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Abstract. In this paper, we give some exponential inequalities for extended independent random variables
under sub-linear expectations. As an application, we obtain the strong convergence rate O(n−1/2 ln1/2 n) for
the strong law of large numbers under sub-linear expectations, which generalizes some corresponding ones
under the classical linear expectations.

1. Introduction

The classical exponential inequalities and strong law of large numbers are based on the linearity of ex-
pectations and probability measures. However, such an additivity assumption is not feasible in many areas
of applications because many uncertain phenomena cannot be well modelled by using additive probabili-
ties or additive expectations. More specifically, motivated by some problems in mathematical economics,
statistics, quantum mechanics and finance, a number of papers have used non-additive probabilities (called
capacities) and nonlinear expectations (for example Choquet integral/expectation, 1-expectation) to de-
scribe and interpret the phenomena which are generally nonadditive (see Chen [1], Peng [2]). Peng [3]-[5]
introduced the general framework of the sub-linear expectation in a general function space by relaxing
the linear property of the classical expectation to the sub-additivity and positive homogeneity. Under this
framework, many limit theorems have been established recently, including the central limit theorem and
weak law of large numbers (cf. Peng [4] and [6]), the small derivation and Chung’s law of the iterated
logarithm (cf. Zhang [7]), the exponential inequalities and the laws of the iterated algorithm (cf. Zhang [8]),
the moment inequalities for the maximum partial sums (cf. Zhang [9]). In addition, Chen [10] investigated
kinds of strong laws of large numbers for capacities, Zhang [11] obtained the moment inequalities and the
Kolmogorov type exponential inequalities, Wu and Chen [12] researched the invariance principles for the
law of the iterated logarithm, Wu and Jiang [13] established the strong law of large numbers and Chover’s
law of the iterated logarithm under sub-linear expectations, Wu et al. [14] investigated the approximations
of inverse moments for double-indexed weighted sums of random variables and obtained the convergence
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rate of approximations under sub-linear expectations, and so on. In this work, we will further study the
probability limit properties for partial sums of random variables under the sub-linear expectations, espe-
cially the exponential inequalities for unbounded random variables and applications to the convergence
rate of the strong law of large numbers.

Now we use the notations of Peng [4]. Let (Ω,F ) be a given measurable space and letH be a linear space
of real functions defined on (Ω,F ) such that if X1, . . . ,Xn ∈ H then ϕ(X1, . . . ,Xn) ∈ H for eachϕ ∈ Cl,Lip(Rn),
where Cl,Lip(Rn) denotes the linear space of (local Lipschitz) functions satisfying

|ϕ(x) − ϕ(y)| ≤ C(1 + |x|m + |y|m)|x − y|,∀x, y ∈ Rn,

for some C > 0 and m ∈ N depending on ϕ. H is considered as a space of random variables. In this case
we denote X ∈ H .
Definition 1.1. A sub-linear expectation Ê on H is a function Ê : H → R̄ := [−∞,∞] satisfying the following
properties: for all X,Y ∈ H , we have

(a) Monotonicity: If X ≥ Y, then Ê[X] ≥ Ê[Y];
(b) Constant preserving: Ê[c] = c, where c is a constant;
(c) Sub-additivity: Ê[X + Y] ≤ Ê[X] + Ê[Y], whenever Ê[X] + Ê[Y] is not of the form +∞−∞ or −∞ +∞;
(d) Positive homogeneity: Ê[λX] = λÊ[X], λ > 0.
The triple (Ω,H , Ê) is called a sub-linear expectation space. Given a sub-linear expectation Ê, let us

denote the conjugate expectation ε̂ of Ê by

Ê[X] = −Ê[−X], ∀X ∈ H .

Obviously, for all X ∈ H , Ê[X] ≤ Ê[X]. We also call Ê[X] and Ê[X] the upper expectation and lower
expectation of X, respectively.

