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Some Asymptotic Results of the Ruin Probabilities in a Bidimensional
Renewal Risk Model with Brownian Perturbation
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#School of Mathematical Sciences, Dalian University of Technology, Dalian 116023,China.

Abstract. In this paper, a bidimensional renewal risk model with constant force of interest and Brownian
perturbation is considered. Assuming that the claim-size distribution function is from the subexponential
class, three types of the finite-time ruin probabilities under this model are discussed. We obtain the
asymptotic formulas for the three types, which hold uniformly for any finite-time horizon.

1. Introduction

In this paper, we consider the bidimensional surplus process l_l)(x, B = (Uy(xy, t), Us(xy, t))T,t >0,
described by the following renewal risk model with constant force of interest and Brownian perturbation:

_M
_(xe) (m fot ¢9ds) Z;\Ql(t) Xy ) 4y X ) Lo fot =) dB, (s) O
226" ) py 1 et 9ds | (£ vyt 4 y MO vt |6, [ e IdBas))’

where x1,x, > 0 denote the initial surplus, r > 0 the force of interest, pi,p» > 0 the premium rate,
01,02 2 0 the volatility factor, {B1(t), B2(t); t > 0} the diffusion perturbation which are independent standard
Brownian motions, {X1j, j > 1; Xy;, 1 > 1} the sequence of claim sizes which are independent and identically
distributed(i.i.d), {Y1r, k = 1;Y2;, i > 1} the sequence of claim sizes which are independent and identically
distributed(i.i.d).

We denote by T]((l),k = 1,2,..., the arrival times of the renewal counting process N;(t),i = 1,2,3. And
Ni(t), N2(t), N3(t) are three independent renewal processes. In reality, the common shock N3(t) can depict
the effect of a natural disaster that causes various kinds of insurance claims.

Throughout this paper, we assume that {Xi;,j > 1;X,i > 1}, {Yi, k =2 1;Y2;,1 > 1}, {B:i(t);t > 0},
{B2(t);t = 0} and {N;(t);t > 0,i = 1,2, 3} are mutually independent.

Define the ruin times of the two marginal processes as:

Uy (x1, t)
Ua(x2, t)

T(xi) = inf{t : Ll,-(t) < OlLL(O) =x},i=1,2.
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For the bidimensional model, motivated by Lu and Zhang (2016), we investigate four sorts of ruin time
here,

(1)Tonax(®) = inf {5 > 0 : max{Uy(s), Un(s)} < 0] T(0) = &}
(2)Tin(®) = inf {5 > 0 : min{U (s), Ua(s)} < 0] U(0) = &}

(3)Tv(¥) = max{T(x1), T(x2)} = T(x1) V T(x2);
BTAE) = min{T(x1), T(x2)} = T(x1) A T(x2).

It is obvious to obtain the following inequalities:

Tmux(f) > T\/(f) > T/\(f) = Tmin(f)-

Therefore, we just need to consider three types of ruin probability.
W@ 8) = P(Ty(@) < ) = ]P( inf Uy(s) < 0, inf Us(s) < o),
O<s<t O<s<t
represents both of the surplus processes go below 0 in the finite time.
W@ 1) = P (Toa(®) < ) = P inf [Uh6) v L) <0),
represents the maximum of the two surplus processes goes blow 0 in the finite time.
W%, 8) = P(Tia(d < 1) = P({inf Uh(6) < 0} _J{inf Us) <0)),

represents at least one of the surplus processes goes below 0 in the finite time.
It is obvious to obtain the following inequalities:

\ymin(z t) 2 \Pv (fr t) 2 \ymux(fl t)‘ (2)

It is well-known that there are increasing researchers having studied the asymptotic behavior of finite-
time ruin probabilities for renewal risk models with heavy-tailed claims and Brownian perturbation, for
example, see Li et al. (2007), Chen et al. (2013), Gao and Yang (2014), Cheng et al. (2016), Cheng and Wang
(2016), Li (2017), and the references therein.

