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On a Topology Between 7, and 7,
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Abstract. Using the topology 77, in a topological space (X,7") , a new class of generalized open sets called
I'-preopen sets, is introduced and studied. This class generates a new topology 7, which is larger than
7. and smaller than 7,, . By means of the corresponding interior and closure operators, among other
results, necessary and sulfficient conditions are given for 7, to coincide with 75, , 7, or 7, .

1. Introduction

In the past few decades there has been a considerable interest in the study of generalized open sets in
topological spaces. Four of these concepts were simply defined using the closure operator “cl” and the
interior operator”“int”. We denote a topological space by (X, 7") or simply by X when there is no possibility
of confusion. The class of closed sets in (X, 7") will be denoted by C(7) .

Definition 1. A subset A of a space X is called
(1) an a-set if A Cint(cl(int A)),
(2) semi-open if A Ccl(intA),
(3) preopen if A Cint(clA),
(4) semi-preopen if A C cl (int (cl A)).

The first three notions were defined by Njéstad [12], Levine [10] and Mashhour et al. [11]. The concept of
preopen sets was introduced by Corson and Michael [8] who used the term “locally dense sets”. The fourth
concept was introduced by Abd El-Monsef et al. [1] under the name “f-open”, and in [3] these sets were
called semi-preopen sets. We denote the classes of these sets in a space (X, 7) by 7, , SO(7), PO(7") and
SPO(7") respectively. All of them are larger than 7 and closed under forming arbitrary unions. It was
shown in [12] that 7, is a topology on X. The closure and the interior of aset A in (X, 7,) will be denoted
by cl,A and int,A. In general, SO(7") need not be a topology on X, but the intersection of a semi-open set
and an open set is semi-open. The same holds for PO(7") and SPO(7") . The complement of a semi-open
set is called semi-closed. Thus A is semi-closed if and only if int(clA) c A . Preclosed and semi-preclosed
sets are similarly defined.We denote these classes by SC(7) , PC(7) and SPC(7") respectively. For a
subset A of aspace X the semi-closure (resp. preclosure, semi-preclosure) of A , denoted by scl A (resp. pcl A,
spcl A), is the intersection of all semi-closed (resp. preclosed, semi-preclosed) subsets of X containing A .
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The semi-interior (resp. preinterior, semi-preinterior) of A , denoted by sint A (resp. pintA, spintA), is the
union of all semi-open (resp. preopen, semi-preopen) subsets of X contained in A . Finally, the classes
of regular open sets, dense sets and nowhere dense sets in (X, 7)) will be denoted by RO(7") , D(7) and
N(7") respectively.

Let A be a class of sets in (X,7) which is larger than 7 and closed under forming arbitrary unions.
Then 7 (A) ={G € A|GNA € Awhenever A € A }is a topology on X such thatthat 7 C T(A) Cc A . It
was shown in [12] that 7 (A) = T, for A =SO(7") . The topology generated by PO(7") was studied in [4]
and denoted by 7, . It was proved in [9] that 7 (A) =7, for A = SPO(7") . The closure and the interior
of aset Ain (X,7,) are denoted by cl, A and int, A.

Now we are going to present our main results. In Section 2 we introduce a new class of generalized
open sets by the condition A C int(cl,A). This class of I'-preopen sets, denoted by I'PO(7") , generates a
new topology 7, = 7 (I'PO(7")) which we study in Section 3. This is a topology between 7, and 7, and
among other results we show that 7, = TPO(7T) N SO(T) , Tag =T ga =T g, Tgy = Tg = Tya and Ty, =
T4 - In Section 4 we study the topologies generated by the other classes of generalized open sets which
are introduced by using various combinations of the closure and interior operators in 7~ and 7, . Besides
I'-preopen sets, seven new classes are obtained and we show that three of them generate the same topology
T4 as does the class TPO(7") . As for the remaining classes, it turns out that they generate the topology
Tya -

Now we recollect some results which will be needed in the sequel.

Proposition 1.1. ([2, 3]) Let A be a subset of a space X. Then:
(1)cl, A =AUcl(int(clA)), int,A =ANint(cl(intA)),
(2)sclA= AUint(clA), sintA=ANcl(intA),

(3) pcl A =AUcl(intA), pint A = Anint(clA),
(4) spcl A = AUint (cl(int A)), spint A = ANcl (int (cl A)).

Proposition 1.2. ([3]) Let A be a subset of a space X. Then:
(1) pint(clA) = int (cl A) = int (scl A),
(2) pcl(int A) = cl(int A) = cl (sint A),
(3) int (pcl A) = int (cl (int A)) = scl (int A),
(4) cl(pint A) = cl (int (cl A)) = sint (cl A).

Proposition 1.3. ([2]) Let A be a subset of a space X. Then:
(1) int (cl,A) = int,cl A = int,cl, A =int (cl A),
(2) clyint A = cl (int,A) = clyint, A = cl (int A).