The concepts of independence and identical distribution were introduced by Peng [4] and [5] as follows.
Definition 1.2. (i) (Identical distribution) Let X1 and X2 be two n-dimensional random vectors defined respectively
in sub-linear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2). They are called identically distributed, denoted by

X1
d
= X2, if

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cl,Lip(Rn),

whenever the sub-expectations are finite.
(ii) (Independence) In a sub-linear expectation space (Ω,H , Ê), a random vector Y = (Y1, . . . ,Yn), Yi ∈ H

is said to be independent to another random vector X = (X1, . . . ,Xm), Xi ∈ H under Ê if for each test function
ϕ ∈ Cl,Lip(Rm

×Rn), we have

Ê[ϕ(X,Y)] = Ê[Ê[ϕ(x,Y)]|x=X],

whenever ϕ̄(x) := Ê[|ϕ(x,Y)|] < ∞ for all x and Ê[|ϕ(X)|] < ∞.
(iii) (Independent random variables) A sequence {Xn,n ≥ 1} of random variables is said to be independent, if

Xi+1 is independent to (X1, . . . ,Xi) for each i ≥ 1.
Zhang [11] introduced the following concept of extended independence under sub-linear expectations.

Definition 1.3. A sequence {Xn, n ≥ 1} of random variables is said to be extended independent, if

Ê

 n∏
i=1

ϕi(Xi)

 =

n∏
i=1

Ê[ϕi(Xi)], ∀ n ≥ 2, ∀ 0 ≤ ϕi(x) ∈ Cl,Lip(R).

An array {Xni, 1 ≤ i ≤ n, n ≥ 1} is said to be rowwise extended independent, if for any fixed n ≥ 1, {Xni, 1 ≤ i ≤ n}
are extended independent random variables.

It can be showed that the independence implies the extended independence. It is obvious that, if {Xn,n ≥
1} is a sequence of independent (extended independent) random variables and f1(x), f2(x), . . . ∈ Cl,Lip(R),
then { fn(Xn), n ≥ 1} is also a sequence of independent (extended independent) random variables.

Let G ⊂ F . A function V : G → [0, 1] is called a capacity if

V(φ) = 0, V(Ω) = 1 and V(A) ≤ V(B), ∀ A ⊂ B and A, B ∈ G.
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It is called to be sub-additive if V(A
⋃

B) ≤ V(A) + V(B), ∀ A, B ∈ G and A
⋃

B ∈ G.
Let (Ω,H , Ê) be a sub-linear space. It is natural to define the capacity of a set A to be the sub-linear

expectation of the indicator function IA of A. However, IA may be not inH . So, we denote a pair (V, V) of
capacities by

V(A) := inf{Ê[ξ] : IA ≤ ξ, ξ ∈ H},V(A) := V(Ac),∀A ∈ F ,

where Ac is the complement set of A. Then

Ê[ f ] ≤ V(A) ≤ Ê[1], Ê[ f ] ≤ Ê[A] ≤ Ê[1], i f f ≤ IA ≤ 1, f , 1 ∈ H .

Also, we define the Choquet integrals/expecations (CV,CV) by

CV[X] =

∫
∞

0
V(X ≥ t)dt +

∫ 0

−∞

[V(X ≥ t) − 1]dt

with V being replaced byV andV, respectively.
In this work, we will establish some exponential inequalities for identically distributed extended in-

dependent random variables under the sub-linear expectations. In addition, by using these exponential
inequalities, we will further investigate the strong law of large numbers under sub-linear expectations
with the strong convergence rate O(n−1/2 ln1/2 n). The results obtained in the paper will generalize some
corresponding ones under the classical linear expectations.

Throughout the paper, let C represent a positive constant which may vary in different places. Denote
log x = ln max(x, e), Sn =

∑n
k=1 Xk, Bn =

∑n
k=1 Ê[X2

k ] and Mn,p =
∑n

k=1 Ê[|Xk|
p], Mn,p,+ =

∑n
k=1 Ê[(X+

k )p].
an = O(bn) stands for an ≤ Cbn, where {an,n ≥ 1} and {bn,n ≥ 1} are two sequences of positive constants.

2. Main results and their proofs

Let {Xn,n ≥ 1} be a sequence of random variables and {cn,n ≥ 1} be a sequence of positive numbers such
that lim

n→∞
cn = ∞. For fixed n ≥ 1, denote for 1 ≤ i ≤ n that

Xi,n = −cnI(Xi < −cn) + XiI(−cn ≤ Xi ≤ cn) + cnI(Xi > cn),
Yi,n = (Xi − cn)I(Xi > cn), Zi,n = (Xi + cn)I(Xi < −cn). (2.1)

It is easy to check that Xi,n + Yi,n + Zi,n = Xi for 1 ≤ i ≤ n, n ≥ 1 and Xi,n are bounded by cn for each fixed
n ≥ 1. If {Xn,n ≥ 1} are extended independent random variables, then {Xi,n, 1 ≤ i ≤ n}, {Yi,n, 1 ≤ i ≤ n}
and {Zi,n, 1 ≤ i ≤ n} are all extended independent random variables for each fixed n ≥ 1 under sub-linear
expectations.