In Li (2017), he considered a renewal risk model with constant force of interest and Brownian per-
turbation, and derived for the finite-time ruin probability a precise asymptotic expansion. In Yang and
Li (2014), they studied a bidimensional renewal risk model with constant interest force and dependent
subexponential claims. Under the assumption that the claim size vectors form a sequence of i.i.d. random
vectors following a common bivariate F-G-M distribution, they derived for the finite-time ruin probability
an explicit asymptotic formula. In this paper, on the one hand, comparing with Li (2017), we extend the
model to a bidimensional renewal risk model; on the other hand, comparing with Yang and Li (2014), we
extend the model to a perturbed risk model.

The rest of paper is organized as follows. In Section 2, we present some useful lemmas. In Section 3, we
introduce the main results. In Section 4, we give a useful lemma which will be used in the whole proofs,
and the proofs of our results.

2. Preliminaries

Throughout this article, for the sake of clarity, let V(x) =1- V(x) be the proper distribution function V’s
tail. In risk theory, heavy-tailed distributions are very important. Now we recall two important subclasses
of heavy-tailed distributions.
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A distribution function V on [0, o) is said to belong to the subexponential class, written as V € S, if
V > 0 for all x > 0 and the relation
_VUm(x)
lim =n

holds for all (or, equivalently, for some) n > 2, where V™ (x) is the n—fold convolution of V with itself. It
is known that if V € S then V € L, which stands for the class of long-tailed distributions characterized by

V(x) > 0 for all x > 0 and the relation

%
lim (x_+y) =1, y € (=00, 00).

To obtain the main results in this paper, we need the following series of lemmas which play a key role
in the proofs. Our first lemma is a restatement of Lemma 1.3.5 (b) of Embrechts et al. (1997).

Lemma 2.1. If Ve S, then, for every ¢ > 0, it holds that
e =0 (\_/(x)).
The following two lemmas are from Lemma 3.2 and Lemma 3.4 of Li (2017).

Lemma 2.2. Let {Z;;i > 1} be a sequence of independent real-valued random variables with distribution functions
V1, Vo, ..., respectively. Assume that there is a distribution function V € S such that Vi(x) ~ I;V(x) with some
positive constant I; for each i > 1. And let & be a real-valued random variable independent of {Z;;i > 1} such that

P(E>x)=0 (l_/(x/a))for somea > 0. Then, for eachn > 1 and every b > a, it holds uniformly for (cy, ..., c,) € [a, b]"
that

]P(Zn: cZ;+ & > x] ~ Zn: Z,V(x/ci).
i=1 i=1

Lemma 2.3. Let {Z;;i > 1} be a sequence of independent real-valued random variables with common distribution
function V € 8. Let & be a real-valued random variable independent of {Z;;i > 1} such that P(E > x) = O(I_/(x/a))
for some a > 0. Then, for every € > 0, and some constant K > 0 such that the relation

P

CZ‘Zi +& > x] < K(1 + €)"V(x/c)

i=1
holds for all x € (00, 00),¢c > a,and n > 1.

Hereafter, all limit relationships are for x — oo unless stated otherwise. For two positive functions
f(x) and g(x), we write f(x) < g(x) if limsup f(x)/g(x) < 1, write f(x) 2 g(x) if liminf f(x)/g(x) > 1, write
f(x) ~ g(x) if lim f(x)/g(x) = 1. Furthermore, for two positive bivariate functions f(x,t) and g(x, t), we say
that the asymptotic relation f(x,t) ~ g(x, t) holds uniformly for f in a nonempty set A if

lim su
tef gx

Clearly, the asymptotic relation f(x, t) ~ g(x,t) holds uniformly for t € A if and only if

,t Lt
lim sup sup e <1 and liminfinf e >1,
oo tepn 9, 1) x—o0 teA g(x, t)
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which mean that the relations f(x,t) < g(x, t) and f(x,t) 2 g(x, t), respectively, hold uniformly for ¢ € A.