Proposition 1.4. Let (X,7") be a space. Then:
(DT,={NA | UeT ,AeNT)}([12)]),
(2)Ta = SO(T) N PO(T) ([13)),

(3) Taa = To ([12]).

Proposition 1.5. ([12]) Let 7 and U be topologies on a set X such that T Cc U T, . Then Uy =T, .
Proposition 1.6. ([9]) For aspace (X,7) and x € X the following are equivalent:

(a) {x} € SPOT).

(b) {x} e PO(T).

(c) {x}eT,.
Proposition 1.7. ([7]) Let (X, 7") be a space. Then T, = To and T oy =T .

Proposition 1.8. ([6]) Let A be a subset of a space (X,7") and x €int (cl A)\ cl, A. Then {x} e PO(T)\ T .
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Proposition 1.9. ([4]) Let A be a subset of a space X. Then:
(1) int,(cl A) = int (cl A) = int,scl A = int,cl, A,
(2) clyint A = cl(int A) = cl,sint A = cl, int, A.
(3) intucl, A = int (cl, A),
(4) clyint, A = cl(int, A).

Proposition 1.10. ([4]) Let A be a subset of a space X. Then:
(1) cloA = cl,,A U int (cl A),
(2) int, A = int, A N cl (int A).

Since the operators “cl” and “cl,” coincide on the class of semi-preopen sets, we have

Corollary 1.11. Let A be a subset of a space X. Then:
(1) cl(int, A) = cl,int, A U int (cl (int, A)),
(2) int (cl, A) = int,cl, A N cl (int (cl, A)).

Proposition 1.12. Let A be a subset of a space X. Then:
(1) cl,int, A = cl, A N cl(int, A),
(2) clyint,cl,A = cl, A N cl (int,cl, A).

Proof. (1) Suppose that x ecl,ANcl(int,A) and let x ¢cl,int,A. Then by 1.11(1) x €int(cl(int,A))
and so {x} € PO(7) by 1.8. Hence {x} €7, by 1.6 and so x € int,A, a contradiction. Therefore
cl,ANcl(int,A) Ccl,int, A, while the converse follows immediately.

The statement (2) follows easily from (1). O

Dually we have

Proposition 1.13. Let A be a subset of a space X. Then:
(1) int,cl, A = int,, A U int (cl, A),
(2) intyclyint, A = int, A U int (cl,int, A).

Proposition 1.14. ([6]) Let A be a subset of a space (X, 7). Then A € T, ifand only if A = GUH with
G €T and {h} € PO(T)\ T for every h € H.

Proposition 1.15. ([9]) Let 7 and U be topologies on X. Then SPO(7") = SPO(U) if and only if T, = U,, .
Proposition 1.16. ([4]) Let (X, 7T") be a space. Then

(1) SO(T) € SO(T;),

(2) PO(T") > PO(T,),

(3) SPO(7") > SPO(T) .

We conclude this section with the following chart.

| A | T(A) |
SOT) | 7.
PO(T) |7,
SPO(T) | 7,
SOT,) | Tha
PO(T,) | Tya
SPO(T,) | Tya
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2. OnTI-Preopen Sets
Now we consider a new class of generalized open sets.

Definition 2. A subset A of a space (X,7) is called I'-preopen if A C int(cl,A). The class of all I'-preopen
sets in (X, 7") will be denoted by I'PO(7") .

By 1.2 we have that int(cl(intA)) = int(pclA) C int(cl,A) C int,cl,A C pint(clA) = int(clA) and
therefore 7, C TPO(7") c PO(T,) c PO(T) .
On the other hand, D(7) c IT'PO(T) is clear.

Proposition 2.1. For a subset A of a space X the following are equivalent:
(a) A e TPO(T) .
(b) A € PO(T) and cl A = cl, A.

Proof. (a) = (b): Let A be I'-preopen, thatis A Cint(cl,A). Since cl, A is preclosed, we have that clA C
cl(int (cl,A)) c cl,A and thus cl A=cl, A.
The converse is obvious. [

Proposition 2.2. The union of any family of I'-preopen sets is a I'-preopen set. The intersection of an open and a
I'-preopen set in a T'-preopen set.

Proof. The statements are proved by using the same method as in proving the corresponding results for the
other classes of generalized open sets (see [3]). O

Since PO(7,) = PO(7") implies 7, = 7, ([4]) and having in mind that the operators “int” and “int,”

coincide on the class of semi-preclosed sets, we have that int,cl,,A = int,cl, A = int(cl,A). On the other
hand, by 1.7 and 1.3 we obtain int,cl,, A = int,cl,,A = int,cl,A. Therefore we have

Proposition 2.3. Let (X,7") be a space. Then TPO(T,) = IPO(T") and TPO(T,) = PO(T,) .
Corollary 2.4. If A€ ITPO(T) and G €T, ,then ANG e T'PO(T).