Before we state the main results of the paper, we first list some important lemmas, which will be used
to prove the main results of the paper
Lemma 2.1.(Borel-Cantelli lemma, cf. Zhang [9]) Let {An,n ≥ 1} be a sequence of events in F . Suppose that V is
a countably sub-additive capacity. If

∑
∞

n=1 V(An) < ∞, then

V(An i.o.) = 0, where {An i.o.} =
∞⋂

n=1

∞⋃
i=n

Ai.

Lemma 2.2. Let X1, X2, · · · ,Xn be extended independent random variables in (Ω,H , Ê) with Ê[Xi] ≤ 0 for all
i = 1, 2, · · · ,n.

(a) For all x, y > 0,

V (Sn ≥ x) ≤ V
(
max

k≤n
Xk ≥ y

)
+ exp

{
−

x2

2(xy + Bn)

(
1 +

2
3

ln(1 +
xy
Bn

)
)}
. (2.2)
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(b) For any p ≥ 2, there exists a constant Cp ≥ 1 such that for all x > 0 and 0 < δ ≤ 1,

V (Sn ≥ x) ≤ Cpδ
−2p Mn,p,+

xp + exp
{
−

x2

2Bn(1 + δ)

}
. (2.3)

(c) We have for x > 0, r > 0 and p ≥ 2 that

V
(
S+

n ≥ x
)
≤ V

(
max

k≤n
X+

k ≥
x
r

)
+ er

( rBn

rBn + x2

)
, (2.4)

CV
[
(S+

n )p]
≤ ppCV

[
(max

k≤n
X+

k )p
]

+ CPBp/2
n . (2.5)

In particular,

V (Sn ≥ x) ≤ (1 + e)
Bn

x2 . (2.6)

Proof. It is obvious that, if {Xn, n ≥ 1} is a sequence of extended independent random variables, then they
are extended negatively dependent with K = 1. Similar to the proof of Theorem 3.1 in Zhang [11], we can
obtain Lemma 2.2 immediately. �
Lemma 2.3. Let {Xn,n ≥ 1} be a sequence of extended independent random variables in (Ω,H , Ê) with Ê[Xi] ≤ 0
for each i ≥ 1. If there exists a sequence of positive numbers {cn,n ≥ 1} such that |Xi| ≤ ci for each i ≥ 1, then for any
t > 0 and n ≥ 1,

Ê

exp

t
n∑

i=1

Xi


 ≤ exp

 t2

2

n∑
i=1

etciÊ[X2
i ]

 . (2.7)

Proof. It is easy to check that ex
≤ 1 + x + 1

2 x2e|x| for all x ∈ R. Thus, by Ê[Xi] ≤ 0 and |Xi| ≤ ci for each i ≥ 1,
we have that for any t > 0,

Ê
[
etXi

]
≤ 1 + tÊ[Xi] +

1
2

t2Ê
[
X2

i et|Xi |
]
≤ 1 +

1
2

t2Ê
[
X2

i et|Xi |
]

≤ 1 +
1
2

t2etciÊ
[
X2

i

]
≤ exp

{1
2

t2etciÊ[X2
i ]
}
. (2.8)

By the definition of extended independent random variables and (2.8), we can see that

Ê

exp

t
n∑

i=1

Xi


 =

n∏
i=1

Ê
[
etXi

]
≤ exp

 t2

2

n∑
i=1

etciÊ[X2
i ]

 . (2.9)

This completes the proof of the lemma. �
Noting that Ê[X2

i,n] ≤ Ê[X2
i ] for 1 ≤ i ≤ n and n ≥ 1, we can therefore get the following corollary for

