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Abstract. Let ¢ be an additive category with an involution *. Suppose that ¢ : X — X is a morphism of ¢
with core inverse p? : X — X and 1 : X — X is a morphism of ¢ such that 1x + ¢®n is invertible. Let o =
(x+@®) 7, B = (Ax+n9®) 7", £ = (Ix—pe®na(lx—¢®9),y = a(lx—p )~ pp®B, 0 = ap®pa' (1x—pp®)B,
0 = B (@®yn'(1x — pp®)B. Then f = ¢ + n — ¢ has a core inverse if and only if 1y -y, 1x — o and 1x - 6
are invertible. Moreover, the expression of the core inverse of f is presented. Let R be a unital *-ring
and J(R) its Jacobson radical, if a € R® with core inverse a® and j € J(R), then a + j € R® if and only if
(1 —aa®)j(1 +a®j)"1(1 — a®a) = 0. We also give the similar results for the dual core inverse.

1. Introduction

Let ¢ be an additive category with an involution . (See, for example, [8, p. 131].) Let ¢ : X — Y and
X 1 Y = X be morphisms of ¢. Consider the following four equations:

M pxe=¢, @ xex=x, BG) (@) =px, 4 xe) =xe.

Let @i, j,--- , I} denote the set of morphisms y which satisfy equations (i), (j), - - - , (/) from among equations
(1)-(4). If li,j,---,1} # 0, then @ is called {i, j,--- ,[}-invertible. A morphism x € ¢{i, j,---,I} is called an
{i,j,--+ ,I}<inverse of ¢ and denoted by ¢, A {1}-inverse is called a von Neumann regular inverse or
inner inverse. If a morphism x € ¢{1,2,3,4}, then it is called the Moore-Penrose inverse of ¢. If such x
exists, then it is unique and denoted by ¢'. If X = Y, x € ¢{1,2} and gx = x¢, then yx is called the group
inverse of ¢. If such y exists, then it is unique and denoted by ¢*. A morphism ¢ : X — X is said to be
Hermitian if ¢* = ¢.

Recall that a unital ring R is said to be a unital *-ring if it has an involution provided that there is an
anti-isomorphism * such that (a*)* = a, (a+ b)* = a* + b* and (ab)* = b*a* for alla, b € R. In 2010, Baksalary and
Trenkler introduced the core inverse of a complex matrix in [1]. Raki¢ et al. [11] generalized core inverses
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of a complex matrix to the case of an element in a ring with an involution *. An element x € R is said to be
a core inverse of 7 if it satisfies

axa = a, xR = aR, Rx = Ra’,

such an element x is unique if it exists and denoted by a®. And they also showed that a® exists if and only
if there exists x € R such that
axa = a, xax = x, (ax)* = ax, ax? = x, xa* = a.

In this case, x = a®. There is a dual concept of core inverses which is called dual core inverses. The symbols
R71, RY, R*, R~ 1 R® and R, denote the set of all invertible, Moore-Penrose invertible, group invertible,
{i, j,--+ ,I}-invertible, core invertible and dual core invertible elements in R, respectively.

Hence one can define the notion of the core and dual core inverse in an additive category. Let ¢ be an
additive category with an involution and ¢ : X — X a morphism of ¥. If there is a morphism y : X — X
satisfying

PXP = @, XX = X, (PX)' = X, PX* = X, XP* = @,
then ¢ is core invertible and y is called the core inverse of ¢. If such y exists, then it is unique and denoted
by ¢®. And the dual core inverse can be given dually.

Group inverses and Moore-Penrose inverses of morphisms were investigated some years ago. (See,
[7]-[9].) In [4], Huylebrouck and Puystjens gave a necessary and sufficient condition for the von Neumann
regularity, Moore-Penrose invertibility and group invertibility of a + j in a ring R with identity, where a is
a von Neumann regular element of R and j is an element of the Jacobson radical of R. In [3], Huylebrouck
generalized these results to an additive category ¥ under some sufficient conditions. In [14], You and
Chen proved these sufficient conditions were also necessary which completed Huylebrouck’s results. In
this paper, we give the necessary and sufficient conditions for the existence of core inverses and dual core
inverses for f = ¢ + n—¢. The core and dual core invertibility of a + j is also considered in this paper, where
a is a core invertible element of R and j is an element of the Jacobson radical of R.