Recall that a space (X, 7") is called semi-Tp if cl{x}\{x} is semi-closed for each x € X. It was proved in
[7] that a space (X, 7") is semi-Tp if and only if 7, =7, . So we have

Proposition 2.5. Let (X,7") be semi-Tp. Then TPO(T") = PO(T") .
Definition 3. A subset A of a space X is called I'-preclosed if X\A is I'-preopen.

Thus A is TI'-preclosed if and only if cl (int,A) C A. The class of all T'-preclosed sets in (X,7") will be
denoted by I'PC(7) .

Dually to 2.1 we have
Proposition 2.6. A subset A of aspace X is I'-preclosed if and only if A € PC(T) and int A = int, A.

Definition 4. For a subset A of a space X the I-preclosure of A , denoted by gclA, is the smallest
I'-preclosed set containing A . The I'-preinterior of A , denoted by gint A, is the largest I'-preopen set
contained in A .

Proposition 2.7. Let A be a subset of a space X. Then:
(1) gcl A = AUcl (int,A),
(2) gint A = Anint (cl,A).
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Proof. We shall prove only the first statement. Since cl(int,(AU cl(int,A))) C cl(int,AUcl(int,A)) =
cl(int,A) C Aucl(int,A), we have that AUcl(int,A) is I'-preclosed and so gclA C AUcl(int,A). On the
other hand, gcl A is I'-preclosed and so cl(int,A) C cl(int,gcl A) C gcl A which implies A Ucl(int,A) C
gclA. O

Corollary 2.8. Let (X,7") be a space. Then gclA = clA for every A € SO(T,) and gint A = intA for every
A € SC(T,) .

Now we shall relate the operators of I'-preclosure and I'-preinterior to some other operators concerning
generalized open sets.

Proposition 2.9. Let A be a subset of a space X. Then:
(1) cl(gint A) = cl (int (cl, A)) = cl, gint A,
(2) int (gcl A) = int (cl (int,,A)) = int,gcl A.

Proof. Weshall prove only (1). First we notice that cl (gint A) =cl, gint A by 2.1. On the other hand, cl (gint A)
= cl(Anint(cl,A)) D clANint(cl,A) = int(cl,A) and thus cl(gintA) Dcl(int(cl,A)) Dcl(ANint(cl,A)) =
c(gintA). O

Proposition 2.10. Let A be a subset of a space X. Then:
(1) cl, gcl A = gcl (cl,,A) = cl,AUcl (int, A),
(2) int, gint A = gint (int, A) = int, A Nint (cl, A).

Proof. Again we prove only (1). By 1.13(1) and the fact that cl,A is preclosed we have that gcl(cl,A)
= cl,Aucdl(intycl,A) = cl,AUcl(int,AUint(cl,A)) = cl,AUcl(int,A)Ucl(int(cl,A)) = cl,AUcl(int,A) =
cl,(AUcl (int,A)) = cl,gcl A. O

Proposition 2.11. Let A be a subset of a space X. Then:
(1) sint (gcl A) = cl (int, A), scl (gint A) = int (cl, A),
(2) sint (gint A) = sint ANint (cl,,A), scl (gcl A) = scl AUcl (int, A),
(3) gint (sint A) = int, A, gcl (scl A) = cl A,
(4) pcl (gint A) = gint AUcl (int A), pint (gcl A) = gcl ANint (cl A),
(6) gint (pcl A) = pcl ANint (cl, A), gcl (pint A) = pint AU cl (int, A).

Proof. For (1) we use 2.9, for (3) 1.9, and the other statements follow easily. [J

3. Topology Generated by I'-Preopen Sets

Let 7, ={G e TPO(T) | G N A e TPO(7) whenever A € ITPO(T) }. Clearly, 7, is a topology on X, and
by 2.4 it is larger than 7, . The closure and the interior of a set A in (X, 7,) will be denoted by cl;A and
int,A respectively.

Example 3.1. (1) Let 7 be a topology on a finite set X and A € TPO(7") . Then A Cint(clA), clA =cl, A
by 2.1 and so int(cl{y}) =0 forevery y € cl,A\A. Then {y} € C(7,) and hence cl,A\A € C(7,) since X
is finite. Thus A U (X\cl,A) € 7, and hence A = (A U (X\cl,A))Nint(clA) € 7, . Therefore TPO(T") =
Ta and thus 7, =7, whenever X is finite.

(2) Let X be an infinite setand p € X. Then 7 = {0} U {U C X | p € U and X\U is finite} is a
topology on X with PO(7") = {0} U {SC X | p€ S or Sisinfinite}, 7, = 7 U{{p}} and PO(T;) =Ta =
0} U{ScX|peS} (see[7]). Then TPO(T)=T,,andso Ty =T, .