{Xi,n, 1 ≤ i ≤ n,n ≥ 1}.
Corollary 2.1. Let {Xn,n ≥ 1} be a sequence of extended independent random variables in (Ω,H , Ê) and {Xi,n, 1 ≤
i ≤ n,n ≥ 1} be defined by (2.1). Then for any t > 0 and n ≥ 1,

Ê

exp

t
n∑

i=1

(
Xi,n − Ê[Xi,n]

)
 ≤ exp

2t2e2tcn

n∑
i=1

Ê[X2
i ]

 . (2.10)
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Proof It is easily seen that {Xi,n − Ê[Xi,n], 1 ≤ i ≤ n,n ≥ 1} are still extended independent random variables
with Ê

[
Xi,n − Ê[Xi,n]

]
= 0 and |Xi,n− Ê[Xi,n]| ≤ 2cn for each 1 ≤ i ≤ n and n ≥ 1. By Lemma 2.3, Cr-inequality

and Jensen’s inequality, we have

Ê

exp

t
n∑

i=1

(
Xi,n − Ê[Xi,n]

)
 ≤ exp

 t2

2
e2tcn

n∑
i=1

Ê
[(

Xi,n − Ê[Xi,n]
)2
]

≤ exp

 t2

2
e2tcn

n∑
i=1

Ê
[
2
(
X2

i,n + Ê2[Xi,n]
)]

≤ exp

2t2e2tcn

n∑
i=1

Ê
[
X2

i,n

]
≤ exp

2t2e2tcn

n∑
i=1

Ê[X2
i ]

 , (2.11)

which yields the desired result (2.10). �
Now, we present the main results of the paper. The first one is the exponential inequality for {Xi,n, 1 ≤

i ≤ n,n ≥ 1}.
Theorem 2.1. Let {Xn,n ≥ 1} be a sequence of extended independent random variables in (Ω,H , Ê) and {Xi,n, 1 ≤

i ≤ n,n ≥ 1} be defined by (2.1). Denote B2
n =

∑n
i=1 Ê[X2

i ] for each n ≥ 1. Then for any ε > 0 such that ε ≤ 2eB2
n

cn
and

n ≥ 1,

V


 n∑

i=1

(
Xi,n − Ê[Xi,n]

)
≥ ε

⋃ n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≤ −ε




≤ 2 exp
{
−
ε2

8eB2
n

}
. (2.12)

Proof By Markov’s inequality and Corollary 2.1, we have that for any t > 0,

V

 n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≥ ε

 ≤ e−tεÊ

exp

t
n∑

i=1

(
Xi,n − Ê[Xi,n]

)


≤ exp
{
−tε + 2t2e2tcn B2

n

}
.

Taking t = ε
4eB2

n
, and noting that 2tcn ≤ 1, we can obtain

V

 n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≥ ε

 ≤ exp
{
−
ε2

8eB2
n

}
. (2.13)

Since {−Xi,n, 1 ≤ i ≤ n,n ≥ 1} is still a sequence of extended independent random variables, we have by
(2.13) that

V

 n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≤ −ε

 = V

 n∑
i=1

(
−Xi,n − Ê[−Xi,n]

)
≥ ε


≤ exp

{
−
ε2

8eB2
n

}
. (2.14)



Tang et al. / Filomat 33:10 (2019), 2951–2961 2956

Combining (2.13) and (2.14), we can get that

V


 n∑

i=1

(
Xi,n − Ê[Xi,n]

)
≥ ε

⋃ n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≤ −ε




≤ V

 n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≥ ε

 +V

 n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≤ −ε


≤ 2 exp

{
−
ε2

8eB2
n

}
. (2.15)

This completes the proof of the theorem. �
For identically distributed extended independent random variables {Xn,n ≥ 1}, we can get the following

corollary by Theorem 2.1.
Corollary 2.2. Let {Xn,n ≥ 1} be a sequence of identically distributed extended independent random variables in

(Ω,H , Ê) and {Xi,n, 1 ≤ i ≤ n,n ≥ 1} be defined by (2.1). Then for any ε > 0 such that ε ≤
2eÊ[X2

1]
cn

and n ≥ 1,

V


 n∑

i=1

(
Xi,n − Ê[Xi,n]

)
≥ nε

⋃ n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≤ −nε


 ≤ 2 exp

− nε2

8eÊ[X2
1]

 .
Proof By Theorem 2.1 ,we have

V


 n∑

i=1

(
Xi,n − Ê[Xi,n]

