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Abstract. Using the topology Tγ in a topological space (X,T ) , a new class of generalized open sets called
Γ-preopen sets, is introduced and studied. This class generates a new topology T1 which is larger than
Tα and smaller than Tγα . By means of the corresponding interior and closure operators, among other
results, necessary and sufficient conditions are given for T1 to coincide with Tα , Tγ or Tγα .

1. Introduction

In the past few decades there has been a considerable interest in the study of generalized open sets in
topological spaces. Four of these concepts were simply defined using the closure operator “cl” and the
interior operator“int”. We denote a topological space by (X,T ) or simply by X when there is no possibility
of confusion. The class of closed sets in (X,T ) will be denoted by C(T ) .

Definition 1. A subset A of a space X is called
(1) an α-set if A ⊂ int (cl (int A)),
(2) semi-open if A ⊂ cl (int A),
(3) preopen if A ⊂ int (cl A),
(4) semi-preopen if A ⊂ cl (int (cl A)).

The first three notions were defined by Njåstad [12], Levine [10] and Mashhour et al. [11]. The concept of
preopen sets was introduced by Corson and Michael [8] who used the term “locally dense sets”. The fourth
concept was introduced by Abd El-Monsef et al. [1] under the name “β-open”, and in [3] these sets were
called semi-preopen sets. We denote the classes of these sets in a space (X,T ) by Tα , SO(T ) , PO(T ) and
SPO(T ) respectively. All of them are larger than T and closed under forming arbitrary unions. It was
shown in [12] that Tα is a topology on X. The closure and the interior of a set A in (X,Tα) will be denoted
by clαA and intαA. In general, SO(T ) need not be a topology on X, but the intersection of a semi-open set
and an open set is semi-open. The same holds for PO(T ) and SPO(T ) . The complement of a semi-open
set is called semi-closed. Thus A is semi-closed if and only if int (cl A) ⊂ A . Preclosed and semi-preclosed
sets are similarly defined.We denote these classes by SC(T ) , PC(T ) and SPC(T ) respectively. For a
subset A of a space X the semi-closure (resp. preclosure, semi-preclosure) of A , denoted by scl A (resp. pcl A,
spcl A), is the intersection of all semi-closed (resp. preclosed, semi-preclosed) subsets of X containing A .
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The semi-interior (resp. preinterior, semi-preinterior) of A , denoted by sint A (resp. pint A, spint A), is the
union of all semi-open (resp. preopen, semi-preopen) subsets of X contained in A . Finally, the classes
of regular open sets, dense sets and nowhere dense sets in (X,T ) will be denoted by RO(T ) , D(T ) and
N(T ) respectively.

Let A be a class of sets in (X,T ) which is larger than T and closed under forming arbitrary unions.
Then T (A) = {G ∈ A |G ∩ A ∈ A whenever A ∈ A } is a topology on X such that that T ⊂ T (A) ⊂ A . It
was shown in [12] that T (A) = Tα for A = SO(T ) . The topology generated by PO(T ) was studied in [4]
and denoted by Tγ . It was proved in [9] that T (A) = Tγ for A = SPO(T ) . The closure and the interior
of a set A in (X,Tγ) are denoted by clγA and intγA.

Now we are going to present our main results. In Section 2 we introduce a new class of generalized
open sets by the condition A ⊂ int (clγA). This class of Γ-preopen sets, denoted by ΓPO(T ) , generates a
new topology T1 = T ( ΓPO(T )) which we study in Section 3. This is a topology between Tα and Tγα and
among other results we show that T1 = ΓPO(T ) ∩ SO(Tγ) , Tα1 = T1α = T1 , T1γ = Tγ1 = Tγα and T11 =
T1 . In Section 4 we study the topologies generated by the other classes of generalized open sets which
are introduced by using various combinations of the closure and interior operators in T and Tγ . Besides
Γ-preopen sets, seven new classes are obtained and we show that three of them generate the same topology
T1 as does the class ΓPO(T ) . As for the remaining classes, it turns out that they generate the topology
Tγα .

Now we recollect some results which will be needed in the sequel.

Proposition 1.1. ([2, 3]) Let A be a subset of a space X. Then:
(1)clαA = A∪ cl (int (cl A)), intαA = A∩ int (cl (int A)),
(2) scl A= A∪ int (cl A), sint A = A∩ cl (int A),
(3) pcl A = A∪ cl (int A), pint A = A∩ int (cl A),
(4) spcl A = A∪ int (cl (int A)), spint A = A∩ cl (int (cl A)).

Proposition 1.2. ([3]) Let A be a subset of a space X. Then:
(1) pint (cl A) = int (cl A) = int (scl A),
(2) pcl (int A) = cl (int A) = cl (sint A),
(3) int (pcl A) = int (cl (int A)) = scl (int A),
(4) cl (pint A) = cl (int (cl A)) = sint (cl A).

Proposition 1.3. ([2]) Let A be a subset of a space X. Then:
(1) int (clαA) = intαcl A = intαclαA =int (cl A),
(2) clαint A = cl (intαA) = clαintαA = cl (int A).

Proposition 1.4. Let (X,T ) be a space. Then:
(1) Tα = {U\A | U ∈ T ,A ∈ N(T ) } ([12]),
(2) Tα = SO(T ) ∩ PO(T ) ([13]),
(3) Tαα = Tα ([12]).

Proposition 1.5. ([12]) Let T and U be topologies on a set X such that T ⊂ U ⊂Tα . Then Uα = Tα .