Proposition 3.2. Let (X,7") be a space. Then T, C SO(T) .
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Proof. Let A €7, and suppose that int,A = 0. Then X\A € D(7,) ¢ TPO(7) and so (X\A) U
{a} € TPO(T') for every a € A. Then f{a} = A N ((X\A) U {a}) € TPO(7) and so {a} € 7, by 1.6, a
contradiction. Hence int,A # 0 and put G = A\cl(int,A). Then G €7, , int,G =0, thus G = 0.
Therefore A Ccl(int,A) which implies A € SO(7,) by 1.12(1). O

From 1.4(2) we have
Corollary 3.3. Let (X,7) be a space. Then T4 CT 4 .

And now the following diagram relates the topology 7, to 74,7, and 7,4 .
T,

Y
/ N
T I Tya
N /
Tg

Proposition 3.4. Let (X,7") be a space. Then T, = TPO(7T) N SO(T) .

Proof. Tt remains to show that TPO(7") N SO(7,) C7, . Suppose that A € TPO(7) N SO(7,) and let
B e TPO(T) . Then cl, (AN B) Dcl,(int,A N B) Dint,ANcl,B and hence cl,(A N B) Dcl,(int,ANcl,B) >
cl, (int, A Nint(cl, B)) D cl,int, A Nint (cl, B) = cl,ANint(cl,B) because A € SO(7,) . Thus int(cl,(ANB)) >
int (cl,A) Nint(cl,B) > AN B. Thatis ANB € I'PO(7) and finally A€7,. O

Proposition 3.5. Let A be a subset of a space X. Then:
(1) intyelyA = int (cl;A),
(2) clyint,A = cl(int,A),
(3) clyintycl,A = cl (int (cl,A)),
(4) intclyint, A = int (cl (int,A)).

Proof. (1)Since 7, C T, and clyA € C(74) , by 2.6 we have thatint,cl,A Cint,,cl;A =int,cl;A = int (cl;A) C
int,cl,A.
The rest is similarly proved. [

Proposition 3.6. Let A be a subset of a space X. Then:
(1) int,cl, A Cint(cl;A),
(2) clyint,cl, A C cl(int (cl;A)),
(3) cl(int,A) C clyint, A,
(4) int (cl (int,A)) C int,cl,int, A.

Proof. (1) From 1.3(1), 3.3 and 2.6 it follows that int,cl,A = int,cl,,A Cint,cl,A = int (cl;A).
The rest is proved in a similar way. [J

Corollary 3.7. Let (X,7") be a space. Then:
(1) PO(T,) c PO(T,) c PO(T),
(2) SPO(T,) c SPO(T,) c SPO(T),
(3) SO(T") c SO(T,) c SO(T,),
DTaCTga CTya,
(56) N(7) C N(T,) C N(7,) .

Now we shall look further into the various relations between 7, ,7,, 7, and 7,, . Notice that 7,, =
T, follows easily from 2.3.

Proposition 3.8. Let (X,7") be a space. Then:
(1) Tyg = Tya ’
(2)T gy 27, .
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Proof. The first statement follows immediately from 2.3 and 1.7. As for the second statement suppose that
A €T, . Thenby 1.14, A=GUH with G €7, and {h} € PO(7) \ 7 for every h € H. By 1.6 and 3.7(1),
{h} € T, c PO(T,) c PO(T,) and so {h} € T, forevery h€ H. Hence A€ T, . O

Proposition 3.9. Let A be a subset of a space X such that cl,int,A = X. Then A€T,.

Proof. Let clint)A = X and B € I'PO(7) . Then cl,(ANB) D cl(int,A N B) O int,ANcl,B D
int,ANint(cl,B) and hence cl,(A N B) O cl, (int,A Nint(cl,B)) O cl,int, A Nint (cl, B) = int (cl, B). Therefore
int(cl, (AN B)) Dint(cl,B) D B>ANB andso ANBe€ IPO(T) . Thatis Ae7,. O

Corollary 3.10. Let (X,7") be a space. Then T 40 =T, .

Proof. Let G € T4 . By 1.4(1), G = U\A with Ue7,and A € N(7,) . By 3.7 we have that A € N(7,) and
hence A € C(7,) by39. Thus Ge7,. O

Proposition 3.11. Let (X,7") be a space. Then N(7,;) = N(T,) .

Proof. It remains to show that N(7,,) C N(7) . Suppose that int,cl,A = 0. Then A = cl;A by 3.9 and so by
3.5, intycl;A =int(cl;A) =intA = 0. Thus Ae N(7,). O

It was shown in [9] that SPO(7") = SPO(U) implies N(7) = N(U) . The converse holds under the
condition 7~ C U C 7, which was proved in [6]. The next statement gives us a slight improvement.

