 2. Also, we can verify that X satisfies (AX)∗ = AX, XA3 = A2 and XAX = X.
However, we can easily check that R(X) , R(X∗) , R(Ak). Therefore, X , A †©.

In [22] , the author introduced the definition of core-EP inverse which satisfies R(X) = R(X∗) = R(Ak) and
XAX = X. In the following theorem, we show the other properties of core-EP inverse by using the condition
R(X) = R(X∗) = R(Ak). To prove the theorem, we need the following lemma.

Lemma 2.6. Let A, X ∈ Cn×n and Ind(A) = k. Let the core-EP decomposition of A be given by A = U
[

T S
0 N

]
U∗.

If R(X) = R(X∗) = R(Ak), then X can be expressed as X = U
[

X1 0
0 0

]
U∗, where X1 is invertible.

Proof. By Lemma 1.3, we have that Ak can be written by (3). Let X be given by X = U
[

X1 X2
X3 X4

]
U∗. Due

to R(Ak) = R(X), then there exists a matrix Y satisfying X = AkY. So we divide the matrix Y into four blocks

as Y = U
[

Y1 Y2
Y3 Y4

]
U∗. From X = AkY, we get

U
[

X1 X2
X3 X4

]
U∗ = U

[
Tk S̃
0 0

] [
Y1 Y2
Y3 Y4

]
U∗,

[
X1 X2
X3 X4

]
=

[
TkY1 + S̃Y3 TkY2 + S̃Y4

0 0

]
.

Thus, X3 = 0 and X4 = 0. Similarly, according to R(X∗) = R(Ak), it follows that X2 = 0. Thus the matrix X

can be written as X = U
[

X1 0
0 0

]
U∗, where X1 is invertible.
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Theorem 2.7. Let A, X ∈ Cn×n and Ind(A) = k. Then the following are equivalent:
(i) X = A †©;
(ii) R(X) = R(X∗) = R(Ak) and XAk+1 = Ak;
(iii) R(X) = R(X∗) = R(Ak) and AsXs+1 = X, for some positive integer s;
(iv) R(X) = R(X∗) = R(Ak) and XA ∈ CP

n ;
(v) R(X) = R(X∗) = R(Ak) and AX ∈ CP

n ;
(vi) R(X) = R(X∗) = R(Ak) and AXAk = Ak.

Proof. The proofs of (i)⇒(ii), (i)⇒(iii), (i)⇒(iv), (i)⇒(v) and (i)⇒(vi) are trivial by Lemma 1.4.

(ii)⇒(i), (iii)⇒(i), and (vi)⇒(i). We suppose that A is written as in (1). Then Ak = U
[

Tk S̃
0 0

]
U∗. Assume

that X = U
[

X1 X2
X3 X4

]
U∗. By Lemma 2.6, we haveR(X) = R(X∗) = R(Ak), which yields X = U

[
X1 0
0 0

]
U∗,

where X1 is invertible. Then following the other conditions, we can obtain X1 = T−1 by a direct calculation.

Hence we have X = U
[

T−1 0
0 0

]
U∗ = A †©.

(iv)⇒(i) By Lemma 2.6, we have X = U
[

X1 0
0 0

]
U∗, where X1 is invertible. Due to XA ∈ CP

n , we get

[
X1 0
0 0

] [
T S
0 N

] [
X1 0
0 0

] [
T S
0 N

]
=

[
X1 0
0 0

] [
T S
0 N

]
,

[
X1TX1T X1TX1S

0 0

]
=

[
X1T X1S

0 0

]
.

Thus we have X1TX1T = X1T. Since X1 and T are invertible, we conclude X1T = I. Then we have X1 = T−1.

Hence we have X = U
[

T−1 0
0 0

]
U∗ = A †©.

The proof of (v)⇒(i) is similar to the proof of (iv)⇒(i).

Remark 2.8. We obtain X = A †© by substituting A1 for A in Theorem 2.7 (ii)-(vi).

3. Some properties of core-EP inverse under the condition AX = PAk

In this section, we mainly show several characterizations of core-EP inverse by applying some properties
in [12]. Ferreyra, Levis, et. al [12] have presented some new characterizations about the core-EP inverse of a
square matrix. In the following lemma, the important conclusion from [12] is given:

Lemma 3.1. [12] Let A,X ∈ Cn×n and Ind(A) = k. Then X is core-EP inverse of A if and only if AX = PAk and
R(X) ⊆ R(Ak).