Proposition 1.6. ([9]) For a space (X,T ) and x ∈ X the following are equivalent:
(a) {x} ∈ SPO(T ) .
(b) {x} ∈ PO(T ) .
(c) {x} ∈Tγ .

Proposition 1.7. ([7]) Let (X,T ) be a space. Then Tγγ = Tγα and Tαγ = Tγ .

Proposition 1.8. ([6]) Let A be a subset of a space (X,T ) and x ∈int (cl A)\ clγA. Then {x} ∈ PO(T ) \ T .



D. Andrijević / Filomat 33:10 (2019), 3209–3221 3211

Proposition 1.9. ([4]) Let A be a subset of a space X. Then:
(1) intγ(cl A) = int (cl A) = intγscl A = intγclαA,
(2) clγint A = cl (int A) = clγsint A = clγintαA.
(3) intαclγA = int (clγA),
(4) clαintγA = cl (intγA).

Proposition 1.10. ([4]) Let A be a subset of a space X. Then:
(1) clαA = clγA ∪ int (cl A),
(2) intαA = intγA ∩ cl (int A).

Since the operators “cl ” and “clα” coincide on the class of semi-preopen sets, we have

Corollary 1.11. Let A be a subset of a space X. Then:
(1) cl (intγA) = clγintγA ∪ int (cl (intγA)),
(2) int (clγA) = intγclγA ∩ cl (int (clγA)).

Proposition 1.12. Let A be a subset of a space X. Then:
(1) clγintγA = clγA ∩ cl (intγA),
(2) clγintγclγA = clγA ∩ cl (intγclγA).

Proof. (1) Suppose that x ∈clγA∩ cl (intγA) and let x <clγintγA. Then by 1.11(1) x ∈int (cl (intγA))
and so {x} ∈ PO(T ) by 1.8. Hence {x} ∈Tγ by 1.6 and so x ∈ intγA, a contradiction. Therefore
clγA∩ cl (intγA) ⊂clγintγA, while the converse follows immediately.

The statement (2) follows easily from (1).

Dually we have

Proposition 1.13. Let A be a subset of a space X. Then:
(1) intγclγA = intγA ∪ int (clγA),
(2) intγclγintγA = intγA ∪ int (clγintγA).

Proposition 1.14. ([6]) Let A be a subset of a space (X,T ) . Then A ∈ Tγ if and only if A = G ∪ H with
G ∈Tα and {h} ∈ PO(T ) \ T for every h ∈ H.

Proposition 1.15. ([9]) Let T and U be topologies on X. Then SPO(T ) = SPO(U) if and only if Tγ = Uγ .

Proposition 1.16. ([4]) Let (X,T ) be a space. Then
(1) SO(T ) ⊂ SO(Tγ) ,
(2) PO(T ) ⊃ PO(Tγ) ,
(3) SPO(T ) ⊃ SPO(Tγ) .

We conclude this section with the following chart.

A T (A)
SO(T ) Tα

PO(T ) Tγ

SPO(T ) Tγ

SO(Tγ) Tγα

PO(Tγ) Tγα

SPO(Tγ) Tγα
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2. On Γ-Preopen Sets

Now we consider a new class of generalized open sets.

Definition 2. A subset A of a space (X,T ) is called Γ-preopen if A ⊂ int (clγA). The class of all Γ-preopen
sets in (X,T ) will be denoted by ΓPO(T ) .

By 1.2 we have that int (cl (int A)) = int (pcl A) ⊂ int (clγA) ⊂ intγclγA ⊂ pint (cl A) = int (cl A) and
therefore Tα ⊂ ΓPO(T ) ⊂ PO(Tγ) ⊂ PO(T ) .

On the other hand, D(Tγ) ⊂ ΓPO(T ) is clear.

Proposition 2.1. For a subset A of a space X the following are equivalent:
(a) A ∈ ΓPO(T ) .
(b) A ∈ PO(T ) and cl A = clγA.

Proof. (a) ⇒ (b): Let A be Γ-preopen, that is A ⊂int (clγA). Since clγA is preclosed, we have that cl A ⊂
cl (int (clγA)) ⊂ clγA and thus cl A=clγA.

The converse is obvious.

Proposition 2.2. The union of any family of Γ-preopen sets is a Γ-preopen set. The intersection of an open and a
Γ-preopen set ia a Γ-preopen set.

Proof. The statements are proved by using the same method as in proving the corresponding results for the
other classes of generalized open sets (see [3]).

Since PO(Tα) = PO(T ) implies Tαγ = Tγ ([4]) and having in mind that the operators “int” and “intα”
coincide on the class of semi-preclosed sets, we have that intαclαγA = intαclγA = int (clγA). On the other
hand, by 1.7 and 1.3 we obtain intγclγγA = intγclγαA = intγclγA. Therefore we have

Proposition 2.3. Let (X,T ) be a space. Then ΓPO(Tα) = ΓPO(T ) and ΓPO(Tγ) = PO(Tγ) .

Corollary 2.4. If A ∈ ΓPO(T ) and G ∈Tα , then A ∩ G ∈ ΓPO(T ) .

Recall that a space (X,T ) is called semi-TD if cl {x}\{x} is semi-closed for each x ∈ X. It was proved in
[7] that a space (X,T ) is semi-TD if and only if Tγ =Tα . So we have

Proposition 2.5. Let (X,T ) be semi-TD. Then ΓPO(T ) = PO(T ) .

Definition 3. A subset A of a space X is called Γ-preclosed if X\A is Γ-preopen.