)
≥ nε

⋃ n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≤ −nε




≤ 2 exp

− n2ε2

8e
∑n

i=1 Ê[X2
i ]

 = 2 exp

− nε2

8eÊ[X2
1]

 .
The proof is completed. �

For arrays {Yi,n, 1 ≤ i ≤ n,n ≥ 1} and {Zi,n, 1 ≤ i ≤ n,n ≥ 1}, we have the following exponential
inequalities.
Theorem 2.2. Let {Xn,n ≥ 1} be a sequence of identically distributed extended independent random variables in
(Ω,H , Ê) with lim

c→∞
Ê[(|X1|

2
− c)+] = 0. Let {Yi,n, 1 ≤ i ≤ n,n ≥ 1} and {Zi,n, 1 ≤ i ≤ n,n ≥ 1} be defined by (2.1).

Assume that there exists a δ > 0 satsifying sup
|τ|≤δ
Ê[eτX2

1 ] ≤ Mδ < ∞, where Mδ is a positive constant depending only

on δ. Then for any ε > 0, τ ∈ (0, δ], and all n large enough,

V


 n∑

i=1

(
Yi,n + Ê[−Yi,n]

)
≥ nε

⋃ n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≤ −nε




≤
32(1 + e)(τc2

n + 1)Mδ

nτε2eτc2
n

, (2.16)

and

V


 n∑

i=1

(
Zi,n + Ê[−Zi,n]

)
≥ nε

⋃ n∑
i=1

(
Zi,n − Ê[Zi,n]

)
≤ −nε




≤
32(1 + e)(τc2

n + 1)Mδ

nτε2eτc2
n

. (2.17)
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Proof We first prove (2.16). Note that

V

 n∑
i=1

(
Yi,n + Ê[−Yi,n]

)
≥ nε


≤ V

1
n

n∑
i=1

(
Yi,n − Ê[Yi,n] + Ê[Yi,n] + Ê[−Yi,n]

)
≥ ε


= V

1
n

n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≥ ε −

1
n

n∑
i=1

(
Ê[Yi,n] + Ê[−Yi,n]

) . (2.18)

By (2.1) and lim
c→∞
Ê[(|X| − c)+] = 0, we have

1
n

n∑
i=1

(
Ê[Yi,n] + Ê[−Yi,n]

)
=

1
n

n∑
i=1

(
Ê[(Xi − cn)I(Xi > cn)] + Ê[−(Xi − cn)I(Xi > cn)]

)
≤ 2Ê[|X1 − cn|I(X1 > cn)] = 2Ê[(X1 − cn)+]
≤ 2Ê[(|X1| − cn)+]→ 0, as n→∞. (2.19)

It follows from (2.18) and (2.19) that for all n large enough,

V

 n∑
i=1

(
Yi,n + Ê[−Yi,n]

)
≥ nε

 ≤ V

1
n

n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≥
ε
2


= V

 n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≥

nε
2

 .
By Markov’s inequality, (2.6), Cr-inequality and Jensen’s inequality, we can get that for all n large enough,

V

 n∑
i=1

(
Yi,n + Ê[−Yi,n]

)
≥ nε

 ≤ V

 n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≥

nε
2


≤

4(1 + e)
n2ε2

n∑
i=1

Ê
[(

Yi,n − Ê[Yi,n]
)2
]

≤
4(1 + e)

n2ε2

n∑
i=1

Ê
[
2
(
Y2

i,n + Ê2[Yi,n]
)]

≤

16(1 + e)
∑n

i=1 Ê[Y2
i,n]

n2ε2 =
16(1 + e)Ê[Y2

1,n]

nε2

and

V

 n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≤ −nε

 = V

− n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≥ nε


≤ V

 n∑
i=1

(
−Yi,n − Ê[−Yi,n]

)
≥

nε
2


≤

4(1 + e)
n2ε2

n∑
i=1

Ê
[
2
(
Y2

i,n + Ê2[Yi,n]
)]