Before investigate the core inverse of a sum of morphisms, some auxiliary results should be presented.

Lemma 1.1. [2, p. 201] Let a € R, we have the following results:
(1) a is {1, 3}-invertible with {1, 3}-inverse x if and only if x'a*a = a;
(2) a is {1, 4}-invertible with {1, 4}-inverse y if and only if aa*y* = a.

Lemma 1.2. [2, Proposition 7] Let a € R, a € R* if and only if a = a°x = ya® for some x,y € R. In this case,

a* = yax = y*a = ax®.

Lemma 1.3. [13, Theorem 2.6 and 2.8] Let a € R, we have the following results:
(1) a € R® ifand only if a € R* N RYA), In this case, a® = a*aal).
(2) a € Ry if and only if a € R* N RUA. In this case, ag = aPaa®.

Lemma 1.4. [5, Theorem 3.4] Let a € R. The following conditions are equivalent:
(1)a € R%;

(2) there exists a unique projection p such that pa = 0,u =a+p € R™};

(3) there exists a Hermitian element p such that pa =0, u =a+p € R™L.

In this case,

a® = ulau™t = (wu)la.
It should be pointed out, the above lemmas are valid in an additive category with an involution *.

Lemma 1.5. [3, Proposition 1] Let ¢ be an additive category. Suppose that ¢ : X — Y is a morphism of € with
{1,2}—inverse "2 and n : X — Y is a morphism of € such that 1x + 1?1 is invertible. Let

e = (Iy — pp"n(1x + P07 (1x — 1),

then f = @ + 1 — € has a {1}-inverse and (1x + 1) o2 € f{1,2}. Moreover, if T € (¢ + n){1}, then we have
T € €{1}.
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2. Core and Dual Core Inverses of a Sum of Morphisms

Let ¢ be an additive category with an involution *. Suppose that both ¢ : X — Yand : X — Y are
morphisms of €. We use the following notations:

a =(Ix+ @Tﬂ)_lr

p =y +np")7,

¢ = (ly = ppna(lx — ¢ ),

v =alx —@"e)ne’p,

6 = apn(ly - pp")p,

A =a(lx —-@ ) (@")a’,

p=P @)y —ee)p,
where T € {#,(1,2,3),(1,2,4), 1}.

In 2001, You and Chen [14] gave the group inverse, {1,2, 4}-inverse, {1, 2, 3}-inverse and Moore-Penrose

inverse of a sum of morphisms in an additive category, respectively. The results are as follows.
(I) [14, Proposition 1] Let X = Y and 7 = #. If ¢ is group invertible with group inverse ¢* : X — X and
1x + ¢"n is invertible, then the following conditions are equivalent:
(i) f = @ + 1 — € has a group inverse;
(ii) 1x — y and 1x — 6 are invertible;
(iii) 1x — y is left invertible and 1x — 6 is right invertible.
In this case,

= x -y lap*1x - 0)7,

(x -y =1x—-¢'p+ ffo'o,
(1x = 6)" =1x — p¢* + pp*f .

(IT) [14, Proposition 2] Let 7 = (1,2,4). If ¢ is {1,2,4}-invertible with {1, 2, 4}-inverse (p(1'2'4) :Y - X and
1x + 1?7 is invertible, then the following conditions are equivalent:

(i) f = @ +n—¢eis{1,2,4}-invertible;

(ii) 1x — A is invertible;

(iii) 1x — A is left invertible.

In this case,

(1x = ) lap?Y € £{1,2,4),

(]-X _ /\)71 — 1X _ @(1,2/4)§0 + f(1,2,4)f(P(1,2,4)(P.

(IIT) [14, Proposition 3] Let T = (1,2,3). If ¢ is {1,2, 3}-invertible with {1,2,3}-inverse > : Y — X and
1x + 1?37 is invertible, then the following conditions are equivalent:

(i) f = @ +n—¢€is{l,2,3}-invertible;

(ii) 1y — p is invertible;

(iii) 1y — p is right invertible.