Thus A is Γ-preclosed if and only if cl (intγA) ⊂ A . The class of all Γ-preclosed sets in (X,T ) will be
denoted by ΓPC(T ) .

Dually to 2.1 we have

Proposition 2.6. A subset A of a space X is Γ-preclosed if and only if A ∈ PC(T ) and int A = intγA.

Definition 4. For a subset A of a space X the Γ-preclosure of A , denoted by gcl A, is the smallest
Γ-preclosed set containing A . The Γ-preinterior of A , denoted by gint A, is the largest Γ-preopen set
contained in A .

Proposition 2.7. Let A be a subset of a space X. Then:
(1) gcl A = A∪ cl (intγA),
(2) gint A = A∩ int (clγA).
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Proof. We shall prove only the first statement. Since cl (intγ(A∪ cl (intγA))) ⊂ cl (intγA∪ cl (intγA)) =
cl (intγA) ⊂ A∪ cl (intγA) , we have that A∪ cl (intγA) is Γ-preclosed and so gcl A ⊂ A∪ cl (intγA) . On the
other hand, gcl A is Γ-preclosed and so cl (intγA) ⊂ cl (intγgcl A) ⊂ gcl A which implies A∪ cl (intγA) ⊂
gcl A .

Corollary 2.8. Let (X,T ) be a space. Then gcl A = cl A for every A ∈ SO(Tγ) and gint A = int A for every
A ∈ SC(Tγ) .

Now we shall relate the operators of Γ-preclosure and Γ-preinterior to some other operators concerning
generalized open sets.

Proposition 2.9. Let A be a subset of a space X. Then:
(1) cl (gint A) = cl (int (clγA)) = clγgint A,
(2) int (gcl A) = int (cl (intγA)) = intγgcl A.

Proof. We shall prove only (1). First we notice that cl (gint A) = clγgint A by 2.1. On the other hand, cl (gint A)
= cl (A∩ int (clγA)) ⊃ cl A∩ int (clγA) = int (clγA) and thus cl (gint A) ⊃ cl (int (clγA)) ⊃ cl (A∩ int (clγA)) =
cl (gint A).

Proposition 2.10. Let A be a subset of a space X. Then:
(1) clγgcl A = gcl (clγA) = clγA∪ cl (intγA),
(2) intγgint A = gint (intγA) = intγA∩ int (clγA).

Proof. Again we prove only (1). By 1.13(1) and the fact that clγA is preclosed we have that gcl (clγA)
= clγA∪ cl (intγclγA) = clγA∪ cl (intγA∪ int (clγA)) = clγA∪ cl (intγA)∪ cl (int (clγA)) = clγA∪ cl (intγA) =
clγ(A∪ cl (intγA)) = clγgcl A.

Proposition 2.11. Let A be a subset of a space X. Then:
(1) sint (gcl A) = cl (intγA), scl (gint A) = int (clγA),
(2) sint (gint A) = sint A∩ int (clγA), scl (gcl A) = scl A∪ cl (intγA),
(3) gint (sint A) = intαA, gcl (scl A) = clαA,
(4) pcl (gint A) = gint A∪ cl (int A), pint (gcl A) = gcl A∩ int (cl A),
(5) gint (pcl A) = pcl A∩ int (clγA), gcl (pint A) = pint A∪ cl (intγA).

Proof. For (1) we use 2.9, for (3) 1.9, and the other statements follow easily.

3. Topology Generated by Γ-Preopen Sets

Let T1 = {G ∈ ΓPO(T ) | G ∩ A ∈ ΓPO(T ) whenever A ∈ ΓPO(T ) }. Clearly, T1 is a topology on X , and
by 2.4 it is larger than Tα . The closure and the interior of a set A in (X,T1) will be denoted by cl1A and
int1A respectively.

Example 3.1. (1) Let T be a topology on a finite set X and A ∈ ΓPO(T ) . Then A ⊂ int (cl A), cl A = clγA
by 2.1 and so int (cl {y}) = ∅ for every y ∈ clγA\A . Then {y} ∈ C(Tα) and hence clγA\A ∈ C(Tα) since X
is finite. Thus A ∪ (X\clγA) ∈ Tα and hence A = (A ∪ (X\clγA))∩ int (cl A) ∈ Tα . Therefore ΓPO(T ) =
Tα and thus T1 = Tα whenever X is finite.

(2) Let X be an infinite set and p ∈ X . Then T = {∅} ∪ {U ⊂ X | p ∈ U and X\U is finite} is a
topology on X with PO(T ) = {∅} ∪ {S ⊂ X | p ∈ S or S is infinite}, Tγ = T ∪{{p}} and PO(Tγ) = Tγα =
{∅} ∪ {S ⊂ X | p ∈ S} (see [7]). Then ΓPO(T ) = Tγα and so T1 = Tγα .

Proposition 3.2. Let (X,T ) be a space. Then T1 ⊂ SO(Tγ) .
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Proof. Let A ∈T1 and suppose that intγA = ∅ . Then X\A ∈ D(Tγ) ⊂ ΓPO(T ) and so (X\A) ∪
{a} ∈ ΓPO(T ) for every a ∈ A . Then {a} = A ∩ ((X\A) ∪ {a}) ∈ ΓPO(T ) and so {a} ∈ Tγ by 1.6, a
contradiction. Hence intγA , ∅ and put G = A\cl (intγA) . Then G ∈T1 , intγG = ∅ , thus G = ∅ .
Therefore A ⊂ cl (intγA) which implies A ∈ SO(Tγ) by 1.12(1).

From 1.4(2) we have

Corollary 3.3. Let (X,T ) be a space. Then T1 ⊂Tγα .