≤

16(1 + e)Ê[Y2
1,n]

nε2 .
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Therefore, it remains only to estimate Ê[Y2
1,n]. For arbitrary random variable X, it can be verified that, if

lim
c→∞
Ê[(|X|2 − c)+] = 0, then lim

c→∞
Ê[(|X| − c)+] = 0, and thus, Ê[|X|] ≤ CV[|X|]. One can refer to Lemma 3.9 of

Zhang [9], or Zhang [11] for instance. Noting that

0 ≤ lim
c→∞
Ê

[{
(X1 − cn)2I(X1 > cn) − c

}+
]
≤ lim

c→∞
Ê[(|X1|

2
− c)+] = 0,

we have Ê[(X1 − cn)2I(X1 > cn)] ≤ CV[(X1 − cn)2I(X1 > cn)]. Hence

Ê[Y2
1,n] ≤ CV

[
(X1 − cn)2I(X1 > cn)

]
=

∫
∞

0
V((X1 − cn)2I(X1 > cn) ≥ t)dt

≤

∫
∞

0
V(X2

1I(X1 > cn) ≥ t)dt

=

∫ c2
n

0
V(X2

1 > c2
n)dt +

∫
∞

c2
n

V(X2
1 ≥ t)dt

≤
c2

nE[eτX2
1 ]

eτc2
n

+
E[eτX2

1 ]
τeτc2

n

≤
(τc2

n + 1)E[eτX2
1 ]

τeτc2
n

.

Noting that sup
|τ|≤δ
Ê[eτX2

1 ] ≤Mδ < ∞, we have that for all n large enough,

V


 n∑

i=1

(
Yi,n + Ê[−Yi,n]

)
≥ nε

⋃ n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≤ −nε




≤ V

 n∑
i=1

(
Yi,n + Ê[−Yi,n]

)
≥ nε

 +V

 n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≤ −nε


≤

32(1 + e)(τc2
n + 1)Mδ

nτε2eτc2
n

.

For (2.17), the proof is similar to the case for (2.16) and is omitted.
The proof is completed. �
By Theorem 2.2, we can get the following corollary immediately.

Corollary 2.3. Let {Xn,n ≥ 1} be a sequence of identically distributed extended independent random variables in
(Ω,H , Ê) with lim

c→∞
Ê[(|X1|

2
− c)+] = 0. Let {Yi,n, 1 ≤ i ≤ n,n ≥ 1} and {Zi,n, 1 ≤ i ≤ n,n ≥ 1} be defined by (2.1).

Assume that Ê[eδX2
1 ] < ∞ for some δ > 0. Then for any ε > 0 and for all n large enough,

V


 n∑

i=1

(
Yi,n + Ê[−Yi,n]

)
≥ nε

⋃ n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≤ −nε




≤
32(1 + e)(δc2

n + 1)Ê[eδX2
1 ]

nδε2eδc2
n

,

and

V


 n∑

i=1

(
Zi,n + Ê[−Zi,n]

)
≥ nε

⋃ n∑
i=1

(
Zi,n − Ê[Zi,n]

)
≤ −nε




≤
32(1 + e)(δc2

n + 1)Ê[eδX2
1 ]

nδε2eδc2
n

.
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Proof It is easily seen that sup
|τ|≤δ
Ê[eτX2

1 ] ≤ Ê[eδX2
1 ] M= Mδ < ∞, which implies the desired results immediately

from Theorem 2.2. �
Theorem 2.3. Let {Xn,n ≥ 1} be a sequence of identically distributed extended independent random variables in
(Ω,H , Ê) with lim

c→∞
Ê[(|X1|

2
− c)+] = 0 and Ê[eδX2

1 ] < ∞ for some δ > 0. Let {cn,n ≥ 1} be a sequence of positive
numbers such that

0 < cn ≤

neÊ[X2
1]

2δ

1/4

f or some n ≥ n0, (2.20)

where n0 is a positive integer. Denote εn =
√

8δeÊ[X2
1]c2

n/n. Then for any n ≥ n0,

V


1

n

n∑
i=1

(
Xi − Ê[Xi]

)
≥ 3εn

⋃1
n

n∑
i=1

(
Xi − Ê[Xi]

)
≤ −3εn




≤ 2

1 +
4(1 + e)(δc2

n + 1)Ê[eδX2
1 ]

2δ2eÊ[X2
1]c2

n

 e−δc2
n . (2.21)

Proof It is easy to check that εncn ≤ 2eÊ[X2
1] for n ≥ n0 and nε2

n

8eÊ[X2
1]