From this lemma we can obtain AX = PAk , if the matrix X is core-EP inverse of the square matrix A.
Therefore, in the following theorem, we get some necessary and sufficient conditions about core-EP inverse
by taking AX = PAk into consideration.

Theorem 3.2. Let A, X ∈ Cn×n and Ind(A) = k. And A = A1 + A2 is the core-EP decomposition of A(from Lemma
1.1), where A1 is core partial of A and A2 is nilpotent partial of A. Then the following conditions are equivalent:

(i) X = A †©;
(ii) AX = PAk and AX2 = X;
(iii) AX = PAk and A1X2 = X;
(iv) AX = PAk , X ∈ CEP

n and XAX = X.
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Proof. The proofs of (i)⇒(ii) and (i)⇒(iii) are trivial by applying Lemma 1.4.
(i)⇒(iv) By Lemma 3.1, we have AX = PAk . And due to the definition of core-EP inverse, we can

conclude R(X) = R(X∗) and XAX = X. Also, since R(X) = R(X∗), we get X ∈ CEP
n .

(ii)⇒(i) If AX = PAk , then by AX2 = X we conclude PAk X = X. Also, we have R(X) ⊆ R(Ak). Hence from
Lemma 3.1 we have X = A †©.

(iii)⇒(i) Assume that X = U
[

X1 X2
X3 X4

]
U∗. Let A be as in (1). Then A1 can be written as the equality (2)

and write Ak = U
[

Tk S̃
0 0

]
U∗. Due to Lemma 3.1, we have

PAk = AA †© = U
[

T S
0 N

] [
T−1 0

0 0

]
U∗ = U

[
I 0
0 0

]
U∗.

Therefore, we have PAk = U
[

I 0
0 0

]
U∗. From A1X2 = X, we obtain

[
T S
0 0

] [
X1 X2
X3 X4

] [
X1 X2
X3 X4

]
=

[
X1 X2
X3 X4

]
.

By a direct calculation, we get[
TX2

1 + SX3X1 + TX2X3 + SX4X3 TX1X2 + SX3X2 + TX2X4 + SX2
4

0 0

]
=

[
X1 X2
X3 X4

]
,

which yield

TX2
1 + SX3X1 + TX2X3 + SX4X3 = X1, (12)

TX1X2 + SX3X2 + TX2X4 + SX2
4 = X2, (13)

X3 = 0, (14)

X4 = 0. (15)

Therefore, X3 = 0 and X4 = 0. So the matrix X is of the form

X = U
[

X1 X2
0 0

]
U∗.

Since AX = PAk , we have [
T S
0 N

] [
X1 X2
0 0

]
=

[
I 0
0 0

]
.

So we get X1 = T−1 and X2 = 0. Above all, we conclude X = A †©.

(iv)⇒(i) According to AX = PAk , we get XAX = X, which yields XPAk = X. So we have
[

X1 X2
X3 X4

] [
I 0
0 0

]
=[

X1 X2
X3 X4

]
and
[

X1 0
X3 0

]
=

[
X1 X2
X3 X4

]
. Therefore, we obtain X2 = 0 and X4 = 0. According to X ∈ CEP

n ,

we have X3 = 0. Then since AX = PAk , it follows that X = A †©.

In Theorem 3.2 (iii), X ∈ CEP
n is necessary to check X = A †©. In the following example, we will demonstrate

it.
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Example 3.3. Let

A =

 1 0 0
0 0 1
0 0 0

 and X =

 1 0 0
1 0 0
0 0 0

 .
We can easily check that Ind(A) = 2. Also, X satisfies AX = PA2 and XAX = X. However, we have R(X) , R(X∗)
by a direct calculation. So X , A †©.

Furthermore, in [12], the authors have provided other properties of core-EP inverse. In the following
lemma, one of properties in [12] will be recalled.

Lemma 3.4. [12] Let A ∈ Cn×n and Ind(A) = k. Then,
(i) AA †© = PAk ;
(ii) A †©A = PR(Ak),N((Ak+1)∗A).

Moreover, combining the equality (ii) in Lemma 3.3 with the conditionN((Ak)∗A) = N((Ak+1)∗A) lead to
A †©A = PR(Ak),N((Ak)∗A). It is clear that AX = PAk and XA = PR(Ak),N((Ak)∗A) by X = A †©. However, the conditions
AX = PAk and XA = PR(Ak),N((Ak)∗A) can’t deduce that X = A †©.