For convenience, denote by A;(t) = EN;(t) = ):j":l P (T;i) < t) ,t > 0, the renewal function of {N;(f);t > 0},
and it is natural to restrict the region of the variable f to the set A; = {t : 0 < A;(t) < o0},i = 1,2, 3. Moreover,
we write At = A1 N Ay N Az N[0, T], where T is an arbitrarily positive number. Let

t
Mi(t) = 6, f e dBy(s)
0
with

Mi(t) = inf Mi(s) < 0and M;(t) = sup M(s) = 0. (3)

0<s<t

It holds for every T > 0 that

(4)

P (M(T) < —x;) = P (M(T) > x;) ~ 25( = )

6; V1 —e 2T

The second relation of (4) indicates that, for every T > 0, M, (T) and M,(T) have ultimate tails of Gaussian
type, which are negligible compared to any subexponential tail in view of Lemma 2.1. Hence, M;(T) and
M(T) satisfy all the requirements imposed on & in Lemma 2.2 and Lemma 2.3. Besides, it is well-known
that the moment generating function of N1(T), No(T) and N3(T) are analytic in a neighborhood of 0; see,
e.g., Stein (1946).

3. Main results

The main results of this paper are given below. We get the asymptotic formulas for W (¥, t) and W (¥, t)
in the following two theorems.

Theorem 3.1. Let {Xyj,j = 1; Xo;,1 > 1} be the sequence of claim sizes which are i.i.d. with distribution function
Fi1 €S8, and (Y, k 2 1;Y0;,1 > 1} be the sequence of claim sizes which are i.i.d. with distribution function F, € S.
Then, for the bidimensional perturbed renewal risk model (1), it holds uniformly for t € Ar that

t t t t
W@~ [ Fiwenine) [ Feenie+ [ Faenamne [ Fe i)
0- 0— 0— 0—

+ j(; i Fi(x1€™)dA5(s3) j; . Fa(x2€™2)dAs(s2) + j(; . F1(x1€™*)Fa(x20")dA3(s3) (5)

+ Fy (1" ) Fy(xae™) + Fy (x16)Fa (2" ") ) d A3 (53)d A (w0).

s3,w0>0 (
s3+w<t

Theorem 3.2. Let {X1j,j > 1; Xo;,1 > 1} be the sequence of claim sizes which are i.i.d. with distribution function

Fi1 €S8, and (Y, k 2 1;Y0;,1 > 1} be the sequence of claim sizes which are i.i.d. with distribution function F, € S.
Then, for the bidimensional perturbed renewal risk model (1), it holds uniformly for t € Ar that

t t t t
W7, 1) ~ f Fu(xe™ ) (s1) f Fy (2™ (s3) + f Fy(ere™ ) (1) f Fi(x2e™) s 52)
0 0- 0— 0—

t t t
+ f Fi(x1€™)dA5(s3) f Fa(x2€"2)d A5 (s7) + f F1(x1€™)Fa(x2¢")dA3(s3) (6)
0 0— 0—

] (Fune® ) Fa(xae™) + Fi(ae™)Fa(xae ) dAs(s3)dAs (w).
3,0
s3t+w<t
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The theorem below is obtained by using Theorem 3.2.

Theorem 3.3. Let {X1j,j = 1; Xo;,1 > 1} be the sequence of claim sizes which are i.i.d. with distribution function
Fi1 €S8, and (Y, k 2 1;Y0;,1 > 1} be the sequence of claim sizes which are i.i.d. with distribution function F, € S.
Then, for the bidimensional perturbed renewal risk model (1), it holds uniformly for t € Ar that

t t t
Win (1) ~ f Fi(xie™)dA(s1) + f Fa(x2¢™?)dAs(s2) + f (Fi(r1e) + Fa(x2€™) ) dAs(ss). ?)
0- 0- 0-

Not surprisingly, all the obtained results confirm the widely-agreed intuition that the Brownian pertur-
bation with a Gaussian tail will not affect the asymptotic ruin probabilities of risk model with heavy-tailed
claims.

4. Proof of main results

4.1. Useful Lemma
First, we give a useful lemma, which is the main ingredient of the proof of the asymptotic formulas for
the three types. Then, we give the proofs of our main results .

Lemma 4.1. Let {X1j,j > 1;Xy;,i > 1} be the sequence of claim sizes which are i.i.d. with distribution function
Fi1 €8, and (Y, k = 1;Yy;,i > 1} be the sequence of claim sizes which are i.i.d. with distribution function F, € S.