Lemma 3.12. Let 7 and U be topologies on X such that U C T, and T C U, . Then SPO(T) = SPO(U) if
and only if N(77) = N(U) .

Proof. Suppose A € SPO(7") and let N(7) = N(U) . Then B = A\ clyintqclgy A € N(U) =N(T) . On
the other hand, U c 7, implies clq/intq;clyy A € C(7,) and so B € SPO(7") . Hence B = ( and thus
AeSPO(U). O

Proposition 3.13. Let (X,7") be a space. Then SPO(T,) = SPO(T,) .

Proof. We have 7, C7,, =7,, (33and 1.7)and 7, C 7, (3.8) and the statement follows from 3.11 and
312. O

Now we have from 1.15 and 1.7
Corollary 3.14. Let (X,7) be a space. Then Ty, =T .
The next statement follows immediately from 2.8.

Proposition 3.15. Let (X,7") be a space. Then cl,A = cl A for every A € SO(T,) and int,A = intA for every
A € SC(T5) .

Lemma 3.16. Let A be a subset of a space X. Then int (cl,,A) = int (cl, A).

Proof. By applying 1.12 (2) we obtain int(cl,nA) = int(AUcl int,cl,A) > int(cl,int,cl,A) =
int (cl, A Ncl (int, cl, A)) = int(cl,A) Nint (cl (int,cl, A)) D int(cl,A) Nint,cl,A = int(cl,A). The reverse in-
clusion is clear. [

Proposition 3.17. Let (X,7") be a space. Then TI'PO(T,) = TPO(T) .

Proof. Applying 3.14, 3.15 and 3.16 we have that int,cl,,A = int,cl,,A = int(cl,,A) = int(cl,A) and thus
IPO(T,) =TPO(T) . O

Corollary 3.18. Let (X,7") be a space. Then T 45 =T, .
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Now we are in a position to complete the chart from Section 1.

| A | T(A) |
SO, | 7,
PO(Ty) | Tya
SPO(T,) | Tya

We conclude this section with the conditions under which the topology 7, coincides with 7, ,7, or
Tya -

Proposition 3.19. Let (X,7") be a space. Then RO(T,;) = RO(T') .

Proof. Suppose A € RO(7) , thatis A =int,cl;A. Hence A =int(cl;A) by 3.5and so A € RO(7") since
clyA € PC(T) . The converse follows from 3.15 [J

The next statement was proved in [5].

Lemma 3.20. Let 7 and U be topologies on a set X. Then T, = U, if and only if RO(T) = RO(U) and
SPO(7T") = SPO(U) .

Proposition 3.21. 7, =7, ifand only if T,u =T, .

Proof. Suppose 7, =7, and let U € 7,, . Thenby 1.4, U = G\A with G €7, and A € N(7,) . By 3.11
and 3.10 we have that A € N(7,) € C(7 ;1) = C(7,;) = C(T.) andso U € 7, . Conversely, suppose that
Tya =T, . By 1.15 and 3.13 we have SPO(7") = SPO(7,) = SPO(T,) . Hence 7, = 74, by 3.19 and 3.20,
and finally, 7, = 7, by 3.10. O

Corollary 3.22. 7, =7, ifand only if (X,7T) is semi-Tp.

Proof. Suppose that 7, = 7,, . Then by 3.10 we have 7,, =74 =7, =7, and thus 7, = 7, by 3.21.
Therefore 7, = 7, , thatis (X, 7") is semi-Tp. The converse follows from 2.5. [

It remains to find out when the topologies 7, and 7, coincide. For that,let B={x€ X | {x} €7, \ 7 }
and R(B) = {x € B | {x} € RO(T) }.

Proposition 3.23. Let (X,7") be a space. Then:
(1) {x} € T, for every x € B\R(B),
(2) {x} € T, \T, for every x € R(B).

Proof. Let x € B\R(B). By 1.13(1) we have that int,cl,{x} = {x}U int(cl,{x} ) and so x € int(cl,{x}) . Hence
{x} € TPO(T") which implies {x} € 7, .

(2) Let x € R(B) and suppose that cl,{x} = cl{x}. Then {x} =int,cl, {x} = int,cl{x} = int(cl{x}) and so
{x} € T, a contradiction. Thus {x} ¢7,. O

Corollary 3.24. 7, =T, ifand only if R(B) = 0.

Proof. Suppose that R(B) = 0. Then 7, 7, C7,, by 1.14and 3.23. Hence 7,4, =7,, by 1.5andso 7, =
Tya by 3.10. The converse is clear. [J
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4. Topologies Generated by the Other Classes of Generalized Open Sets Related to 7,

Besides I'-preopen sets, by using various combinations of operators in 7" and 7, we can introduce
several classes of generalized open sets. By 1.9 it is not difficult to see that only seven types of sets can give
us classes that are possibly new. These seven types are as follows: cl(int,A), cl(int(cl,A)), int (cl (int, A)),
int (cl,int, A), cl (int, cl, A), cl (int (cl,int,A)) and int(cl (int,cl, A)).