Example 3.5. Let

A =

 1 0 0
0 0 1
0 0 0

 and X =

 1 0 0
0 0 1
0 0 0

 .
We can easy to check that Ind(A) = 2. Also, X satisfies AX = PA2 and XA = PR(A2),N((A2)∗A). However, we have
R(X) , R(X∗) , R(A2) by a direct calculation. So X , A †©.

From Example 3.5, we see that the matrix X only satisfying AX = PAk and XA = PR(Ak),N((Ak)∗A) can not be
core-EP inverse of A. Consequently, from the following theorem, we obtain various representions of core-EP
inverse by AX = PAk and XA = PR(Ak),N((Ak)∗A).

Theorem 3.6. Let A, X ∈ Cn×n and Ind(A) = k. If A = A1 + A2 is the core-EP decomposition of A(from Lemma
1.2), where A1 is core partial of A and A2 is nilpotent partial of A. Then the following conditions are equivalent:

(i) X = A †©;
(ii) AX = PAk , XA = PR(Ak),N((Ak)∗A) and XAX = X;
(iii) AX = PAk , XA = PR(Ak),N((Ak)∗A) and r(X) = r(Ak);
(iv) AX = PAk , XA = PR(Ak),N((Ak)∗A) and XA1X = X;
(v) XA = PR(Ak),N((Ak)∗A), X ∈ CEP

n and XAX = X.

Proof. The proofs of (i)⇒(ii), (i)⇒(iii) and (i)⇒(iv) can be showed by using Lemma 3.3 and Lemma 2.1.
(i)⇒(v) If (i) holds, by Lemma 3.4 we have XA = PR(Ak),N((Ak)∗A). By the definition of core-EP inverse, we

have R(X) = R(X∗) and XAX = X. Also, X ∈ CEP
n by R(X) = R(X∗).

(ii)⇒(i) Write X = U
[

X1 X2
X3 X4

]
U∗. Suppose that the core-EP decomposition of A be as in (1), then A1

and Ak can be written as equalities (2) and (3). From XA = PR(Ak),N((Ak)∗A), we can obtain XAk+1 = Ak. From

the following Lemma 2.3, the matrix X can be written as X = U
[

T−1 X2
0 X4

]
U∗. Then due to AX = PAk

and XAX = X, we have XPAk = X. So it can be easily checked that X2 = 0 and X4 = 0. Therefore,

X = U
[

T−1 0
0 0

]
U∗ = A †©.

(iii)⇒(i) From (ii)⇒(i) and XA = PR(Ak),N((Ak)∗A), the matrix X can be expressed as X = U
[

T−1 X2
0 X4

]
U∗.

As r(X) = r(Ak), we obtain X4 = 0. For AX = PAk , we have the following equality[
T S
0 N

] [
T−1 X2

0 0

]
=

[
I 0
0 0

]
. (16)
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So X2 = 0. Thus, X = U
[

T−1 0
0 0

]
U∗ = A †©.

(iv)⇒(i) From (ii)⇒(i) and combining XA = PR(Ak),N((Ak)∗A), the matrix X can be written as X = U
[

T−1 X2
0 X4

]
U∗.

And thanks to XA1X = X, we have[
T−1 X2

0 X4

] [
T S
0 0

] [
T−1 X2

0 X4

]
=

[
T−1 X2

0 X4

]
,

[
T−1 X2 + T−1SX4

0 0

]
=

[
T−1 X2

0 X4

]
,

So we have X4 = 0. Then following (i)⇒(iii), we have X = U
[

T−1 0
0 0

]
U∗ = A †©.

(v)⇒(i) Due to XA = PR(Ak),N((Ak)∗A), we have XAk+1 = Ak. Then X can be written as X = U
[

T−1 X2
0 X4

]
U∗

by Lemma 2.2. And due to XAX = X, we have R(X) ⊆ R(XA). According to XA = PR(Ak),N((Ak)∗A), we
have R(XA) = R(Ak). It follows that R(X) ⊆ R(Ak). So we have X4 = 0. By applying X ∈ CEP

n , we have

R(X) = R(X∗). So it is simple to show that X2 = 0. And the matrix X can be written as X = U
[

T−1 0
0 0

]
U∗.

Then from Lemma 1.3, we can obtain X = A †©.

4. The other characterizations for core-EP inverse

In this section, we provide other properties of core-EP inverse. In fact, the following theorem will be
useful to obtain the other revisitations of core-EP inverse.

