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Abstract. Our study is developed in a general framework, namely a manifold M endowed with a (1,1)-
tensor field ϕ, which is integrable. The present paper solves the following two problems: how many linear
connections with torsion and without torsion exist, having the property of being parallel with respect to ϕ.
To count all these connections with the given properties, certain algebraic techniques and results are used
throughout the paper.

To commemorate Mileva Prvanović (1929 - 2016), 90 years after her birth

0. Introduction

In 2014, Dušek and Kowalski had the idea to count the number of all real analytic affine connections
with torsion which exist locally on a smooth manifold M of dimension n. In their paper [4], the families of
general affine connections with torsion and with skew-symmetric Ricci tensor, or symmetric Ricci tensor,
respectively, are described in terms of the number of arbitrary functions of n variables. This study was
continued with a related topic in their paper [5], where they counted the number of all real analytic
equiaffine connections with arbitrary torsion which exist locally on a smooth manifold M of dimension n.
The families of general equiaffine connections and with skew-symmetric Ricci tensor, or with symmetric
Ricci tensor, respectively, are described in terms of the number of arbitrary functions of n variables. Later
on, the same authors dealt with how many torsionless affine connections exist in general dimension, (see
[6]). Another interesting question was raised in [7], concerning how many Ricci flat affine connections are
there with arbitrary torsion.

Also, Pripoae determined in [8] how many left invariant and bi-invariant connections there exist on
Lie groups which satisfy additional geometric properties (such as torsionless, flatness, Ricci-flatness and
so on). The framework of this study is the invariant geometry on Lie groups where the author investigates
the existence and the non-existence of this geometries, aiming to obtain classification results.
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In mathematical literature there are many studies concerning the number of geometric objects having
certain properties on manifolds. Our paper deals with the same topic, but the techniques that we use are
completely different. We based our study on some algebraic methods and especially on Frobenius theorem.
The main objects we deal with are linear connections which are parallel with a given integrable (1,1)-tensor
field. Such (1,1)-tensor fields can be almost complex structures, almost product structures, f-structures of
Kentaro Yano type, almost contact structures and so on. The linear connections which are parallel with
such a (1,1)-tensor field are also of great interest in Differential Geometry, since there are many well known
examples, such as the Levi-Civita connection on a Kähler manifold, on a para-Kähler manifold and so on.
We discuss here both connections with torsion and without torsion.

We start our paper with an algebraic approach, followed in section 2 by applications to Frobenius
theorem. In section 3 we discuss about structures on manifolds given by (1,1)-tensor fields and about
connections with respect to which these structures are parallel. We expose here the main problem, which
will be solved in section 4. The last section contains the main result of the paper. All geometric objects are
taken to be smooth and the Einstein summation convention over repeated indices is assumed.

1. Algebraic approach

To solve the main problem stated in the next section, we need some algebraic preparations. Let
A ∈ Mn(R) be a real matrix of order n. Then the centralizer of A, denoted by

C(A) = {X ∈ Mn(R)/XA = AX}

ia a linear space.
We are going to reduce the main problem of section 3, to the following:
Algebraic problem: Compute the dimension of C(A).
The answer is given by the following steps:
Step 1: We find the characteristic polynomial PA(λ) of A.
We recall the following:

Definition 1.1. A polynomial whose dominant coefficient is one, is called monic.

Then PA(λ) has a unique decomposition (up to the order) into some irreducible factors:

PA(λ) = ps1
1 (λ) · · · psr

r (λ),

which are powers of some monic polynomials of degree 1 or 2 with real coefficients.
Step 2: Associate a companion block matrix.
Given a polynomial factor ps(λ) from above, there is associated to it a companion block matrix B whose

characteristic polynomial is ps(λ).
(i) If λ ∈ C \R is a root of PA(λ), then λ is represented by a block matrix B together with its conjugate λ.
For instance, to a monic polynomial λ2 + aλ+ b with real coefficients, but non-real roots, the companion

block matrix is

B =

(
0 −b
1 −a

)
.

(ii) Ifλ ∈ R is an eigenvalue of A, whose order of multiplicity s is equal to the dimension of the eigenspace
V(λ) of λ, then the Jordan form of A contains s blocks of order 1, namely (λ). Hence the companion block
matrix is

B =

 λ 0 . . . 0
. . . . . . . . . . . .
0 0 . . . λ

 .
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(iii) If λ is an eigenvalue of A whose order of multiplicity is different from dimV(λ), then one has a flag
space, since eigenvectors generate principal vectors.