= δc2
n. Noting that

Ê[Xi] ≥ Ê[Xi,n] − Ê[−Yi,n] − Ê[−Zi,n]

and
Ê[Xi] ≤ Ê[Xi,n] + Ê[Yi,n] + Ê[Zi,n],

we have by Corollaries 2.2 and 2.3 that

V


1

n

n∑
i=1

(
Xi − Ê[Xi]

)
≥ 3εn

⋃1
n

n∑
i=1

(
Xi − Ê[Xi]

)
≤ −3εn




≤ V


1

n

n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≥ εn

⋃1
n

n∑
i=1

(
Xi,n − Ê[Xi,n]

)
≤ −εn




+V


1

n

n∑
i=1

(
Yi,n + Ê[−Yi,n]

)
≥ εn

⋃1
n

n∑
i=1

(
Yi,n − Ê[Yi,n]

)
≤ −εn




+V


1

n

n∑
i=1

(
Zi,n + Ê[−Zi,n]

)
≥ εn

⋃1
n

n∑
i=1

(
Zi,n − Ê[Zi,n]

)
≤ −εn




≤ 2 exp

− nε2
n

8eÊ[X2
1])

 +
64(1 + e)(δc2

n + 1)Ê[eδX2
1 ]

nδε2
n

e−δc2
n

= 2

1 +
4(1 + e)(δc2

n + 1)Ê[eδX2
1 ]

δ2eÊ[X2
1]c2

n

 e−δc2
n ,

which yields (2.21). This completes the proof of the theorem. �
Taking cn =

√
ln n and δ > 1 in Theorem 2.3, we can get the following result.

Theorem 2.4. Let {Xn,n ≥ 1} be a sequence of identically distributed extended independent random variables in

(Ω,H , Ê) with lim
c→∞
Ê[(|X1|

2
− c)+] = 0 and Ê[eδX2

1 ] < ∞ for some δ > 1. Denote εn =
√

(8δeÊ[X2
1] ln n)/n. Then

∞∑
n=1

V


1

n

n∑
i=1

(
Xi − Ê[Xi]

)
≥ 3εn

⋃1
n

n∑
i=1

(Xi − Ê[Xi]) ≤ −3εn


 < ∞. (2.22)
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Proof It follows from (2.21) that

∞∑
n=1

V


1

n

n∑
i=1

(
Xi − Ê[Xi]

)
≥ 3εn

⋃1
n

n∑
i=1

(
Xi − Ê[Xi]

)
≤ −3εn




≤ C
∞∑

n=1

1 +
4(1 + e)(δc2

n + 1)Ê[eδX2
1 ]

δ2eÊ[X2
1]c2

n

 e−δc2
n ≤ C

∞∑
n=1

e−δc2
n = C

∞∑
n=1

n−δ < ∞,

which implies (2.22). The proof is completed. �
Corollary 2.4. Let {Xn,n ≥ 1} be a sequence of identically distributed extended independent random variables
in (Ω,H , Ê) with lim

c→∞
Ê[(|X1|

2
− c)+] = 0, Ê[Xi] = Ê[Xi] = 0 and Ê[eδX2

1 ] < ∞ for some δ > 1. Denote

εn =
√

(8δeÊ[X2
1] ln n)/n. Then

∞∑
n=1

V


∣∣∣∣∣∣∣1n

n∑
i=1

Xi

∣∣∣∣∣∣∣ ≥ 3εn

 < ∞. (2.23)

Remark 2.1. The Borel-Cantelli lemma implies that 1
n
∑n

i=1 Xi converges almost surely in capacity V with
convergence rate O(n−1/2 ln1/2 n) under the conditions of Corollary 2.4.

Taking cn =
√

log n · log log n and δ > 0 in Theorem 2.3, we can get the following result.
Theorem 2.5. Let {Xn,n ≥ 1} be a sequence of identically distributed extended independent random variables in

(Ω,H , Ê) with lim
c→∞
Ê[(|X1|

2
−c)+] = 0 and Ê[eδX2

1 ] < ∞ for some δ > 0. Denote εn =
√

(8δeÊ[X2
1] log n · log log n)/n.