Then , under the conditions of the bidimensional perturbed renewal risk model (1), it holds uniformly for t € Ay that

Ni(t) Nis(t) Na(#) Ns(#)

P Z X1]€ 51 + Z Xz, Tla + M1 T) > X1, Z Ylke_”k + Z Yz, Tfs + Mz(T) > Xo |~ (P(xl,Xz) (8)

and
Ns(t) Na(#)
P Z Xije " - Z Xoie™" i = My(T) > x1, Z Yie ™ + Z Yaoie " = Ma(T) > x| ~ P(x1,x2), (9)

where Mi(T) is the random variable defined by (3), i=1,2. And

t t t
Fy(x2€"?)dAy(s2) + f Fi(x1€)dA3(s3) f Fa(x2€"%)dA5(s2)
0_

0—- 0—

t
P(x1,x2) = fFl(xlersl)dAl(Sl)
O_
f_ f_ t_ _
; f Fy(ae™ ) (s1) f Fy (™) (s3) + f F (10 Fa (2™ s (s3)
0- 0 0

f f . F1(xle’(””"))Fz(xze”’) + Fi(x16® )Fz(xzer(s“““))) dAz(s3)dAz(w).
S3+w<t

Proof. Now we deal with the relation (8). Before proving, we give the idea of the proof. Firstly, the proof
is divided into Iy, ..., Is, and [; = o(I1),i = 2, ...,8. However, we only need to prove I, = o (I;) because of the
similarity in the proof. Next, I is divided into I3, ..., I1s, and I1; = 0 (I11) ,i = 2, ..., 8. Similarly, we only need
to prove I, = 0(I11) and I15 = o(I11). Hence, the emphasis of proof are the proofs of I, I11, [1 and I;5. First,
we know that

Ni(t) Na(t) Ns(t)

Z X1]€ f + Z Xaie~ Tfs + Ml(T > X1, Z Ylke_”k + Z Yoie™ Tfa + Mz(T) > Xz]
j=1

ST n 7rT(1) m o .

Z Z P Z Xie T+ Y X+ My(T) > x1,

=1 i=1

P

m
Y% + ) Yaie " + My(T) > 10, Ni(t) = 1, Na(t) = p, Na(t) = mJ (10)
k=1 i=1



D. Lu et al. / Filomat 33:10 (2019), 3243-3255 3248

Then, for some positive integer M, N, P, we split the right side of (10) into eight parts as

n Ny T _ _ _
Ylke + YZz i+ My(T) > x2,N1(t) = n,No(t) = p,N3(t) = m

= 11+12+"'+18- (11)

For I;, by Lemma 2.2, we have

N P
anlpz‘f f <. <i.‘(l <t<t“) f L« <. <t(2)<t<t f £<t(3)< <t,<t<tm

(1)

m
lee_rt/ + Xz, tf's + Ml(T) > x1] P (Z Ylke—rtf) + Z Yzl,e—rt?) + ]\_/Iz(T) > xz]
= i=1

[\"4:

3
I
-

i=1

——
.

I =
—_

)
—
=l
G

W0 e gl Q) ¢ @ 0 ¢ 4 ©
cdtl,.., o) edtQ )P(«? edr?, .. % edr? JP(«) edr), .. <, edt) )

m+1
N P
n=1 p= 1f £<t‘1>< <tP <<t f L<t<2< <tP<t<t?) f «f0<t(3)< <tP<t<t®

m+1

m
- _D @ F @ ®
P (lee P> x1) + Z P (Xzie > xl) Z (Ylke o> xz) + Z (Yz,-e_”i > xz)
, e :
r

Mz

1l
—_

j=1 i=1 i=1
D el VP (e e ar®, .,z

17 n+1 n+1 1 1

e dt? )P (e € dt?, ., ¢

p+1 m+

(oY) (oY) (o) [ (oY) (o) [ (oY) o (oY) o oo
IO IDIDNIIDNDIE ZZDZZ
1n=N+1p=1 m=1n=N+1p=P+1 m=M+1n=1 p=1 ~m=M+1 n=1 p=P+1

] ]

n 14 X )
[ 2 P (X1je_n(") > x1, Ny (t) = n)]P(Ylkf?_”(k) > x2,Nao(t) = P)IP (N3(t) = m)

1
(o]