From the above (i), (ii) and (iii), we draw the following:

Conclusion 1.2. If we denote by B the companion block matrix of λ, then from the Frobenius theorem, the dimension
contribution of B is:

k∑
i=1

(2i − 1)de1 fi, (1.1)

where f1, . . . , fk are invariant monic factors associated to B such that fi divides fi−1, i = 2, k.

Step 3: dimC(A) is the sum of the contribution given by each root λ of PA(λ).

Note that when λ ∈ C \R, then its contribution is taken together with that of its conjugate λ.

2. Applications of Frobenius theorem

In this section, we use the formula (1.1) in order to compute the dimension of the centralizer C(A) for
any matrix A of order 2 or 3, to show in detail how this procedure works.

Example 2.1. Let A ∈ M2(R) and let the roots of PA(λ) be λ1,2 ∈ C.

Case I. λ1,2 ∈ R

1) If λ1 , λ2, then PA(λ) = (λ − λ1)(λ − λ2). Since for each i = 1, 2, one has de1(λ − λi) = 1, then from
(1.1), the contribution of λi is (2 · 1 − 1) · 1 and from section 1, Step 3, we obtain

dimC(A) = 2.

2) If λ1 = λ2, then the order of multiplicity of λ1 is 2.

a) If dimV(λ1) , 2, then the companion block martix of λ1 is
(
λ1 1
0 λ1

)
and its characteristic polynomial

(λ − λ1)2 is of degree 2. By (1.1), we obtain dimC(A) = (2 · 1 − 1) · 2 = 2.

b) If dimV(λ1) = 2, then the companion block martix of λ1 is
(
λ1 0
0 λ1

)
, which decomposes into 2 blocks,

both equal to (λ1) and its characteristic polynomial is f1 f2, where f1 = f2 = λ − λ1. Note that f2 divides f1
and de1 f1 = de1 f2 = 1. From (1.1), we obtain dimC(A) = (2 · 1 − 1) · 1 + (2 · 2 − 1) · 1 = 4.

Case II. If λ1,2 ∈ C \R,
then PA(λ) = λ2 + aλ + b is a polynomial of degree 2, irreducible over R (where a = −(λ1 + λ2) and
b = λ1λ2 ∈ R). From (1.1), we have dimC(A) = (2 · 1 − 1) · 2 = 2.

Example 2.2. Let A ∈ M3(R) and let the roots of PA(λ) be λ1,2,3 ∈ C.

Case I. λ1,2,3 ∈ R

1) If allλ1,2,3 are distinct, then PA(λ) = (λ−λ1)(λ−λ2)(λ−λ3). Since for each i = 1, 3, one has de1(λ−λi) = 1,
then from (1.1), the contribution of λi is (2 · 1 − 1) · 1 and from section 1, Step 3, we obtain dimC(A) = 3.

2) If λ1 = λ2 , λ3, then the order of multiplicity of λ1 is 2.
a) If dimV(λ1) , 2, then the contribution of λ1 is 4 (as in Example 2.1, Case I, 2a). Since from (1.1), the

contribution of λ3 is (2 · 1 − 1) · 1 = 1, then from section 1, Step 3, we have dimC(A) = 4 + 1 = 5.
b) If dimV(λ1) = 2, then the contribution of λ1 is 2 (as in Example 2.1, Case I, 2b). Since from (1.1), the

contribution of λ3 is (2 · 1 − 1) · 1 = 1, then from section 1, Step 3, we have dimC(A) = 2 + 1 = 3.
3) If λ1 = λ2 = λ3, then the order of multiplicity of λ1 is 3.
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a) If dimV(λ1) = 3, then the companion block martix of λ1 is

λ1 0 0
0 λ1 0
0 0 λ1

, which contains 3 blocks equal

to (λ1) and PA(λ) = f1 f2 f3, where f1 = f2 = f3 = λ − λ1. We note that f3 divides f2, which divides f1 and
de1 f1 = de1 f2 = de1 f3. From (1.1), we obtain dimC(A) = (2 · 1 − 1) · 1 + (2 · 2 − 1) · 1 + (2 · 3 − 1) · 1 = 9.

b) If dimV(λ1) = 2, then the companion block martix of λ1 is

λ1 1 0
0 λ1 0
0 0 λ1

 and PA(λ) = f1 f2, where

f1 = (λ − λ1)2 and f2 = λ − λ1. We note that f2 divides f1, de1 f1 = 2 and de1 f2 = 1. From (1.1), we have
dimC(A) = (2 · 1 − 1) · 2 + (2 · 2 − 1) · 1 = 2 + 3 = 5.

c) If dimV(λ1) = 1, then the companion block martix of λ1 is

λ1 1 0
0 λ1 1
0 0 λ1

 and PA(λ) = (λ − λ1)3 is of

degree 3. From (1.1), we have dimC(A) = (2 · 1 − 1) · 3 = 3.