In this case,

P21y — w7t € f(1,2,3},

(1Y _ ‘u)—l — 1Y _ (P(p(l,Z,B) + (P(P(l’2’3)ff(1/2’3)-

(IV) [14, Proposition 4] Let T = t. If ¢ is Moore-Penrose invertible with Moore-Penrose inverse ¢’ : Y — X
and 1x + @' is invertible, then the following conditions are equivalent:
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(i) f = @ + 1 — € has an Moore-Penrose inverse;

(if) 1x — A and 1y — p are invertible;

(iif) 1x — A is left invertible and 1y — u is right invertible.
In this case,

M =0x-)ap' 1y -7,

(Ix-A7" =1x-¢'e+ffo'p,
(Ix =™ =1y -’ +pp'ff"
Inspired by the above results, we investigate similar results for core inverses and dual core inverses in

an additive category with an involution . It should be pointed out, the above notations are no longer used
below.

Theorem 2.1. Let € be an additive category with an involution +. Suppose that ¢ : X — X is a morphism of € with
core inverse p® and 1 : X — X is a morphism of € such that 1x + @®n is invertible. Let

a =(1x+9°n7",

B =(x+ne®7",

¢ = (Ix = pe®)na(lx - ¢%9p),

y =a(lx —¢"9)B " po"p,

o =ap®pa” (1x - pp”)B,

o =B @) (1x = pp”)p.
Then the following conditions are equivalent:
(i) f = @ + 1 — € has a core inverse;
(ii) 1x — y, 1x — 0 and 1x — 0 are invertible;

(iii) 1x — y is left invertible, both 1x — ¢ and 1x — 6 are right invertible.
In this case,

fO = (x =) "ap(1x - 0)7",

(Ax =)' =1x — 9® + f2fpe®,
(x—0)™" =1x — po® + pp®f°f,
(Ax = 6)7" =1x — p® + pp®f £°.

Proof. While the method of this proof is similar to You and Chen’s (see [14]), there is still enough different
about them.

By Lemma 1.5, (1x + P®n)~te® € fi1,2}.

Let fo = (Ix + 9n) "¢ = a¢® = ¢°B, then

P°f = %@ + 11— &) = 9% + 9®1n = P®p(1x + 1) = p®pa",
and f¢® = BLpp®. So fof = ap®f = ap®pa?t, and

Ix - fof =1x —a@®pa™ = a(lx — p®p)a™
= a(lx - ¢"@)(1x + ¢"n) = a(lx - ¢%@).

Similarly, we have ffy = B p@p®B and 1x — ffo = (1x — pp®)B.
Further,

(x = foNffo = alx — ®P)B " pp®B =y,
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fof(Ix = ffo) = ap®pa (1x — pp®)B = 0,

(ffo)(x = ffo) = (B pp®B)'(1x — p9®)B
= B'pp®(B~) (1x — pp®)B
= B'[(1x — 9B pgI'B
= B'[(1x — p9p?)(1x + np®)pp®T'p
= B'[(1x — ) @p® + ne*)I'B
= B'[(1x — pp®)ne®I'p

Therefore, we obtain

fy=0, of =0, 6f=0,

moreover,

fsz—f f+fof>=f-0x-foHf
- Ax = foN)f folf = Ax = N)f,
Fho=f=f+Fffo=f-fx-ff)
= fllx = fof(Ix = ffo)l = f(1x — 0),
ffho=Ff-f+fffo=f-fUx-ff)
= f'llx = (ffo)'(Ax — ffo)] = f"(1x = 0).

Now we are ready to show the equivalence of three conditions.

(1) = (ii). The first step is to show that 1x — p@® + f®fpp? is the inverse of 1x — 7.

Note that
x =Nf°f =Ax=NF°F°f = L2 fO1%f = fof
= ap®pa”! = ap®p(1x + ") = alp®p + ¢®n)
=a(lx + ¢®n+ ¢%p - 1x) = ala™ + ¢®p —1x)
=1x + a(p®p — 1x).

Post-multiplication p¢® on the equality above yields

(Ix =N fop® = pp®.

y(1x — 99®) = a(lx — p®)B pp®B(lx — pp®)
= a(lx - p®p)B ' pagp®(1x — )
= 0,

we obtain

(Ix = »)(1x = p® + f®fpp®)
=1x = p9p® —y(1x — p9®) + (1x = V) f* fpp®
=1x — p” = 0+ @p®

=1x.

2935
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So 1x — pp® + f®fpe? is the right inverse of 1x — ). Next, we prove that 1x — p¢® + f® fp@? is also the left
inverse of 1x —y.