=1
! 3) )
Z P (XZie‘”z > x1, N3(t) = m)lP (Ylke‘”k > xp, Na(t) = p)lP (N1(t) = n)

+ P (XU’EW?) > x1, Nq(t) = Tl)]P (Yzie_”l('g) > x2,N3(t) = m)]P (N2(t) = p)

)Y P (e >, Yo > o Naft) = m) P (NIt = m) P (Na(8) = p>]

=y —lip =iz + iy — 15 + Iig + L7 — Iis.
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For Iy;, it holds that
p

L=y Yy [Z Y P (e > 1, M) = ) P (Yire > 2, Na(t) = p P (Ns() = )

m=1 n=1 p=1 \ j=1 k=1

(12)

+

2P (Xzie*”f) > x1, Yoe ™ > x5, Na(t) = M)“’ (N1(t) = n) P (Na(t) = p)]

1 I=1
=:lq1+Ly+ L3+ Ly.

For L;, interchanging the order of the sums leads to

0 oo 0 o )
Ly zzl‘ ; ]P(lee s xl,’c;l) < t)l[’(Ylke > xp, TI((Z) < t)Z‘]P(Ng;(t) =m)
j=1 k=

m=1

:Z Zf ]P(lee_rsl > X1|T;l) = Sl)IP(’(;l) S d51)f ]P(Ylke_r” > X2|T]((2) = Sz)lp(’(}(cz) [S dSz)
=1 k=1 V0= 0-
t

- i i ft P (Xyje™ > xl)]P(T;l) € d51)f P (Y™™ > x) P (1) € dsz)
j=1 0- 0-

sl

t t
L= f (1™ )dAs(s5) f Foeae™)dAx(s2),

el

t t
L3 = f 1(X1€r51 )dAl(Sl) f Fz(XzErSS)d/\:;(S:;).
0 0—-

o oo m 00 o)
—rT(vS) —rT(3)
Ly = 21 z A z ]P(Xzié’ i >x, Yyue "t > xp, N3(t) = m) 21 P (N1(t) = n) 21 P (Na(t) = p)
1= n= p:

ONNIS NS

=1 I=i  I=i+l

G @
]P(le'e > X1, Y21€ > XZ,N3(f) = m)
(o) (o) (o]
) 0 @ c)
= Z Z ]P(Xz,'e > xq, Yoo > xp, 153) < t) + H’(XZie "> xq, YaieT > xp, Tl(.?’) <t
=1

1=1 i=I+1 i

3 3)
+ Z Z ]P(le-e’”i >x1, Yue N > xp, T](C’)) < t)]

=Ly +Lyp+ L43.

) (15)
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For Ly, since {N3(t);t > 0} is a renewal process, T(S) - 1(3) is independent of 153) and has the same distribution

as 1(3) Hence, conditioning on the values of T; and 1(3) 3) yields

=R ® ®
= Z Z ]P(Xz,-e_”f >x1, Yoe T > xp, 153) < t)
1=1 i=l+1
1=1 i=I+1
= Z Z f o P (Xz,-e_r(s“w) > x1, Yye '™ > x2'T§3) - 153) =w, ¥ = 53)
21 =101 VY kst (16)

]P(Tl(3) € ds3) ( ® _ 3) € dw)

i i 3020 P (Xaie ™) > 31 )P (Yore ™™™ > x0) P (7Y € dsy) P (1 = 1 € dw)
i=l+

S3+w<t

= F1 (16" ) Fy (x00"3)d A 3(s3)d A 3 (w).
s3,w=0
s3t+w<t

Similarly, we have

¢
Ly = f F1(x1€)Fa(x2e"™)dA5(s3), 17)
0_
and
Ly = j; w>0 F1(x1€™)Fa(x2e" ) d A5 (s3)d A3 (w). (18)
s3+w<t

Plugging (16), (17) and (18) into (15), we can obtain that

t
Ly= f F1(x1€™®)Fa(x2e™)d A3 (s3)
. (19)

+ Fy (1" ) Fy (x2") + F (x1€)Fy (x2¢ ™)) d A3 (53)d A3 ().

s3,w0>0 (
sz+w<t

Plugging (13), (14) and (19) into (12) yields that it holds uniformly for t € Ar that