Case II. If λ1,2 ∈ C \R and λ3 ∈ R,
then PA(λ) = (λ2 + aλ + b)(λ − λ3) and (as in Example 2.1, Case II) the contribution of λ1 together with
λ2 = λ1, is 2. From (1.1), the contribution of λ3 is (2 · 1 − 1) · 1 = 1. From section 1, Step 3, we obtain
dimC(A) = 2 + 1 = 3.

3. Structures on manifolds

On a manifold M, letF (M) be the ring of all smooth real functions on M and letχ(M) be theF (M) - module
of all vector fields on M. Then any (1,1)-tensor field ϕ on M can be viewed as an F (M)-endomorphism
ϕ : χ(M) → χ(M). In the setting of G-structures, we recall here the following notion (see the Example 1.6,
page 17 from [3] and also page 77 from [1]):

Definition 3.1. Let M be an n-dimensional manifold endowed with a (1,1)-tensor field ϕ. Then ϕ is called integrable
if around any point of M, there exists a local chart (x1, . . . , xn) with respect to which ϕ has constant coefficients ϕh

j ,

j, h = 1,n, given by:

ϕ(
∂

∂x j ) = ϕh
j (
∂

∂xh
). (3.1)

Remark 3.2.

(i) If ϕ is integrable, then there exists an atlas of local charts (x1, . . . , xn) and a real matrix F =
[
ϕh

j

]
j,h=1,n

∈

Mn(R) whose entries are given by the relation (3.1). In other words, from Definition 3.1 it follows that the
matrix F of ϕ is the same in any local chart of the atlas.

(ii) In particular, let J (resp. P) be an almost complex (resp. almost product) structure on M, that is
J2 = −Id (resp. P2 = Id and P , ±Id). Then J (resp. P) is a complex (resp. product) structure on M if and
only if one of the following equivalent conditions is satisfied:

(a) J (resp. P) is integrable;
(b) The Nijenhuis tensor field associated to J (resp. P) vanishes identically;
(c) There exists an atlas of local charts on M, with respect to which the matrix

[
Jh

j

]
j,h=1,n

of J (resp.
[
Ph

j

]
j,h=1,n

of P), associated from the relation (3.1), is given by
(

0 −Ik
Ik 0

)
(resp.

(
Ip 0
0 In−p

)
), where 2k = n (resp. p is the

dimension of the eigenspace corresponding to the eigenvalue 1 of P).
We recall here the following:

Definition 3.3. Let (M, ϕ) be a manifold endowed with a (1,1)-tensor field. A linear connection ∇ on M is a
ϕ-connection if ϕ is parallel with respect to ∇, that is

∇ϕ = 0. (3.2)
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Remark 3.4.

(i) The relation (3.2) can be written as:

(∇Xϕ)Y Not
= ∇X(ϕY) − ϕ(∇XY) = 0,∀X,Y ∈ χ(M). (3.3)

(ii) In local coordinates, the relation (3.3) can be written as follows:

(∇ ∂
∂xi
ϕ)

∂

∂x j = 0⇔ ∇ ∂
∂xi

(ϕ
∂

∂x j ) = ϕ∇ ∂
∂xi

∂

∂x j

⇔ ∇ ∂
∂xi

(ϕh
j
∂

∂xh
) = ϕ(Γh

ij
∂

∂xh
)⇔

⇔

∂ϕk
j

∂xi

∂

∂xk
+ ϕh

j Γ
k
ih
∂

∂xk
= Γh

ijϕ
k
h
∂

∂xk

⇔

∂ϕk
j

∂xi + ϕh
j Γ

k
ih = Γh

ijϕ
k
h, i, j = 1,n,

(3.4)

where (Γk
i j)i, j,k=1,n denote the Christoffel coefficients of ∇.

(iii) The existence of a ϕ-connection is studied in mathematical literature in several contexts. For
instance, the Levi-Civita connection of the metric 1 on a Kähler manifold (M, 1, J) (resp. para-Kähler
manifold (M, 1,P)) is a J-connection (resp. a P-connection).