(A) A Ccl(int,A)

By 1.12(1), the class of sets satisfying this condition coincides with SO(7,) and thus the generated
topology is 74 .

(B) A C cl(int(cl,A))

Definition 5. A subset A of a space X is called semi-I'-preopen if A C cl(int(cl,A)). The class of all
semi-I'-preopen sets in (X, 7") will be denoted by SI'PO(7") . It is clear that TPO(7") c STPO(7") and

SO(7") € STPO(T)) € SPO(T5) € SPO(T) .

Besides, SI'PO(7") is closed under forming arbitrary unions and the intersection of an open set and a
semi-I'-preopen set is semi-I'-preopen. The next statement follows easily from 2.9(1).

Proposition 4.1. For a subset A of a space X the following are equivalent:
(a) A € STPO(T) .
(b) cl,A e RC(T).
(c) A e SPO(T) and cl, A =clA.
(d) There exists a I'-preopen set U such that U C A CclU.

Proposition 4.2. Let (X,7") be a space, A € SO(T") and B e TPO(T") . Then ANB € STPO(T) .

Proof. cl(int(cl,(A N B))) D cl(int(cl,(intA N B))) D cl(int(int A Ncl,B)) = cl(int A N int(cl,B)) D cl(int A)
Nint(cl,B) > ANB and thus ANB e SIPO(T). O

Proposition 4.3. Every semi-I'-preopen set can be represented as the intersection of a semi-open set and a I'-preopen
set.

Proof. Let A € STPO(T) . Then by 4.1 cl,A € RC(7") € SO(T) , AU (X\cl,A) € D(T;) c TPO(T) and A =
AN (AU X\c,A). O

Denote by 77, the topology generated by SITPO(7") , thatis 7}, ={G € SIPO(7") |GNA € SIPO(7) whenever
A € STPO(T) }.

Proposition 4.4. Let (X,7") be a space. Then T} C SO(T) .

Proof. Let A € 7}, and suppose that x € A\cl(int,A). Since X\(A\cl(int,A)) € D(7,) C STPO(7) and
A\cl(int,A) € T}, , we have that ({x}U(X\(A\cl(int,A)))) N (A\cl (int, A)) = {x} € STPO(T") . Therefore {x} €
SPO(7") and thus by 1.6, {x} €7, , a contradiction. Hence A Ccl(int,A) andso A € SO(7,). O
Proposition 4.5. Let (X,7") be a space. Then 7}, C TPO(T) .

Proof. Let A € 7}, and suppose that x € A\int(cl,A). Then by 4.1(c) and 1.9(1), x ¢ int,cl,A = int,clA
=int(clA) and so x ¢ int(cl(int,A)). Hence x € X\int(cl(int,A)) = cl(int(cl, (X\A))) = cl(gint (X\A)) by
2.9(1). Therefore {x}uU gint(X\A) € STPO(7") by 4.1(d) and so ({x}U gint (X\A)) N A = {x} € STPO(7") . Thus
{x} € T, , a contradiction. Hence A Cint(cl,A), thatis A € TPO(7T). O

Proposition 4.6. Let (X,7) bea space. Then T, =T, .
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Proof. By 4.4, 4.5 and 3.4 we have that 7, C 7, . To prove the converse, suppose that A € 7, and let
B € STPO(T") . By4.3wehavethat B = CND with C € SO(7") and D € TPO(7") . Then AND € IPO(7") and
so ANB=(AND)NCeSIPO(T) by42. Hence AcT;. O

(O©) A cint(cl,int,A)
It follows easily that A C int(cl,int,A) if and only if A € TPO(7) N SO(7,) , therefore this class
coincides with 7, by 3.4.

(D) A C c(int(cl,int,A))

Noticing that cl,int, A is preclosed, it follows that A Ccl (int(cl,int,A))ifand onlyif A € STPO(7") N SO(T) .
Denote the topology generated by this class by 7 , that is 7; = {G € STPO(7") N SO(7,) |GN A € STPO(T)
N SO(7,) whenever A € STPO(T") N SO(T) }.

Proposition 4.7. Let (X,7") be a space. Then 7; c TPO(T") .

Proof. Let A € 7; and suppose that x € A\int(cl,A) = A\int (cl A). Then (X\clA)U{x} € SO(7") c STPO(T")
N SO(T,) by 1.16, and so ((X\clA) U {x}) N A = {x} € SO(7,) N TPO(T) . Hence {x} €7, , a contradiction.
Therefore A € TPO(T). O

Proposition 4.8. Let (X,7") be a space. Then T; =T, .