Iy = f Fi(xe™)d A (s1) f Fy(x26"2)d A (s2) + f Fy(x1€™)dAs(s3) f Fy(x2¢™)dAs(s2)
(O 0—

fﬂ(xlersl)d)\l(sﬂf Fz(xzers3)d/\3(53)+f Fi(x1€™)Fy(x2¢"*)dA5(s3)
0

0-
+ f o (B @ @) Fa (™) + Fr(1€™)Fa(x2e ) ) dAs(s3)d A (@)-
3,1

s3+w<t
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For Iy, it holds that

p
Z H’(lee_”;” > x1,Ni(t) = n)l[’(Ylke_”(kZ) > x2, No(t) = P)IP(N3(1L) = m)
=1 k=1

(20)

For E;, we interchange the order of the sums and choose P large enough, it holds uniformly for t € Ar that

oo 14 X ) o]
Y Y P (X >, Nat) = )P (Yue T > o, Nagt) = p) Y P (Na(t) = m)
k=1

m=1

- 2 2 2 2| @ 2
]P(Ylke 152 >xz,1§,) —T(l) <t-s5< T;le —T§)|T(1) =SZ)IP(T(1) Edsz)

p=P+1 k=1 Y0~ (21)
¢ oo ¢ P )
=f P (){1]‘6_"51 > xl) d/\l (Sl) Z f Z r (Ylke_rSZ > XQ) P (Nz(t - Sz) =p- 1) P (Tg ) € dSz)
0- p=pP+1v 0~ }=1
t t )
< f Fi(x1e™)dA1(s1) f Fa(x26"2)d Ao (s2) Z (p + 1) P (No(T) > p)
0- 0- =
p=P
=0 (Ll) .
Similarly to (21), we can obtain that
Ey =0(L2),Es = 0(Ls). (22)
For E4, choose P large enough, and interchanging the order of the sums leads to
SRR ® ® - -
=YY Yr (Xzie_rTi > x1,Yoe™ > x5, Na(t) = m) Y PNy =n) Y P(No) = p)
m=1 i=1 I=1 n=1 p=P+1
oo (23)
=Ly ) PN:(H) = p)
p=P+1
ZO(L4).

Plugging (21), (22) and (23) into (20) yields that it holds uniformly for t € Ar that

Lz = o(l11). (24)
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For Iy;,i = 3,4, we can obtain the same conclusions as (24).
For I35, it holds that

(o)
p=1

nop
Z Z H’(Xuein?) > x1, Ni(t) = ”)]P(Ylke_”(:) > x2, No(t) = P)]P (N3(t) = m)

=1 k=1

01
= 104 1pe

'P+1§

P (Xzie_rT§’3) > x1, N3(t) = m)lP (Ylke_”‘(‘Z) > x2, No(t) = P) P (N1(t) = n)

i=1
1 —r®D ) (25)
+ r (lee i >x1,Ni(t) = n)]P(Yzl-e "> xp, N3(t) = m)]P(Nz(t) =p)
=1 =1
m m
+Y )P (Xye—”ff” > 21, Yoo > x5, Na(t) = m)]P (N1(t) = m) P (Na(t) = p)]
i=1 I=1

=:F1 + F, + F3 + F4.
For Fi, F; and F3, similarly to (21), we can obtain that
Fy = o(Ly), F> = o(La), Fs = o(Ls). (26)
For F4, choose M large enough, we have

Fy = Z Z ]P(Xzﬂ_”fa) > x1, Yo' > x3, Na(t) = ’”)Z P (N1(t) = n) Z P (Na(t) = p)
n=1 p=1

m=M+11<i,I<m

= Z Z * Z P (X21-e—”§3’ > x1, Yoe % > x5, Na(t) = m)
m=M+1 \1<i#l<m 1<i=I<m
f \ 27)
f P (Xaie ™ > x1) P (Yoe ™ > 1) P (70 € ds3) Z m? - P (N3(T) > m — 1)
m=M+1
famﬂwmﬂww32nimmm>mn
m=M+1
=0(La2).
Plugging (26) and (27) into (25) yields that it holds uniformly for f € Ar that
115 = 0(111). (28)