Different from the existence problem, we state now the following:
General problem On a manifold (M, ϕ) endowed with a (1,1)-tensor field, how many ϕ-connections

exist?
In the present paper we solve the following:
Main problem If (M, ϕ) is a manifold endowed with an integrable (1,1)-tensor field, how many ϕ-

connections exist?

4. F-connections

In this section, (M, ϕ) denotes an n-dimensional manifold endowed with an integrable (1,1)-tensor field.
From Definition 3.1, there exists a matrix F ∈ Mn(R) and an atlas on M with local coordinates (x1, . . . , xn)
such that:

F =
[
ϕh

j

]
j,h=1,n

(4.1)

where ϕh
j , j, h = 1,n are given by (3.1). The relation (4.1) shows that the coefficients ϕh

j , j, h = 1,n, are
constant.

Under the above notations, it follows from (3.4) that a linear connection ∇ is a ϕ-connection if and only
if its Christoffel coefficients (Γh

ij)i, j,h=1,n satisfy:

ϕh
j Γ

k
ih = Γh

ijϕ
k
h, i, j, k = 1,n, (4.2)

in the above local coordinates.
For any fixed i ∈ {1, . . . ,n}, we denote by Gi the matrix (Γh

ij) j,h=1,n.
Since F ∈ Mn(R), let C(F) be its centralizer. Hence, (4.2) becomes:

FGi = GiF, i = 1,n, (4.3)

or equivalently, Gi ∈ C(F), i = 1,n.
Let q(F) = dimC(F), as computed in section 1.
We conclude with the following solution to the main problem:
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Theorem 4.1. Let (M, ϕ) be an n-dimensional manifold endowed with an integrable (1,1)-tensor field, whose associ-
ated matrix is F. Then all ϕ-connections

(i) with torsion in dimension n depend locally on nq(F) arbitrary functions of n variables;
(ii) without torsion in dimension n > q(F) depend locally on at most nq(F) arbitrary functions of n variables;
(iii) without torsion in dimension n ≤ q(F) depend locally on at most n(q(F) + n)/2 arbitrary functions of n

variables.

Proof. Let (Γh
ij)i, j,h=1,n be the Christoffel symbols of a ϕ-connection. Any (Γh

ij)i, j,h=1,n can be seen as a cubic

matrix or else, as n ordinary matrices Gi = (Γh
ij) j,h=1,n, indexed by i = 1,n. We saw above that Gi run in a q(F)-

dimensional space for any i = 1,n. Hence (i) is shown. For torsion-free connections, one has the symmetry
of Γh

ij with respect to i and j. Then (ii) is proved. When q(F) ≥ n, we are looking for the maximum dimension
of symmetric ϕ-connections. For this purpose, to the n2 entries from the diagonal i = j ∈ {1, . . . ,n} of the
matrix (Γh

ii)i,h=1,n, we add the (q(F) − n)n/2 entries outside this diagonal (where we divided by 2, based on
the symmetry of Γh

ij with respect to i and j). Hence we obtain n2 + (q(F)−n)n/2 = n(q(F) + n)/2, which shows
(iii) and complete the proof.

In the following example we show that the maximum is reached.

Example 4.2. If n = 2 and ϕ is the identity, than q(I) = n2 = 4 > n. One can see that all ϕ-connections without
torsion depend locally on (1 + 2)2 = 6 arbitrary functions, while n(q(I) + n)/2 = 6. For the ϕ-connections with
torsion, we obtain n3 = nq(I) = 8.

This example can be generalized for any dimension. In the next example the maximum is not reached.

Example 4.3. In dimension n = 2, any almost complex structure is integrable and its canonical form is: J =

(
0 −1
1 0

)
.

A straightforward computation yields:

C(J) = {A ∈ M2(R); A = A(a, b) ∈ R, a, b ∈ R},

where A(a, b) denotes
(
a −b
b a

)
.

Hence q(J) = 2, which is exactly the 2-dimensional Case II from Example 2.1. One has Gi = A(ai, bi), i =
1, 2, which yields that:

(i) any general complex linear connection depends on 2·2 = 4 coefficients (denoted above by ai, bi, i = 1, 2);
(ii) any torsion-free complex linear connection depends on 2 coefficients (denoted above by a1, b1, since

from the symmetry condition with respect to i and j, we obtain a2 = −b1 and b2 = a1).

Remark 4.4. The above study on J and its centralizer C(J) is similar to the discussion for almost tangent structures
from [2].

This research of the present paper will be continued in a forthcoming work, where we will count all
linear connections with respect to which a given semi-Riemannian metric is parallel. The role played here
by the (1,1)-tensor field will be replaced there by a semi-Riemannian metric.
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