And now the following diagram relates the topology T1 to Tα , Tγ and Tγα .
Tγ

↗ ↘

Tα 6↑6↓ Tγα

↘ ↗

T1

Proposition 3.4. Let (X,T ) be a space. Then T1 = ΓPO(T ) ∩ SO(Tγ) .

Proof. It remains to show that ΓPO(T ) ∩ SO(Tγ) ⊂T1 . Suppose that A ∈ ΓPO(T ) ∩ SO(Tγ) and let
B ∈ ΓPO(T ) . Then clγ(A ∩ B) ⊃ clγ(intγA ∩ B) ⊃ intγA∩ clγB and hence clγ(A ∩ B) ⊃ clγ(intγA∩ clγB) ⊃
clγ(intγA∩ int (clγB)) ⊃ clγintγA∩ int (clγB) = clγA∩ int (clγB) because A ∈ SO(Tγ) . Thus int (clγ(A∩B)) ⊃
int (clγA)∩ int (clγB) ⊃ A ∩ B . That is A ∩ B ∈ ΓPO(T ) and finally A ∈T1 .

Proposition 3.5. Let A be a subset of a space X. Then:
(1) int1cl1A = int (cl1A),
(2) cl1int1A = cl (int1A),
(3) cl1int1cl1A = cl (int (cl1A)),
(4) int1cl1int1A = int (cl (int1A)).

Proof. (1) SinceT1 ⊂Tγα and cl1A ∈ C(Tγα) , by 2.6 we have that int1cl1A ⊂ intγαcl1A = intγcl1A = int (cl1A) ⊂
int1cl1A.

The rest is similarly proved.

Proposition 3.6. Let A be a subset of a space X. Then:
(1) intγclγA ⊂ int (cl1A),
(2) clγintγclγA ⊂ cl (int (cl1A)),
(3) cl (int1A) ⊂ clγintγA,
(4) int (cl (int1A)) ⊂ intγclγintγA.

Proof. (1) From 1.3(1), 3.3 and 2.6 it follows that intγclγA = intγclγαA ⊂intγcl1A = int (cl1A).
The rest is proved in a similar way.

Corollary 3.7. Let (X,T ) be a space. Then:
(1) PO(Tγ) ⊂ PO(T1) ⊂ PO(T ) ,
(2) SPO(Tγ) ⊂ SPO(T1) ⊂ SPO(T ) ,
(3) SO(T ) ⊂ SO(T1) ⊂ SO(Tγ) ,
(4) Tα ⊂ T1α ⊂ Tγα ,
(5) N(T ) ⊂ N(T1) ⊂ N(Tγ) .

Now we shall look further into the various relations between T1 , Tα , Tγ and Tγα . Notice that Tα1 =
T1 follows easily from 2.3.

Proposition 3.8. Let (X,T ) be a space. Then:
(1) Tγ1 = Tγα ,
(2) T1γ ⊃ Tγ .
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Proof. The first statement follows immediately from 2.3 and 1.7. As for the second statement suppose that
A ∈Tγ . Then by 1.14, A = G ∪ H with G ∈Tα and {h} ∈ PO(T ) \ T for every h ∈ H . By 1.6 and 3.7(1),
{h} ∈ Tγ ⊂ PO(Tγ) ⊂ PO(T1) and so {h} ∈ T1γ for every h ∈ H . Hence A ∈ T1γ .

Proposition 3.9. Let A be a subset of a space X such that clγintγA = X . Then A ∈ T1 .

Proof. Let clγintγA = X and B ∈ ΓPO(T ) . Then clγ(A ∩ B) ⊃ clγ(intγA ∩ B) ⊃ intγA∩ clγB ⊃
intγA∩ int (clγB) and hence clγ(A∩ B) ⊃ clγ(intγA∩ int (clγB)) ⊃ clγintγA∩ int (clγB) = int (clγB). Therefore
int (clγ(A ∩ B)) ⊃ int (clγB) ⊃ B ⊃ A ∩ B and so A ∩ B ∈ ΓPO(T ) . That is A ∈ T1 .

Corollary 3.10. Let (X,T ) be a space. Then T1α = T1 .

Proof. Let G ∈ T1α . By 1.4(1), G = U\A with U ∈ T1 and A ∈ N(T1) . By 3.7 we have that A ∈ N(Tγ) and
hence A ∈ C(T1) by 3.9. Thus G ∈ T1 .

Proposition 3.11. Let (X,T ) be a space. Then N(T1) = N(Tγ) .

Proof. It remains to show that N(Tγ) ⊂ N(T1) . Suppose that intγclγA = ∅. Then A = cl1A by 3.9 and so by
3.5, int1cl1A = int (cl1A) = int A = ∅. Thus A ∈ N(T1) .

It was shown in [9] that SPO(T ) = SPO(U) implies N(T ) = N(U) . The converse holds under the
condition T ⊂ U ⊂ Tγ which was proved in [6]. The next statement gives us a slight improvement.

Lemma 3.12. Let T and U be topologies on X such that U ⊂ Tγ and T ⊂ Uγ . Then SPO(T ) = SPO(U) if
and only if N(T ) = N(U) .

Proof. Suppose A ∈ SPO(T ) and let N(T ) = N(U) . Then B = A\ clU intU clU A ∈ N(U) = N(T ) . On
the other hand, U ⊂ Tγ implies clU intU clU A ∈ C(Tγ) and so B ∈ SPO(T ) . Hence B = ∅ and thus
A ∈ SPO(U) .