Note that

y =a(lx — 0°p)p 9
= a(lx — ¢®p)(1x + ne®)pe®p
= a(lx — 9®@)(@p® + np®)B
= a(lx — ¢®p)ne®B,

1x — ®na = @ and 1x — ne®B = B, thus we have

pp®y = pp®a(lx — p®P)ne®p
= pp®(1x — 9"na)(1x — p®P)ne°p
= pp®(Lx — p®P)ng®B — p"na(lx — p®P)ne°p
= pp®(1x = p®P)ne®B + (a — 1x)(1x — ®p)ne®p
= pp®(1x — ®)ne®B + a(lx — p®P)ne®s — (1x — P @)ne®p
a(lx — ®P)ne®B — (1x — p@®)(1x — ¢®P)ne®B
=y - (Ix — pp®)ne®p
=y - (1x — p9®)(1x — p).
So (1x — pp®)y = (1x — pe®)(1x — B), which implies

(1x = pp®)1x =) = (1x — pp°)B.
Furthermore,

fefoe®y = fofly — (Ix — 9@®)(1x — )]
= fofy = f2f(x — 99®)(1x - B),
=—ff(1x — pp®)(1x - B).

In addition,

Ix — p9® + f fpg®
=1x +n¢® — fo® + f* fpp®
=1x +ne® = f2f(fo® — pp®)
=1x +n¢® — f*fne®
= fof + (Ix = f*/)(1x + n9®)
= fof + (Ix - foN)p".

Therefore,

(Ix — p9® + f*fpp®)(1x = )
= (Ix = p®)(1x = y) + f2fp® = f fpp®y
= (Ix = pp®)B + f*fop® + f©f(1x — p9p®)(1x — B)
= (Ix —pp”)B + fOfoe® + ff(1x = B) — f*fop® + f* fpp®B
= fOf(x = B) + (Ix — p® + fOfpp®)B
= ff(x =B+ [f°f + (Ix = f2)B 1B
=ff = fOfB+ fOfB+1x—f°f

=1x.
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Hence 1x — y is invertible with inverse (1x — y)™! = 1x — p® + @ fop®.
The second step is to prove that 1x — p¢® + p@p®f®f is the inverse of 1x — 0. On the one hand,

fofQx=0) = f*f*fo = ffo =B~ 9B = (Lx + np")pe"p
= (pg® +np°)p = (Lx + 9" + pp® — 1x)P
= 1x + (pp® — 1x)B.
Pre-multiplication ¢¢® on the equality above yields
Pp°f*f(lx = 0) = pp®.
And because
(1x =)0 = (1x - 9p”)ag®pa™ (Lx - pp°)p
= (Ix = pg")p" o™ (1x — pg®)B
=0,
we have
(Ix = 99" + pp° ff)(1x ~ 0)
= (Ix = 9")(1x = 0) + pp°f*f(1x = 0)
= 1x = @¢” + pg®
=1y
On the other hand, as 1x — fne® = B, we obtain

opp® = ag®pa” (1x - pp°)Bpe”
= ap®pa”! (1x = p9p”)(1x — png®)pp®
= ap®pa! (1x = pp”)pg® — ag®pa” (1x — pp®)Bne pp®
= —ap®pa! (1x — pp®)Bg®
= —ap®pa” (1x — pp®)(1x — p)
=0 —ap®pa(1x — p@®).
Thus we have
o(lx = p9®) = ap®pa” (1x — pg®),
and
opp®fof =[o - ap®pa(1x — pp®)Iff
= af*f —appa” (1x — pp”) f° f
= affof*f — ap®pa” (1x — pp®)f° f
= —ap®pa”! (1x — p9®) f° f.
In addition,
Pp°® + ap®pa” (1x — p¢°)
= pp® + ap®p(lx + ¢®n)(1x — p®)
= ala ' p9® + p®p(1x + p®1)(1x — p®)]
= al(lx + 9"Npe® + (¢%p + P"n)(1x — )]
= a[(Ix + "Nee® + 9% + "1 — (¢%¢ + P Npe°]
= alp®p + ¢°n + (Ix + 9"n — 9°¢ — P*Npe®]
= a(p®p + ¢®n)
= ap®f.
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Therefore

(Ix — 0)(1x — @9® + pp® ff)
= (Ix — 0)(1x — 9®) + (1x — 0)pp® f* f
=1x = pp® — o(lx — p®) + pp®f* f —opp®f° f
= 1x = pp® — ap®pa! (1x = p9®) + P9 f* f + ap®pa™" (1x — p®) f* f
= 1x — @¢® + pp° f* f — ap®pa”" (1x — pp)(1x — f°f)
= 1x = 9”(1x — f°f) = ap®pa™" (1x — pp®)(1x — f°f)
= 1x = [pg® + ap®pa' (1x — pp?)I(1x - f*f)
=1x —ap®f(1x - f°f)

=1x.