For I1;,i = 6,7,8, we can obtain the same conclusions as (28).
For I, we have

:1 n 1 p=P+1 f ~[0‘<t <. <t(”<i.‘<1.‘(1> f j(:<t(2)< <t(2)<t‘<t<2 f j()‘<t(3)< <t <t<t(3)
VU O — 3 1@ ft
P Z lee I+ Z Xz,'e_ri + Ml(T) > x1 |IP Z Ylke_’ ko 4+ Z Ysie r, + Mz(T) > Xo
j=1 k=1

i=1

=

1) 1) 1) @ () () (€)] 3)
]P(T1 edt1 ,. edth) ( T ealtl S edtpﬂ) ( ) ealifl S edth)
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For any ¢ > 0, by Lemma 2.3, there exists a constant K such that,

b)Y Y [ f [ [+[ .
tm< <t(1)<t<t 0<t(2)< <tz><t<t(2) 0<t <. <tm<t<t(3)

m=1 n=1 p=P+1 no= r = m =

(1 + g)(2m+n+p) (]P (X11€ (1 > Xl) + ]P(sz t(l > xl))( (Yne g > Xz) + IP(Y216 (1 > Xz))

o o) (1) (1) 2 2) (2) 2 3 3 (3) @3
]P(Tl edtl 7 n+1 edtn-%—l) ( 1 Edtl [ p+1 Edtp-%—l) ( 1 Edtl 7 m+1 Edtm-%—l)
M N o
SKY YN @+ @ (P (Xue > 1, M) = ) P(Yie ™ > 1, Na(t) = p) P(Na() = m) (9

1
; ]P(xﬂe*”l > xp, Ny(t) = m)]P(YHe’”?) > x, No(t) = p)lP (Ni() = n)
+ ]P(Xne_”(ll) > x1, Ni(t) = n)lP (Yzle_”(ls) > x2,Ns(t) = m)IP(Nz(f) =p)
+ P (Xore ™ > w1, Yoo > 2, Na(t) = ) P(Ni(6) = ) P (Na(t) = p)
=: 121 + 122 + Iz3 + 124.
For I1, choose M, N, P large enough, it holds that

M N )
121 ZKZ Z Z (1 + s)(2m+n+p)]P (Xlle_rT(ll) > xl,Nl (t) = I’Z)JP(YHE_”?) > Xo, Nz(t) = p)]P(Ng,(t) = TYZ)

m=1 n=1 p=P+1

M N 00 t
(2m+n+p) @ _ (1) _ (1) _ M@ _ (€]
KZZ 1+¢ "‘””]{;_]P(Xne > x1, T, <t T~ T |T1 —51)11’( edsl)

m=1 n=1 p=P+1

j(; P Yne‘rSZ > Xy, T;Z) - T(lz) <t-%< T;2+ (2)| @) — sz)]l’(’c(lz) € dsz)]P(Ng,(t) =m)

Kf Fi(xie™ d/\l(sl)f Fa(x2€"2)d s (s2)
0

M )
Z(l + )2 (N3(F) = m) Z(l +e)"P(Ny(T) = n—1) Z 1+ PP (Ny(T) > p—1),
m=1 n=1

p=P+1

thus, we can choose ¢ > 0 sufficiently small, it holds uniformly for f € Ar that

by =o( f Fy(rne™ ) (s1) f Fz(xzersz)d)\z(sz)) (30)
O_

Similarly, we can obtain that

I =0(f Fi(x1e"™) d/\3(53)f Pz(xzersz)d/\z(sz))

0-

t
I3 =0( fo Fy(x1€")dA1(51) ](; Fz(xzers3)d/\3(53))/ (31)

Iy =0 ( f Fl(X16r53)Fz(xzers3)d/\3(53))-

0—
Plugging (30) and (31) into (29) yields that it holds uniformly for t € Ar that
12 =0 (Il) . (32)
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Forl;,i = 3,...,8, we can obtain the same conclusions as (32). Combining the discussionofl;,i = 1,2,3,...,8
with (11), we conclude the asymptotic relation (8).