Proposition 3.13. Let (X,T ) be a space. Then SPO(T1) = SPO(Tγ) .

Proof. We have T1 ⊂ Tγγ = Tγα (3.3 and 1.7) and Tγ ⊂ T1γ (3.8) and the statement follows from 3.11 and
3.12.

Now we have from 1.15 and 1.7

Corollary 3.14. Let (X,T ) be a space. Then T1γ = Tγα .

The next statement follows immediately from 2.8.

Proposition 3.15. Let (X,T ) be a space. Then cl1A = cl A for every A ∈ SO(Tγ) and int1A = int A for every
A ∈ SC(Tγ) .

Lemma 3.16. Let A be a subset of a space X. Then int (clγαA) = int (clγA).

Proof. By applying 1.12 (2) we obtain int (clγαA) = int (A∪ clγintγclγA) ⊃ int (clγintγclγA) =
int (clγA∩ cl (intγclγA)) = int (clγA)∩ int (cl (intγclγA)) ⊃ int (clγA)∩ intγclγA = int (clγA). The reverse in-
clusion is clear.

Proposition 3.17. Let (X,T ) be a space. Then ΓPO(T1) = ΓPO(T ) .

Proof. Applying 3.14, 3.15 and 3.16 we have that int1cl1γA = int1clγαA = int (clγαA) = int (clγA) and thus
ΓPO(T1) = ΓPO(T ) .

Corollary 3.18. Let (X,T ) be a space. Then T11 = T1 .
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Now we are in a position to complete the chart from Section 1.

A T (A)
SO(T1) T1

PO(T1) Tγα

SPO(T1) Tγα

We conclude this section with the conditions under which the topology T1 coincides with Tα , Tγ or
Tγα .

Proposition 3.19. Let (X,T ) be a space. Then RO(T1) = RO(T ) .

Proof. Suppose A ∈ RO(T1) , that is A = int1cl1A. Hence A = int (cl1A) by 3.5 and so A ∈ RO(T ) since
cl1A ∈ PC(T ) . The converse follows from 3.15

The next statement was proved in [5].

Lemma 3.20. Let T and U be topologies on a set X. Then Tα = Uα if and only if RO(T ) = RO(U) and
SPO(T ) = SPO(U) .

Proposition 3.21. T1 = Tα if and only if Tγα = Tγ .

Proof. Suppose T1 = Tα and let U ∈ Tγα . Then by 1.4, U = G\A with G ∈Tγ and A ∈ N(Tγ) . By 3.11
and 3.10 we have that A ∈ N(T1) ⊂ C(T1α) = C(T1) = C(Tα) and so U ∈ Tγ . Conversely, suppose that
Tγα = Tγ . By 1.15 and 3.13 we have SPO(T ) = SPO(Tγ) = SPO(T1) . Hence Tα = T1α by 3.19 and 3.20,
and finally, Tα = T1 by 3.10.

Corollary 3.22. T1 = Tγ if and only if (X,T ) is semi-TD.

Proof. Suppose that T1 = Tγ . Then by 3.10 we have Tγα = T1α = T1 = Tγ and thus T1 = Tα by 3.21.
Therefore Tγ = Tα , that is (X,T ) is semi-TD. The converse follows from 2.5.

It remains to find out when the topologies T1 and Tγα coincide. For that, let B = {x ∈ X | {x} ∈Tγ \ T }
and R(B) = {x ∈ B | {x} ∈ RO(Tγ) }.

Proposition 3.23. Let (X,T ) be a space. Then:
(1) {x} ∈ T1 for every x ∈ B\R(B),
(2) {x} ∈ Tγ \T1 for every x ∈ R(B).

Proof. Let x ∈ B\R(B). By 1.13(1) we have that intγclγ{x} = {x}∪ int (clγ{x} ) and so x ∈ int (clγ{x}) . Hence
{x} ∈ ΓPO(T ) which implies {x} ∈ T1 .

(2) Let x ∈ R(B) and suppose that clγ{x} = cl {x}. Then {x} = intγclγ{x} = intγcl {x} = int (cl {x}) and so
{x} ∈ T , a contradiction. Thus {x} < T1 .

Corollary 3.24. T1 = Tγα if and only if R(B) = ∅.

Proof. Suppose that R(B) = ∅. Then Tγ ⊂ T1 ⊂ Tγα by 1.14 and 3.23. Hence T1α = Tγα by 1.5 and so T1 =
Tγα by 3.10. The converse is clear.
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4. Topologies Generated by the Other Classes of Generalized Open Sets Related to Tγ

Besides Γ-preopen sets, by using various combinations of operators in T and Tγ we can introduce
several classes of generalized open sets. By 1.9 it is not difficult to see that only seven types of sets can give
us classes that are possibly new. These seven types are as follows: cl (intγA), cl (int (clγA)), int (cl (intγA)),
int (clγintγA), cl (intγclγA), cl (int (clγintγA)) and int (cl (intγclγA)).

(A) A ⊂ cl (intγA)
By 1.12(1), the class of sets satisfying this condition coincides with SO(Tγ) and thus the generated

topology is Tγα .

(B) A ⊂ cl (int (clγA))

Definition 5. A subset A of a space X is called semi-Γ-preopen if A ⊂ cl (int (clγA)). The class of all
semi-Γ-preopen sets in (X,T ) will be denoted by SΓPO(T ) . It is clear that ΓPO(T ) ⊂ SΓPO(T ) and

SO(T ) ⊂ SΓPO(T ) ⊂ SPO(Tγ) ⊂ SPO(T ) .