Thus 1x — o is invertible with inverse (1x — 0)™! = 1x — p¢® + pp® f®f.

In the end, 1x — 6 is invertible with inverse (1x — 6) ™! = 1x — pp® + p@® f f® can be deduced immediately
by [14, Proposition 3] and the fact that the core inverse is a {1, 2, 3}-inverse.

(if) = (iii). Obviously.

(iif) = (i). Assume that w is the left inverse of 1x — y. v and A are the right inverses of 1x — 0 and 1x — o,
respectively. Then we have

f=w(lx=-pf =wff? 1)

f=fAx=0)A=ffil, 2)
and

f=) = UAx=oWw) = (fffv)y =v'fiff 3)

By Lemma 1.2, equalities (1) and (2) tell us that f is group invertible with group inverse f* = wfof foAd = w foA.
And by Lemma 1.1, equality (3) shows that f is {1, 3}-invertible with fyv € f{1,3}. Hence, f is core invertible
by Lemma 1.3. Moreover,

f2= 1 = whdffov.

From (i) = (ii), we know that 1x — v, 1x — ¢ and 1x — 0 are invertible with inverse w = (1x — 7/)‘1,
A= (1x-o0)ytand v = (1x — 67!, respectively. As of = 0, we have (1x — 0)f = f, that is to say
f = (1x — o)} f = Af. Therefore,

f? = wforffov = wfoffov = wfov = (Ix = ) ap®(1x - 6)7".
0

Remark 2.2. If the conditions as in Theorem 2.1 hold, and if 1x — 6 is invertible, then f fy is core invertible with
(ffo)? = ffolx = 8)7".

Proof. Since 1x — ffo = (1x — ¢®)B,
Ix=06—-ffo =(x—ffo) =06
= (Ix — p9®)B = B (9") " (1x — pp®)B
= (1x = n9°B)'(1x — pg®)B
=B (1x — p9p®)B.
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Set g =B (Ix —pp®)B =1x—0— ffo, then g = q°, qf fo = 0 and g + ffo = 1x — O is invertible. Thus ffy is
core invertible and (f fo)® = (1x — 8) "' ffo(1x — 8)~! by Lemma 1.4. Since 6f = 0, (1x — 8)f = f, which implies
f=(1x—06)"'f. Hence

(ffo)® = Ax =) ffolx =6)7" = ffo(lx =)~

There is a result for the dual core inverse, which corresponds to Theorem 2.1, as follows.

Theorem 2.3. Let € be an additive category with an involution +. Suppose that ¢ : X — X is a morphism of € with
dual core inverse pq : X — X and n: X — X is a morphism of € such that 1x + @gn is invertible. Let

a = (Ix +pen) ",

B =(x+1ps) ",

¢ = (Ix — ppe)na(lx — ep),

p = apepa” (1x — Pps)B,

C = a(lx ~ P9)B~ Ppop,

¢ = a(lx = PeP) (ps)a’.
Then the following conditions are equivalent:
(i) f = @ + 1 — € has a dual core inverse;
(ii) 1x — p, 1x — Cand 1x — & are invertible;

(iii) 1x — p is right invertible, both 1x — C and 1x — & are left invertible.
In this case,

fo = Ax =& ape(lx —p)7",

(Ax=p)" =1x = Qe + PP f fo,
(Ix-07' =1x - PoP + ffoPa,
(Ix=&™"' =1x - PoP + fofPap-

3. Core and Dual Core Inverses of a Sum with a radical element

Let R be a unital *ring and J(R) its Jacobson radical. As a matter of convenience, we use the following
notation:

e = (1—aa®)j(1 +a*j)"1(1 - a%a),

where T € {(1),(1,2,3),(1,2,4),1,#} and j € J(R).
In [4], Huylebrouck and Puystjens proved the following results.

(1) Ifa € RY, thena + j € R if and only if £¢) = 0.

(I) Ifa € R", then a + j € R" if and only if &+ = 0.