Theorem 4.1. Let A, X ∈ Cn×n and Ind(A) = k. Then the following conditions are equivalent:
(i) X = A †©;
(ii) XAX = X, R(X) = R(Ak) and XPAk = X;
(iii) XAk+1 = Ak, R(X) = R(Ak) and XPAk = X;
(iv) XAk+1 = Ak and R(X∗) = R(Ak);
(v) X = PAk X = XPAk and PAk = XAPAk ;
(vi) X = PAk X = XPAk and PAk = PAk AX.

Proof. The proof of (i)⇒(iv) is easy to check, by Lemma 1.4.

By Lemma 1.3, we have PAk = U
[

I 0
0 0

]
U∗, where r(I) = r(Ak). Then we can check (i)⇒(ii), (i)⇒(iii),

(i)⇒(v) and (i)⇒(vi), by using the definition of core-EP inverse.
(ii)⇒(i) A can be written as the equality (1). Also, Ak can be written as the equality (2). Partitioning of

X as X = U
[

X1 X2
X3 X4

]
U∗ conformable for matrix with the partition of A. We know PAk = U

[
I 0
0 0

]
U∗.

And since XPAk = X, we conclude the following equalities

U
[

X1 X2
X3 X4

] [
I 0
0 0

]
U∗ = U

[
X1 X2
X3 X4

] [
I 0
0 0

]
U∗, (17)

[
X1 0
X3 0

]
=

[
X1 X2
X3 X4

]
. (18)
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Hence X2 = 0 and X4 = 0. Then from Theorem 2.7 (ii)⇒(i), we have X3 = 0 by R(X) = R(Ak). So the matrix

X can be written as X = U
[

X1 0
0 0

]
U∗, where the matrix X1 is invertible. Therefore, for XAX = X, we get

X1 = T−1 by a simple calculation. Therefore, X = U
[

T−1 0
0 0

]
U∗ = A †©.

(iii)⇒(i) The proof is similar to (ii)⇒(i).

(iv)⇒(i) Following Lemma 2.3, the matrix X can be written as X = U
[

T−1 X2
0 X4

]
U∗. Then we have

X2 = 0 and X4 = 0 by using R(X∗) = R(Ak). Above all, the matrix X can be written as X = U
[

T−1 0
0 0

]
U∗.

So X = U
[

T−1 0
0 0

]
U∗ = A †©.

(v)⇒(i) As PAk = U
[

I 0
0 0

]
U∗, then we get X2 = 0 and X4 = 0 by XPAk = X. So we obtain X =

U
[

X1 0
X3 0

]
U∗. Thus from X = PAk X, we have X3 = 0. Hence X = U

[
X1 0
0 0

]
U∗. From PAk = XAPAk , we

have

U
[

I 0
0 0

]
U∗ = U

[
X1 0
0 0

] [
T S
0 N

] [
I 0
0 0

]
U∗,[

I 0
0 0

]
=

[
X1T 0

0 0

]
.

Hence X1T = I. Note that the matrix T is invertible, so we obtain X1 = T−1. Thus we get the conclusion that

X = U
[

T−1 0
0 0

]
U∗ = A †©.

(vi)⇒(i) The proof is similar to (v)⇒(i).

In the previous arguments, we always concern on the condition XAk+1 = Ak. Now, we will take the
condition Ak+1X = AkPAk into consideration. According to Lemma 3.1, we can obtain Ak+1X = AkPAk by
X = A †©. Therefore, in the following theorem, we will present some characterizations in reference to core-EP
inverse by using the condition Ak+1X = AkPAk .

Theorem 4.2. Let A, X ∈ Cn×n and Ind(A) = k. And A = A1 + A2 is the core-EP decomposition of A(from Lemma
1.1), which A1 is core partial of A and A2 is nilpotent partial of A. Then the following conditions are equivalent:

(i) X = A †©;
(ii) Ak+1X = AkPAk and R(X) = R(Ak);
(iii) Ak+1X = AkPAk and PAk X = X;
(iv) Ak+1X = AkPAk and A1X2 = X;
(v) Ak+1X = AkPAk and AX2 = X.

Proof. (i)⇒(ii)-(v) are obvious by Lemma 1.4 and Lemma 3.1.