Besides, SΓPO(T ) is closed under forming arbitrary unions and the intersection of an open set and a
semi-Γ-preopen set is semi-Γ-preopen. The next statement follows easily from 2.9(1).

Proposition 4.1. For a subset A of a space X the following are equivalent:
(a) A ∈ SΓPO(T ) .
(b) clγA ∈ RC(T ) .
(c) A ∈ SPO(T ) and clγA = cl A.
(d) There exists a Γ-preopen set U such that U ⊂ A ⊂ cl U.

Proposition 4.2. Let (X,T ) be a space, A ∈ SO(T ) and B ∈ ΓPO(T ) . Then A ∩ B ∈ SΓPO(T ) .

Proof. cl (int (clγ(A ∩ B))) ⊃ cl (int (clγ(int A ∩ B))) ⊃ cl (int (int A∩clγB)) = cl (int A∩ int (clγB)) ⊃ cl (int A)
∩ int (clγB) ⊃ A ∩ B and thus A ∩ B ∈ SΓPO(T ) .

Proposition 4.3. Every semi-Γ-preopen set can be represented as the intersection of a semi-open set and a Γ-preopen
set.

Proof. Let A ∈ SΓPO(T ) . Then by 4.1 clγA ∈ RC(T ) ⊂ SO(T ) , A ∪ (X\clγA) ∈ D(Tγ) ⊂ ΓPO(T ) and A =
clγA ∩ (A ∪ (X\clγA)).

Denote byTh the topology generated by SΓPO(T ) , that isTh = {G ∈ SΓPO(T ) |G∩A ∈ SΓPO(T ) whenever
A ∈ SΓPO(T ) }.

Proposition 4.4. Let (X,T ) be a space. Then Th ⊂ SO(Tγ) .

Proof. Let A ∈ Th and suppose that x ∈ A\cl (intγA). Since X\(A\cl (intγA)) ∈ D(Tγ) ⊂ SΓPO(T ) and
A\cl (intγA) ∈ Th , we have that ({x}∪ (X\(A\cl (intγA)))) ∩ (A\cl (intγA)) = {x} ∈ SΓPO(T ) . Therefore {x} ∈
SPO(T ) and thus by 1.6, {x} ∈Tγ , a contradiction. Hence A ⊂cl (intγA) and so A ∈ SO(Tγ) .

Proposition 4.5. Let (X,T ) be a space. Then Th ⊂ ΓPO(T ) .

Proof. Let A ∈ Th and suppose that x ∈ A\int (clγA). Then by 4.1(c) and 1.9(1), x < intγclγA = intγcl A
= int (cl A) and so x < int (cl (intγA)). Hence x ∈ X\int (cl (intγA)) = cl (int (clγ(X\A))) = cl (gint (X\A)) by
2.9(1). Therefore {x}∪ gint (X\A) ∈ SΓPO(T ) by 4.1(d) and so ({x}∪ gint (X\A))∩A = {x} ∈ SΓPO(T ) . Thus
{x} ∈ Tγ , a contradiction. Hence A ⊂ int (clγA) , that is A ∈ ΓPO(T ) .

Proposition 4.6. Let (X,T ) be a space. Then Th = T1 .
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Proof. By 4.4, 4.5 and 3.4 we have that Th ⊂ T1 . To prove the converse, suppose that A ∈ T1 and let
B ∈ SΓPO(T ) . By 4.3 we have that B = C∩D with C ∈ SO(T ) and D ∈ ΓPO(T ) . Then A∩D ∈ ΓPO(T ) and
so A ∩ B = (A ∩D) ∩ C ∈ SΓPO(T ) by 4.2. Hence A ∈ Th .

(C) A ⊂ int (clγintγA)
It follows easily that A ⊂ int (clγintγA) if and only if A ∈ ΓPO(T ) ∩ SO(Tγ) , therefore this class

coincides with T1 by 3.4.
(D) A ⊂ cl (int (clγintγA))
Noticing that clγintγA is preclosed, it follows that A ⊂ cl (int (clγintγA)) if and only if A ∈ SΓPO(T ) ∩ SO(Tγ) .

Denote the topology generated by this class by Ti , that is Ti = {G ∈ SΓPO(T ) ∩ SO(Tγ) |G∩A ∈ SΓPO(T )
∩ SO(Tγ) whenever A ∈ SΓPO(T ) ∩ SO(Tγ) }.

Proposition 4.7. Let (X,T ) be a space. Then Ti ⊂ ΓPO(T ) .

Proof. Let A ∈ Ti and suppose that x ∈ A\int (clγA) = A\int (cl A). Then (X\cl A)∪{x} ∈ SO(T ) ⊂ SΓPO(T )
∩ SO(Tγ) by 1.16, and so ((X\cl A) ∪ {x}) ∩ A = {x} ∈ SO(Tγ) ∩ ΓPO(T ) . Hence {x} ∈Tγ , a contradiction.
Therefore A ∈ ΓPO(T ) .

Proposition 4.8. Let (X,T ) be a space. Then Ti = T1 .

Proof. Ti ⊂ T1 follows from 4.7 and 3.4. To prove the converse, let A ∈ T1 and B ∈ SΓPO(T ) ∩ SO(Tγ) .
Then A ∩ B ∈ SΓPO(T ) by 4.6. On the other hand, A ∈ Tγα by 3.3, thus A ∩ B ∈ SO(Tγ) . Hence A ∈
Ti .