(Ill) If a € R*, then a + j € R* if and only if &4 = 0.
In [14], You and Chen told us:

(IV) Ifa € R1%3 then a + j € R1%3 if and only if £1,03) = 0.

(V)Ifa € R"?4 thena + j€ R124 if and only if eqp4) = 0.

Moreover, the expressions of (a + /)32, (a + j)t, (@ + j)*, (@ + )Y, (a + j)*Y are presented, respectively.
Next, we will show that the core invertible element has a similar result as the above.

Theorem 3.1. Let R be a unital »-ring and [(R) its Jacobson radical. If a € R® with core inverse a® and j € J(R), then
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a+j€eR®ifand only if ¢ = (1 —aa®)j(1 +a®))" (1 — a®a) = 0.
In this case,
@+)®=>1-y)"'1+a%)'a®1-0)7",
where
y =1 +a%)7'(1 - a®%)(1 + ja®)aa®(1 + ja®) ™,
& = (1+@)) @) (1 - aa®)(1 + ja®)~".
Proof. Remark first that, if j € J(R), then 1 +a®j € R and j* € J(R).
Set ¢ = (a + j)® then ¢ € {1} by Lemma 1.5. This shows that the element ¢ € J(R) is von Neumann
regular, so it must be zero, that is to say ¢ = (1 —aa®)j(1 + a®j)}(1 — a®a) = 0.

On the contrary, suppose that ¢ = (1-aa®)j(1+a®j)}(1—a®%a) = 0. Then it is easy to see that (1+a®/)1a® €
(a+ f){1,2} by Lemma 1.5 and the fact that the core inverse is a {1, 2}-inverse. Thus, we have

@+ )N +a®)a®@+j) = (@a+j),
which implies
[1-(@+ ) +a®)"a®l(a+j)=0, 4)
where
1—(a+j)1+a®)"a®
=1-(a+ j)a®(1+ ja®™"
=1+ ja®)(1 + ja®)' = (a + j)a®(1 + ja®)!
= [(1 + ja®) — (a + /)a®](1 + ja®) !
= (1-aa®)(1 + ja®".
Hence the equality (4) can be written as
(1 - aa®)(1 + ja®)a + j) = 0. (5)

Since a € R®, set p = 1 — aa®. Then p is a Hermitian element such that pa = 0, a + p € R™! by the proof of
Lemma 1.4. Let

g=1[1+ ja®)_1]*p(1 + ja@)_1 =[1+ ja®)_1]*(l —aa®)(1 + ja®)_1.
Then g = g* and

gla+j) =1+ ja®)T"(1 — aa®)(1 + ja®) " (a + j) 9.
Moreover, we have
a+q =a+[(1+ ) Tp(d + ja) !
= [(1+ ja®) I + ja®)'a(1 + ja®) + p](1 + ja®) 7",
where
(1+ ja)a(L + ja®) + p
= a+aja® + (@) [a+ @) faja® +p
=(a+p)+aja®+@®)ja+ @®)jaja®
=@+p)1+(@+p)@ja” + @) ja+ @) faja)]
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is invertible which follows from the property of Jacobson radical and the fact that 2 + p € R™'. Thus
a+qe R™1. Therefore,

a+j+q:(a+q)[1+(a+q)_1j]€R_1.

In conclusion, g is a Hermitian element such that g(a + j) = 0,2 + j + g € R™'. Applying Lemma 1.4, we can
get thata + j € R®. Therefore, 1x — y, 1x — 0 and 1x — 6 are invertible by Theorem 2.1, where

y =1 +a%)7'(1 - a®%)(1 + ja®)aa®(1 + ja®)~?,
o = (1+a%) a%(1 +a®j)(1 - aa®)(1 + ja®)7",
o =1+ @) )@ (1 - aa®)(1 + ja®)~".

Hence we obtain

(@+)®=@1-n7"A+a") a1 -0)".

Similar to Theorem 3.1, we have

Theorem 3.2. Let R be a unital »-ring and [(R) its Jacobson radical. If a € Ry with dual core inverse aq and j € J(R),
then

a+j€Rgifand onlyif e = (1 —aag)j(1 + agj) (1 — aga) = 0.

In this case,

@+)o=0-87"(1+ag) a1 - p)7",
where

p=00+ 11@].)71’1@‘1(1 +ag)(1 — aag)(1 + j”@)il,
& = (L+ag)) (1 - aga) (a) (1 + j'a}) ™.
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