Proof. T; C T, follows from 4.7 and 3.4. To prove the converse, let A € 7, and B € STPO(7") N SO(7,) .
Then AN B e SITPO(T) by 4.6. On the other hand, A € 7, by 3.3, thus AN B € SO(T,) . Hence A €
7. O

(E) A Ccl(intycl,A)

By 1.12(2), the class of sets satisfying this condition coincides with SPO(7,) and thus the generated
topology is 774 -

(F) A Cint(cl (int,A))

It follows easily that the class of sets satisfying this condition coincides with PO(7") N SO(7,) . Denote
the topology generated by this class by 77, thatis 7; = {G € PO(7") N SO(T,) |G N A € PO(T") N SO(T)
whenever A € PO(7) N SO(7,) }. The closure and the interior of a set A in (X,7;) will be denoted by
cl;A and int;A. The next statement follows immediately.

Proposition 4.9. Let (X,7) be a space. Then T, C T; C PO(T") N SO(T) .

Proposition 4.10. Let A be a subset of a space X. Then
(1) int,cl;A = int,cl, A,
(2) clyint;A = clyint, A.

Proof. From 4.9 and 1.2(1) we have that int,cl,A = int,scl,A C int,cl;A C int,cl,A. The second equality is
similarly proved. [

Corollary 4.11. Let A be a subset of a space X. Then
(1) intjcl;A D intycl, A,
(2) cljint;A C clyint, A,
(3) intjcljint;A D int,cl,int, A,
(4) cljinticl;A C cl,int,cl,A.

Proposition 4.12. Let (X,7") be a space. Then T, CT; .

Proof. Suppose that A € 7, and B € PO(7) N SO(7T,) , thatis A C int(cl,int,A) and B C int(cl (int, B)).
Now we have that cl(int,(A N B)) = cl(int,AN int,B) = cl(cl,(int,A N int,B)) D cl(cl,int,AN int,B) D
cl(int (cl,int,AN int,B)) D int(cl,int,A)N cl(int,B) and hence int(cl(int,(A N B))) D int(cl,int,A)N
int (cl (int, B)) > A N B. Therefore AN B € PO(7) N SO(7,) and thus A €7;. O
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Corollary 4.13. Let (X,7) be a space. Then Tj, =T .

Proof. By 1.4(1) it remains to show that N(7;)  C(7;) and suppose that int;cl;A = (. Then A € N(7,) by
4.11(1) and so A € N(7,) c C(7,) c C(7}) by 3.11,3.10and 4.12. O

From 4.11(3) and 4.13 we have
Corollary 4.14. Let (X,7) bea space. Then T, CT; .

Our next step is to prove the converse. By 1.4(2) it remains to show that 7; € PO(7,) . First we establish
a simple lemma.

Lemma 4.15. Let A bea set in a space (X,7") such that AN cl(int (cl,A)) € PO(T") . Then AN cl(int(cl,A)) C
int (cl, A).

Proof. Since int(cl,A) € RO(7") we have that AN cl(int(cl,A)) C int(cl(AN cl(int(cl,A)))) C int(clAN
cl(int (cl,A))) = int (cl (int (cl, A))) = int (cl, A). O

Proposition 4.16. Let (X,7") beaspace. Then T; C PO(T,) .

Proof. Let A € T; . We consider two cases:

(1) int(cl,A) = 0: Suppose that x € A\int,A and put B = {x} U (X\cl,A). Then B € D(7") and so
B € PO(7) . On the other hand, applying 1.13(1) we have that cl,(X\cl,A) = X\int,cl,A = X\(int,AU
int (cl,A)) = X\int,A 3 x and thus B € SO(7,) . Hence AN B = {x} € PO(7) N SO(7,) and so {x} €T, , a
contradiction. Therefore A €7, . Moreover, int,cl,A = int,A = A and thus A € RO(7,) .

(2) int(cl,A) # 0: Then A = (AN cl(int(cl,A))) UB where B = A\cl(int(cl,A)). Suppose that
x € A\int,A. First we notice that B €7 , int(cl,B) = 0 and so B € RO(7,) by (1). On the other
hand, intB = @ implies that B € PC(7) N SC(7,) and thus A\B = A\(A\cl(int(cl,A4))) = AN
cl(int (cl,A)) € PO(T) N SO(T,) . Clearly, x ¢ B thatis x € AN cl(int(cl,A)), and thus x € int(cl,A)
by 4.15. Therefore x € int,(cl,A) and so A € PO(7,). O

Corollary 4.17. Let (X,7) beaspace. Then Tj=Tq .

(G) A Cint(cl (int,cl, A))

It follows from 1.12(2) that the class of sets satisfying this condition coincides with PO(7") N SPO(7,) .
Denote the topology generated by this classby 7 , thatis 7; ={G € PO(7") N SPO(7T) | GNA € PO(T") N SPO(T,)
whenever A € PO(7") N SPO(T,) }. Itis clear that 7, c 7 C PO(7) N SPO(T) .