(E) A ⊂ cl (intγclγA)
By 1.12(2), the class of sets satisfying this condition coincides with SPO(Tγ) and thus the generated

topology is Tγα .
(F) A ⊂ int (cl (intγA))
It follows easily that the class of sets satisfying this condition coincides with PO(T ) ∩ SO(Tγ) . Denote

the topology generated by this class by T j , that is T j = {G ∈ PO(T ) ∩ SO(Tγ) |G ∩ A ∈ PO(T ) ∩ SO(Tγ)
whenever A ∈ PO(T ) ∩ SO(Tγ) }. The closure and the interior of a set A in (X,T j) will be denoted by
cl jA and int jA. The next statement follows immediately.

Proposition 4.9. Let (X,T ) be a space. Then Tγ ⊂ T j ⊂ PO(T ) ∩ SO(Tγ) .

Proposition 4.10. Let A be a subset of a space X. Then
(1) intγcl jA = intγclγA,
(2) clγint jA = clγintγA.

Proof. From 4.9 and 1.2(1) we have that intγclγA = intγsclγA ⊂ intγcl jA ⊂ intγclγA. The second equality is
similarly proved.

Corollary 4.11. Let A be a subset of a space X. Then
(1) int jcl jA ⊃ intγclγA,
(2) cl jint jA ⊂ clγintγA,
(3) int jcl jint jA ⊃ intγclγintγA,
(4) cl jint jcl jA ⊂ clγintγclγA.

Proposition 4.12. Let (X,T ) be a space. Then T1 ⊂ T j .

Proof. Suppose that A ∈ T1 and B ∈ PO(T ) ∩ SO(Tγ) , that is A ⊂ int (clγintγA) and B ⊂ int (cl (intγB)).
Now we have that cl (intγ(A ∩ B)) = cl (intγA∩ intγB) = cl (clγ(intγA∩ intγB)) ⊃ cl (clγintγA∩ intγB) ⊃
cl (int (clγintγA∩ intγB)) ⊃ int (clγintγA)∩ cl (intγB) and hence int (cl (intγ(A ∩ B))) ⊃ int (clγintγA)∩
int (cl (intγB)) ⊃ A ∩ B. Therefore A ∩ B ∈ PO(T ) ∩ SO(Tγ) and thus A ∈T j .
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Corollary 4.13. Let (X,T ) be a space. Then T jα = T j .

Proof. By 1.4(1) it remains to show that N(T j) ⊂ C(T j) and suppose that int jcl jA = ∅. Then A ∈ N(Tγ) by
4.11(1) and so A ∈ N(T1) ⊂ C(T1) ⊂ C(T j) by 3.11, 3.10 and 4.12.

From 4.11(3) and 4.13 we have

Corollary 4.14. Let (X,T ) be a space. Then Tγα ⊂ T j .

Our next step is to prove the converse. By 1.4(2) it remains to show that T j ⊂ PO(Tγ) . First we establish
a simple lemma.

Lemma 4.15. Let A be a set in a space (X,T ) such that A∩ cl (int (clγA)) ∈ PO(T ) . Then A∩ cl (int (clγA)) ⊂
int (clγA).

Proof. Since int (clγA) ∈ RO(T ) we have that A∩ cl (int (clγA)) ⊂ int (cl (A∩ cl (int (clγA)))) ⊂ int (cl A∩
cl (int (clγA))) = int (cl (int (clγA))) = int (clγA).

Proposition 4.16. Let (X,T ) be a space. Then T j ⊂ PO(Tγ) .

Proof. Let A ∈ T j . We consider two cases:
(1) int (clγA) = ∅ : Suppose that x ∈ A\intγA and put B = {x} ∪ (X\clγA). Then B ∈ D(T ) and so

B ∈ PO(T ) . On the other hand, applying 1.13(1) we have that clγ(X\clγA) = X\intγclγA = X\(intγA∪
int (clγA)) = X\intγA 3 x and thus B ∈ SO(Tγ) . Hence A ∩ B = {x} ∈ PO(T ) ∩ SO(Tγ) and so {x} ∈Tγ , a
contradiction. Therefore A ∈Tγ . Moreover, intγclγA = intγA = A and thus A ∈ RO(Tγ) .

(2) int (clγA) , ∅ : Then A = (A∩ cl (int (clγA))) ∪ B where B = A\cl (int (clγA)). Suppose that
x ∈ A\intγA . First we notice that B ∈T j , int (clγB) = ∅ and so B ∈ RO(Tγ) by (1). On the other
hand, int B = ∅ implies that B ∈ PC(T ) ∩ SC(Tγ) and thus A\B = A\(A\cl (int (clγA))) = A∩
cl (int (clγA)) ∈ PO(T ) ∩ SO(Tγ) . Clearly, x < B that is x ∈ A∩ cl (int (clγA)), and thus x ∈ int (clγA)
by 4.15. Therefore x ∈ intγ(clγA) and so A ∈ PO(Tγ) .

Corollary 4.17. Let (X,T ) be a space. Then T j = Tγα .

(G) A ⊂ int (cl (intγclγA))

It follows from 1.12(2) that the class of sets satisfying this condition coincides with PO(T ) ∩ SPO(Tγ) .
Denote the topology generated by this class byTk , that isTk = {G ∈ PO(T ) ∩ SPO(Tγ) |G∩A ∈ PO(T ) ∩ SPO(Tγ)
whenever A ∈ PO(T ) ∩ SPO(Tγ) }. It is clear that Tγ ⊂ Tk ⊂ PO(T ) ∩ SPO(Tγ) .

