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Available at: http://www.pmf.ni.ac.rs/filomat

Existence and Uniqueness of Extremal Mild Solutions for
Non-Autonomous Nonlocal Integro-Differential Equations via

Monotone Iterative Technique

Arshi Meraja, Dwijendra Narain Pandeya

aDepartment of Mathematics, Indian Institute of Technology Roorkee, Uttarakhand, India, PIN - 247667

Abstract. In this work, we will discuss the existence and uniqueness of extremal mild solutions for
non-autonomous integro-differential equations having nonlocal condition via monotone iterative method
with upper and lower solutions in an ordered Banach space X, using evolution system and measure of
noncompactness.

1. Introduction

Monotone iterative technique is an effective method to find the existence and uniqueness of mild
solutions. Using this method, we get monotone sequences of approximate solutions that converges to
maximal and minimal mild solutions. Du [8], first used this technique to find extremal mild solutions for
a differential equation. Chen and Li [4] used monotone iterative technique to establish the existence and
uniqueness of mild solutions for a semilinear differential equation with nonlocal condition. In [5], Chen and
Mu discussed the existence and uniqueness of mild solutions for a semilinear impulsive integro-differential
equation by using monotone iterative method. Mu [15] studied the existence and uniqueness of mild
solutions for a fractional evolution equation with the help of monotone iterative method. In [16], Mu and Li
investigated the existence and uniqueness of mild solutions for an impulsive fractional differential equation
by using monotone iterative technique. Later on, the result has been extended for nonlocal condition by Mu
[17]. Kamaljeet [13] and Renu [3] used monotone iterative method to discuss the existence and uniqueness
of mild solutions for nonlocal fractional differential equations having finite delay and for fractional neutral
differential equations having infinite delay respectively. The technique has been used for autonomous
system till now.

Yan [20] studied the existence of mild solutions for non-autonomous integro-differential equations with
nonlocal conditions by using the theory of evolution system, Banach contraction principle and Schauder’s
fixed point theorem. Haloi et al. [11] studied existence, uniqueness and asymptotic stability of non-
autonomous differential equations with deviated arguments via Banach fixed point theorem and theory of
analytic semigroup. In [2], Alka et al. established the existence and uniquenss of mild solutions for non-
autonomous instantaneous impulsive differential equations with iterated deviating arguments by using
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analytic semigroup theory and Banach fixed point theorem.
Nonlocal condition is a generalization of classical initial condition which is more effective to produce

better results in the application of physical problems rather than classical initial condition (see e.g. [10, 19]
and references therein). The existence results for nonlocal Cauchy problem was first studied by Byszewski
[1]. In [7], to describe the diffusion phenomenon of a small amount of gas in a transparent tube, Deng used
the nonlocal condition.

To the best of our knowledge, there is no work yet reported on the existence and uniqueness of mild
solutions for non-autonomous differential equations by using monotone iterative method. Motivated by
this fact, we consider the following non-autonomous integro-differential system with nonlocal condition in
an ordered Banach space X :

x′(t) +A(t)x(t) = F

(
t, x(t),

∫ t

0
k(t, s)x(s)ds

)
, t ∈ (0, b],

x(0) = x0 +G(x), (1)

whereA(t) : D(A(t)) ⊂ X → X is linear operator, x0 ∈ X, F is X-valued function defined over J × X × X, G
is X-valued function defined over C(J,X) with J = [0, b], and k ∈ C(D,R+) whereD := {(t, s) : 0 6 s 6 t 6 b}.

We organize the article as following. In section 2, we will recall some basic theory. In section 3, we will
establish the existence of extremal mild solutions for the system (1), and also we will show the uniqueness
of extremal mild solutions. In last section, we will discuss an example to illustrate our results.

2. Preliminaries

Now, we recall some basic theory which is useful to prove our main results.
Let (X, ‖ · ‖,6) is a partially ordered complete norm space, P = {x ∈ X : x > 0} (0 is the zero element
of X) is a positive cone of X. The cone P is known as normal if there is a real number N > 0 such that
0 6 x1 6 x2 ⇒ ‖x1‖ 6 N‖x2‖, for all x1, x2 ∈ X, the smallest value of such N is called normal constant. Let
C(J,X) be space of all continuous maps from J to X, with sup norm. For x1, x2 ∈ C(J,X), x1 6 x2 ⇔ x1(t) 6
x2(t), ∀ t ∈ J. For ν, ω ∈ C(J,X) with ν 6 ω, we will use the notation [ν, ω] := {x ∈ C(J,X) : ν 6 x 6 ω} for
an interval in C(J,X), and [ν(t), ω(t)] := {x ∈ X : ν(t) 6 x 6 ω(t)}(t ∈ J) for an interval in X. Let us denote
C

1(J,X) = {x ∈ C(J,X) : x′ exists on J , x′ ∈ C(J,X), x(t) ∈ D(A) (t > 0)}, and Lp(J,X)(1 6 p < ∞) be the

Banach space with norm ‖x‖Lp(J,X) = (
∫ b

0 ‖x(t)‖pdt)
1
p . For our convenience we denote Kx(t) :=

∫ t

0 k(t, s)x(s)ds,
and K∗ := sup

(t,s)∈D
k(t, s).

First, we recall the definition and some basic properties of evolution system. For more details, we refer
[9] and [18].

Definition 2.1. ([18]) Let X be a Banach space. A two parameter family of bounded linear operators S(t1, t2), 0 6
t2 6 t1 6 b on X is known as evolution system, if :

1. S(s, s) = I, where I is the identity operator.
2. S(t1, t2)S(t2, t3) = S(t1, t3) for 0 6 t3 6 t2 6 t1 6 b.
3. (t1, t2)→ S(t1, t2) is strongly continuous for 0 6 t2 6 t1 6 b.