Then
∞∑

n=1

V


1

n

n∑
i=1

(
Xi − Ê[Xi]

)
≥ 3εn

⋃1
n

n∑
i=1

(
Xi − Ê[Xi]

)
≤ −3εn


 < ∞. (2.24)

Proof It follows from (2.21) again that

∞∑
n=1

V


1

n

n∑
i=1

(
Xi − Ê[Xi]

)
≥ 3εn

⋃1
n

n∑
i=1

(
Xi − Ê[Xi]

)
≤ −3εn




≤ C
∞∑

n=1

1 +
4(1 + e)(δc2

n + 1)Ê[eδX2
1 ]

δ2eÊ[X2
1]c2

n

 e−δcn ≤ C
∞∑

n=1

e−δc2
n ≤ C

∞∑
n=1

e−2 log n < ∞,

since −δc2
n ≤ −2 log n for all n large enough. Hence, the desired results (2.24) is proved. �

Corollary 2.5. Let {Xn,n ≥ 1} be a sequence of identically distributed extended independent random variables
in (Ω,H , Ê) with lim

c→∞
Ê[(|X1|

2
− c)+] = 0, Ê[Xi] = Ê[Xi] = 0 and Ê[eδX2

1 ] < ∞ for some δ > 0. Denote

εn =
√

(8δeÊ[X2
1] log n · log log n)/n. Then

∞∑
n=1

V


∣∣∣∣∣∣∣1n

n∑
i=1

Xi

∣∣∣∣∣∣∣ ≥ 3εn

 < ∞. (2.25)

Remark 2.2. The Borel-Cantelli lemma implies that 1
n
∑n

i=1 Xi converges almost surely in capacity V with
convergence rate O(n−1/2 log1/2 n · log1/2 log n) under the conditions of Corollary 2.5.
Acknowledgements.

The authors are most grateful to the Editor and anonymous referee for carefully reading the manuscript
and valuable suggestions which helped in improving an earlier version of this paper.



Tang et al. / Filomat 33:10 (2019), 2951–2961 2961

References

[1] Chen Z.J., Epstein L., 2002. Ambiguity, risk and asset returns in continuous time. Econometrica, 70(4), 1403-1443.
[2] Peng S.G., 1999. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer type. Probability

Theory and Related Fields, 113, 473-499.
[3] Peng S.G., 2007. G-expectation, G-Brownian motion and related stochastic calculus of Ito type. In: Proceedings of the 2005 Abel

Symposium, Springer, Berlin Heidelberg, 541-567.
[4] Peng S.G., 2008a. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process

and Their Applications, 118(12), 2223-2253
[5] Peng S.G., 2008b. A new central limit theorem under sublinear expectations. arXiv preptint arXiv: 0803.2656.
[6] Peng S.G., 2010. Nonlinear expectations and stochastic calculus under uncertaint. arXiv preptint arXiv: 1002.4546.
[7] Zhang L.X., 2015. Donsker’s invariance principle under the sub-linear expectation with application to Chung’s law of the iterated

logarithm. Communications in Mathematics and Statistics, 3(2), 187-214.
[8] Zhang L.X., 2016a. Exponential inequalities under sub-linear expectations with an application to laws of the iterated logarithm.

Science China Mathematics, 59(12), 2503-2526.
[9] Zhang L.X., 2016b. Rosenthal’s inequalities for independent and negatively dependent random variables under sub-linear

expectations with application. Science China Mathematics, 59(4), 751-768.
[10] Chen Z.J., 2016. Strong laws of large numbers for sub-linear expectations. Science China Mathematics, 59(5), 945-954.
[11] Zhang L.X., 2016c. Strong limit theorems for extended independent and extended negatively dependent random variables under

non-linear expectations. arXiv preptint arXiv: 1608.00710.
[12] Wu P.Y., Chen Z.J., 2015. Invariance principles for the law of the iterated logarithm under G-framework. Science China Mathe-

matics, 58(6), 1251-1264.
[13] Wu Q.Y., Jiang Y.Y., 2018. Strong law of large numbers and Chover’s law of the iterated logarithm under sub-linear expectations.

Journal of Mathematical Analysis and Applications, 460, 252-270.
[14] Wu Y., Wang X.J., Zhang L.X., 2018. On the asymptotic approximation of inverse moment under sub-linear expectations. Journal

of Mathematical Analysis and Applications, 468, 182-196.