Proposition 4.18. Let (X,T ) be a space, A ∈ PO(T ) ∩ SO(Tγ) and B ∈ ΓPO(T ) . Then A∩B ∈ PO(T ) ∩ SPO(Tγ) .

Proof. Let A ⊂ int (cl (intγA)) and B ⊂ int (clγB). Then clγ(A ∩ B) ⊃ clγ(intγA ∩ B) ⊃ intγA∩ clγB , and
hence intγclγ(A ∩ B) ⊃ intγA∩ intγclγB ⊃ intγA∩ int (clγB) . This implies cl (intγclγ(A ∩ B)) ⊃ cl (intγA∩
int (clγB)) ⊃ cl (intγA)∩ int (clγB) and finally int (cl (intγclγ(A ∩ B))) ⊃ int (cl (intγA))∩ int (clγB) ⊃ A ∩ B ,
that is A ∩ B ∈ PO(T ) ∩ SPO(Tγ) .

Proposition 4.19. Let (X,T ) be a space. Then A ∈ PO(T ) ∩ SPO(Tγ) if and only if A = B ∩ C with
B ∈ PO(T ) ∩ SO(Tγ) and C ∈ ΓPO(T ) .

Proof. Let A ∈ PO(T ) ∩ SPO(Tγ) and put B = clγA∩ int (cl A) , C = A ∪ (X\clγA) . It is not difficult to see
that B ∈ PO(T ) ∩ SO(Tγ) , C ∈ ΓPO(T ) and A = B ∩ C .

Proposition 4.20. Let (X,T ) be a space. Then Tγα ⊂ Tk .
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Proof. Suppose that G ∈ Tγα and let A ∈ PO(T ) ∩ SPO(Tγ) . Then by 4.19, A = B ∩ C with
B ∈ PO(T ) ∩ SO(Tγ) and C ∈ ΓPO(T ) . It follows from 4.17 that G ∩ B ∈ PO(T ) ∩ SO(Tγ) and
hence G ∩ A = (G ∩ B) ∩ C ∈ PO(T ) ∩ SPO(Tγ) by 4.18. Thus G ∈Tk .

Proposition 4.21. Let (X,T ) be a space. Then Tk ⊂ SO(Tγ) .

Proof. Let A ∈ Tk and suppose that x ∈ B = A\clγintγA . Then B ∈ Tk , intγ(B\{x})= int (B\{x}) = ∅ and thus
B\{x} ∈ PC(T ) ∩ SPC(Tγ) . Hence {x} = B\(B\{x}) ∈ PO(T ) ∩ SPO(Tγ) and thus {x} ∈ Tγ , a contradiction.
Therefore B = ∅ , that is A ∈ SO(Tγ) .

Lemma 4.22. ([9]) Let (X,T ) be a space and A, B ∈ SO(T ) . Then A∩B ∈ SO(T ) if and only if A∩B ∈ SPO(T ) .

Proposition 4.23. Let (X,T ) be a space. Then Tk = Tγα .

Proof. Suppose that A ∈ Tk and let B ∈ PO(T ) ∩ SO(Tγ) . Then A ∩ B ∈ PO(T ) ∩ SPO(Tγ) and so
A ∩ B ∈ PO(T ) ∩ SO(Tγ) by 4.21 and 4.22. Thus A ∈Tγα by 4.17

At the end of our quest for new topologies let us make a brief recapitulation.
1) Using only the closure and the interior operators in (X,T ) we obtain in the natural way four classes

of sets which are larger than T and closed under forming arbitrary unions (Definition 1). One among
them, Tα , turns out to be a topology on X.

2) The remaining three classes SO(T ) , PO(T ) and SPO(T ) generate a topology by means of the
operation T (A) ={G ∈ A |G ∩ A ∈ A whenever A ∈ A }. In that way we obtain one new topology, Tγ .
In the next step we apply the operation T (A) to SO(Tγ) , PO(Tγ) and SPO(Tγ) and obtain one new
topology which turns out to be Tγα .

3) Finally, we introduce new classes of generalized open sets by means of the closure and the interior
operators of the topologies T and Tγ . In this way we obtain eight new classes. Four of these classes
generate the topology Tγα , but the rest give us a new topology T1 . Applying the operation T (A) to
SO(T1) , PO(T1) and SPO(T1) we do not obtain any new topology.

4) Now the question arises as to whether we can obtain a new topology by using the other combinations
of operators in T , Tα , Tγ , Tγα and T1 .

(a) By 1.3 T and Tα give us the same as T .
(b) By Lemma 3.16, int (clγαA) = int (clγA) while clγαint A = cl (int A) follows from 1.2(2) and 1.9(2).

Hence T and Tγα give us the same as T and Tγ .
(c) It follows easily from 2.8 that int1cl A = int cl A while by 3.5(2) we have that cl (int1A) = cl1int1A.

Thus T and T1 give us no new topology.
(d) By 1.9 we have that Tα and Tγ give us the same as T and Tγ .
(e) Similarly, Tα and Tγα give us the same as T and Tγ .
(f) Since intαcl1A = int (cl1A) = int1cl1A and cl1intαA = cl (int A), Tα and T1 give us the same as T and

T1 .
(g) From (a) it is clear that Tγ and Tγα give us no new topology.
(h) It follows from 2.6 that intγcl1A = int (cl1A) while 2.8 implies that cl1intγA = cl (int1A). Hence Tγ and

T1 give us no new topology.
(i) It is not difficult to see that clγαint1A = cl (int1A) and int1clγαA = int (clγA). Thus Tγα and T1 give us

no new topology.
Therefore it seems to me that we may answer our question in the negative.
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