Combining Lemma 3.1, Lemma 3.3 of Li (2017) and following the proof of the relation (8) with slight
modifications, we turn to the relation (9), then, we can obtain the same conclusion. [

4.2. Proof of Theorem 3.1
For the upper bound, we have

Ni(t) ) N(t) Na(f) ( Ns(f)
\I]V(X H<P Z X1]€ 5+ Z‘ Xpe N — Ml(T) > X1, Z Yie "+ Z Yo — Mz(T) > Xo
j=1 i=1 k=1 i=1
Ni(#) Ns(f) Na(f) N3(f) N
Z lee / + Z Xaie™ Tf + Ml(T) > X1, Z Ylke_”i + Z Yoie™ Tf + Mz(T) > .X'z]

By Lemma 4.1, we can easily get
t t t t
\y\/(ﬁ?, t) Sf Fl (xle”” )dAl(Sl)f Fz(Xzersz)d/\z(Sz) + f P1(9C1€rs1 )dAl(Sl)f Fz(X26r53)dA3(S3)
0 0-

t
f Fi(x1€™)dA5(s3) f Fa(x2€"2)d A5 (s7) + f F1(x1€™)Fa(x2¢")dA3(s3) (33)

0 0
[ [ (P ™) Fataze™) & Faaae™ Fataae™ ) (el
w
s3+w<t

For the lower bound, using Lemma 4.1 again, we have

Na() o N N 0 p
W, (%, 1) >P Z Xyje 2 Xoie " — My(T) > x 0 2 Yie "% + 2 Yoie™ = My(T) > xp + —
j=1 i=1 i=1

t t
Nf l?l(xlersl + %e“l)d/\l(sl) ?2(3@6752 + %erSZ)d/\z(Sz)
0- 0-

f t
+ f Fi(e™ +‘%e“1)dm(sl) f I_fz(xze’53+p72e’s3)d/\3(53)
0- 0—

f t
+ f Fi(ae™ + p—rle’53)d/\3(53) Fy(pe™ + p—:e’SZ)dAz(sz)
0_

0_
t
+ f Fi(x1€™ + ;%fzr%)l-"z(xzer53 + %(3753)61/\3(83)
0,
+ (?1 (xler(53+w + &er(Sgﬂu))?z(xzers@ + p_26753)
s3,w>0 r

S3+w<t

+ Fi(x1e™ + %6753)1_32@267(53“0) + pTZe’(s”w))) dA3(s3)dAs(w).

By F € S ¢ L, we obtain that
t t t t
W@ > f Fy(e™ ) (s1) f Fy (2™ (s3) + f Fu(ae™ ) (s1) f F(xe™)dAs(52)
0- 0- 0 0-

f Fr(x1€™*)dA5(s3) f Fo(x26%)d Ao (s5) + f F1(x1€™%%)Fa (220" )d A5 (s3) (34)
0— 0—

+ o (Fr@ie & ) Fa(0ae™) + Fi (31 Fa(xae ")) dAs(s3)dAs w).
S3,W2!
s3t+w<t
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Combining (33) and (34), we complete the proof.

4.3. Proof of Theorem 3.2

For the lower bound, we have
Wy, 1) 2 P (Un () < 0, Un(t) < 0) = P (U (t) < 0, " U(t) < 0).
Combining the relation (2), Lemma 4.1, and the proof of Theorem 3.1, it is easy to obtain the relation (6).

4.4. Proof of Theorem 3.3
To prove Theorem 3.3, we need the following relation

Woia(7, 1) = P (Tyin( < ) =P ({ inf th9) <0} | { inf, ta(s) <0

(35)
P (Oinft Uy(s) < 0) +P (Oinft Un(s) < o) _W, (R 1),

Following the proof of Theorem 2.1 in Li (2017) with slight modifications, we have

2 t t t
]P(Oinft Ui(s)<0)~ f Fo (e ) (s1) + f Fa(xae)d A (s2) + f (Fuxie’™) + Falrae™)) dAa(ss). (36)
= Sss 0- 0- 0-

1

Since, we have

t t t
%(f,t):o( f Fy (x1¢™)d s (s1) + f Fa(x2¢™)d o(55) + f (Fl(xle“a)+f2<xze’53>)dA3(sS>), (37)
0- 0- 0-

where (x1,x2) — (00, 00). According to (35), (36) and (37), we complete the proof.
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