(ii)⇒(i) Let A = U
[

T S
0 N

]
U∗. Then we have A1 = U

[
T S
0 0

]
U∗ and Ak = U

[
Tk S̃
0 0

]
U∗. We

suppose that X = U
[

X1 X2
X3 X4

]
U∗. For Ak+1X = AkPAk , we have

U
[

Tk+1 TS̃
0 0

] [
X1 X2
X3 X4

]
U∗ = U

[
Tk S̃
0 0

] [
I 0
0 0

]
U∗,

[
Tk+1X1 + TS̃X3 Tk+1X2 + TS̃X4

0 0

]
=

[
Tk 0
0 0

]
.
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Therefore, we obtain the following equalities:

Tk+1X1 + TS̃X3 = Tk, (19)

Tk+1X2 + TS̃X4 = 0. (20)

Then from Lemma 2.6 and R(X) = R(Ak), we have X3 = 0 and X4 = 0. By equalities (19) and (20), we have
Tk+1X1 = Tk and Tk+1X2 = 0. Since the matrix T is invertible, we can get X1 = T−1 and X2 = 0. So we have

X = U
[

T−1 0
0 0

]
U∗ = A †©.

(iii)⇒(i) By Ak+1X = AkPAk , we get equalities (19) and (20). Then, by PAk X = X, we have

U
[

I 0
0 0

] [
X1 X2
X3 X4

]
U∗ = U

[
X1 X2
X3 X4

]
U∗,

[
X1 X2
X3 X4

]
=

[
X1 X2
0 0

]
.

Hence X3 = 0 and X4 = 0. Then we can obtain X = A †© by (ii)⇒(i).
(iv)⇒(i) From (ii)⇒(i) we have equalities (19) and (20). According to A1X2 = X, we have

U
[

T S
0 0

] [
X1 X2
X3 X4

] [
X1 X2
X3 X4

]
U∗ = U

[
X1 X2
X3 X4

]
U∗,

[
TX2

1 + SX3X1 + TX2X4 + SX4X3 TX1X2 + SX3X2 + TX2X4 + SX2
4

0 0

]
=

[
X1 X2
X3 X4

]
.

Hence we obtain X3 = 0 and X4 = 0. Then the following is same as (ii)⇒(i).
(v)⇒(ii) By AX2 = X, we conclude X = AX2 = A2X3 = · · · = AkXk+1. Thus, we have R(X) ⊆ R(Ak), which

implies PAk X = X. Hence (ii) holds.

Then, in the following theorem, a simpler version of characterization about core-EP inverse by comparing
with the matrix of Theorem 2.4 will be provided.

Theorem 4.3. Let A ∈ Cn×n and Ind(A) = k. Then A †© = A{2}
R(Ak),N((Ak)∗)

.

Proof. Let X satisfies X = A{2}
R(Ak),N(Ak)

, then the theorem will be proved by showing that X = A †©. From

X = A{2}
R(Ak),N(Ak)

, we obtain XAX = X, R(X) = R(Ak) and N(X) = N((Ak)∗). For any A ∈ Cn×n, we always

have N(A) = R(A∗)⊥. Therefore, we get N((Ak)∗) = R(Ak)⊥ and N(X) = R(X∗)⊥. Then, according to
N(X) = N((Ak)∗), we get R(Ak)⊥ = R(X∗)⊥. Taking the complementary subspace of both sides, we have
R(Ak) = R(X∗). Therefore, we get R(Ak) = R(X) = R(X∗) and XAX = X. So X = A †©.

According to the definition of (B,C)-inverse and core-EP inverse, we can show that core-EP inverse is a
specific (B,C)-inverse of A.

Theorem 4.4. Let A ∈ Cn×n and Ind(A) = k, then core-EP inverse of A is a specific (B,C)-inverse of A, where B = Ak

and C = (A∗)k.

Proof. Suppose that the core-EP decomposition of A is A = U
[

T S
0 N

]
U∗. Then Ak can be written as

Ak = U
[

Tk S̃
0 0

]
U∗. By applying Lemma 1.4, we get A †© = U

[
T−1 0

0 0

]
U∗. Thus it can be easily verified

that A †©Ak+1 = Ak and (A∗)kAA †© = (A∗)k. By the definition of core-EP inverse we have R(A †©) = R(Ak) and
N(A †©) = N((A∗)k). Therefore, according to the uniqueness of (B,C)-inverse, we obtain that core-EP inverse
of A is a specific (B,C)-inverse of A, where B = Ak and C = (A∗)k.
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Remark 4.5. Moreover, if the matrix A ∈ Cn×n satisfies Ind(A) ≤ 1, then A #© = A †©. All of the results obtained in
this paper generalize the relevant ones in [16] .
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for their helpful suggestions to the improvement of this paper.
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