Proposition 4.18. Let (X,7") beaspace, A € PO(7) N SO(T,) and B € TPO(T") . Then ANB € PO(7") N SPO(T,) .
Proof. Let A C int(cl(int,A)) and B C int(cl,B). Then cl, (A N B) D cl,(int,A N B) > int,AN cl, B, and
hence int,cl,(A N B) D int,AN int,cl,B D int,A N int(cl,B). This implies cl(int,cl,(A N B)) D cl(int,AN

int (cl, B)) O cl(int,A) N int(cl, B) and finally int (cl(int,cl,(A N B))) D int (cl (int,A)) N int(cl,B) > AN B,
thatis AN B ePO(7) N SPO(T,). O

Proposition 4.19. Let (X,7) be a space. Then A € PO(T) N SPO(T,) if and only if A = BN C with
B € PO(7) N SO(T,) and C e TPO(T).

Proof. Let A € PO(7") N SPO(7,) and put B =cl,ANnint(clA), C=A U (X\cl,A). It is not difficult to see
that B € PO(7) N SO(T;), CeTPO(T)and A=BNC. O

Proposition 4.20. Let (X,7") be a space. Then Ty, C Ty .
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Proof. Suppose that G € 7,, and let A € PO(7) n SPO(7,) . Then by 419, A = BN C with
B € PO(7) N SO(7,) and C € TPO(7) . It follows from 4.17 that G N B € PO(7) N SO(7,) and
hence GNA =(GNB) NCePO(T)NSPO(T,) by 4.18. Thus Ge7. O

Proposition 4.21. Let (X,7") be a space. Then Ty C SO(7,) .

Proof. Let A € T and suppose that x € B = A\cl,int,A. Then B € 7} , int,(B\{x})= int (B\{x}) = @ and thus
B\{x} € PC(7T") N SPC(7,) . Hence {x} = B\(B\{x}) € PO(7") N SPO(7T,) and thus {x} € 7, , a contradiction.
Therefore B = (0, thatis A € SO(7;). O

Lemma 4.22. ([9]) Let (X, T") beaspaceand A, B € SO(T") . Then ANB € SO(T") ifand onlyif ANB € SPO(T) .
Proposition 4.23. Let (X,7") be a space. Then Ty =T, .

Proof. Suppose that A € 7; and let B € PO(7) N SO(7,) . Then AN B € PO(7) N SPO(7,) and so
ANBePO(T)NSO(T,) by 421 and 4.22. Thus A €7, by4.17 [

At the end of our quest for new topologies let us make a brief recapitulation.

1) Using only the closure and the interior operators in (X, 7") we obtain in the natural way four classes
of sets which are larger than 7 and closed under forming arbitrary unions (Definition 1). One among
them, 7 , turns out to be a topology on X.

2) The remaining three classes SO(7) , PO(7) and SPO(7) generate a topology by means of the
operation 7 (A) ={G € A |GNA € Awhenever A € A }. In that way we obtain one new topology, 7 .
In the next step we apply the operation 7 (A) to SO(7,) , PO(7T;) and SPO(7,) and obtain one new
topology which turns out to be 7, .

3) Finally, we introduce new classes of generalized open sets by means of the closure and the interior
operators of the topologies 7" and 7, . In this way we obtain eight new classes. Four of these classes
generate the topology 7, , but the rest give us a new topology 7, . Applying the operation 7 (A) to
SO(7,) , PO(T,) and SPO(7,) we do not obtain any new topology.

4) Now the question arises as to whether we can obtain a new topology by using the other combinations
of operatorsin 7,74, Ty, Tya and T, .

(@) By 1.3 7 and 7, give us the same as 7 .

(b) By Lemma 3.16, int(cl,,A) = int(cl,A) while cl,,intA = cl(intA) follows from 1.2(2) and 1.9(2).
Hence 7 and Tya give us the same as 7 and Ty .

(c) It follows easily from 2.8 that int,clA = intcl A while by 3.5(2) we have that cl(int,A) = cl;int,A.
Thus 7 and 7, give us no new topology.

(d) By 1.9 we have that 7, and 7, give us the same as 7 and 7, .

(e) Similarly, 7, and 7, give us the sameas 7 and 7, .

(f) Since int,cl;A = int(cl;A) = int,cl;A and clyint,A = cl (int A), 7, and 7, give us the same as 7 and
Ty

’ (g) From (a) it is clear that 7, and 7, give us no new topology.

(h) It follows from 2.6 that int, cl;A = int (cl;A) while 2.8 implies that cl;int, A = cl (int;A). Hence 7, and
T4 give us no new topology.

(i) It is not difficult to see that cl,,int,A = cl (int,A) and int,cl,,A = int(cl,A). Thus 7, and 7, give us
no new topology.

Therefore it seems to me that we may answer our question in the negative.
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