For the family of linear operators {A(t) : t ∈ J} on X, we impose the following assumptions :

(A1) A(t) is closed operator, the domain ofA(t) is independent of t, and dense in X.

(A2) The resolvent of A(t) exists for Re(ϑ) 6 0, t ∈ J, and there exists a positive constant ς such that
‖R(ϑ; t)‖ 6 ς

|ϑ|+1 .

(A3) There exist positive constants K, and ρ ∈ (0, 1] such that ‖[A(τ1)−A(τ2)]A−1(τ3)‖ 6 K|τ1 − τ2|
ρ for any

τ1, τ2, τ3 ∈ J.
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Theorem 2.2. ([18]) Suppose that the assumptions (A1)-(A3) hold, then −A(t) generates a unique evolution system
{S(t1, t2) : 0 6 t2 6 t1 6 b}, which satisfies the following properties :

(i) There exists a positive constantM such that ‖S(t1, t2)‖ 6M, 0 6 t2 6 t1 6 b.
(ii) For 0 6 t2 < t1 6 b, the derivative ∂S(t1,t2)

∂t1
exists in strong operator topology, is strongly continuous, and

belongs to B(X) (set of all bounded linear operators on X). Moreover,

∂S(t1, t2)
∂t1

+A(t1)S(t1, t2) = 0, 0 6 t2 < t1 6 b.

Proposition 2.3. ([20]) The family of operators {S(t1, t2), t2 < t1} is continuous in t1 uniformly for t2 with respect
to operator norm.

Theorem 2.4. ([18]) Suppose that the assumptions (A1)-(A3) hold and F satisfies uniform Hölder continuity on J
with exponent α ∈ (0, 1], then the unique solution of the following linear Cauchy problem

x′(t) +A(t)x(t) = F (t), t ∈ (0, b],
x(0) = x0 ∈ X, (2)

is given as

x(t) = S(t, 0)x0 +

∫ t

0
S(t, η)F (η)dη. (3)

Definition 2.5. A mild solution of (1) is a function x ∈ C(J,X) satisfying the following integral equation

x(%) = S(%, 0)(x0 +G(x)) +

∫ %

0
S(%, η)F (η, x(η),Kx(η))dη, % ∈ J.

Definition 2.6. An evolution system S(t, s) is called positive if S(t, s)y > 0, for all y ∈ P and 0 6 s 6 t 6 b.

Definition 2.7. ω0 ∈ C
1(J,X) is called lower solution for the system (1), if

ω′0(t) +A(t)ω0(t) 6 F

(
t, ω0(t),

∫ t

0
k(t, s)ω0(s)ds

)
, t ∈ (0, b],

ω0(0) 6 x0 +G(ω0). (4)

If the inequalities of (4) are opposite, solution is known as upper solution.

Now, we state the definition and some properties of Kuratowski measure of noncompactness. For more
details, we refer [6] and [12] .

Definition 2.8. If Y is a complete norm space and M(Y) is a collection of subsets of Y, which are bounded, then the
function µ : M(Y)→ [0,∞) defined as following

µ(S) = inf{ε > 0 : S ⊂ ∪n
j=1S j, diam(S j) < ε ( j = 1, 2, . . . ,n ∈N)},

is known as Kuratowski measure of noncompactness.

Lemma 2.9. If X1 and X2 be complete norm spaces and C,D ⊂ X1 be bounded, then the following properties are
satisfied :

(i) D is precompact if and only if µ(D) = 0.

(ii) µ(C ∪D) = max{µ(C), µ(D)}.

(iii) µ(C + D) 6 µ(C) + µ(D).
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(iv) ϕ : dom(ϕ) ⊂ X1 → X2 satisfies Lipschitz continuity with Lipschitz constant L, then µ(ϕ(S)) 6 Lµ(S),
S ⊂ dom(ϕ) is bounded.

Lemma 2.10. If Y is a complete norm space, and S ⊂ C(J,Y), S(t) = { f (t) : f ∈ S}(t ∈ J). Then boundedness and
equicontinuity of S in C(J,Y) implies that µ(S(t)) is continuous on J, moreover µ(S) = max

t∈J
µ(S(t)).

Lemma 2.11. SupposeX is complete norm space and { fn} ⊂ C(J,X) is a bounded sequence, then µ({ fn(t)} ∈ L1(J,X),
moreover

µ
({ ∫ t

0
fn(η)dη

}∞
n=1

)
6 2

∫ t

0
µ({ fn(η)}∞n=1)dη.

3. Main Results

First, we will show the existence of extremal mild solutions for (1), then the uniqueness will be discussed.
Let us define Q : C(J,X)→ C(J,X) in the following way :

Qx(%) = S(%, 0)(x0 +G(x)) +

∫ %

0
S(%, η)F (η, x(η),Kx(η))dη, % ∈ J. (5)

To prove that the system (1) has a mild solution, we need to show the operator Q has a fixed point.

Theorem 3.1. Suppose X is a partially ordered complete norm space with normal positive cone P, the assumptions
(A1)-(A3) hold and −A(t) generates a positive evolution system S(t, s) on X, F is continuous from J × X × X →
X, x0 ∈ X, and ω0, ν0 ∈ C

1(J,X) with ω0 6 ν0 are lower and upper solutions respectively for (1). Moreover assume
the following :

(H1) For t ∈ J, we have

F (t, y1, x1) 6 F (t, y2, x2),

where y1, y2 ∈ X with ω0(t) 6 y1 6 y2 6 ν0(t), andKω0(t) 6 x1 6 x2 6 Kν0(t).

(H2) There exists a constant L > 0 such that for all t ∈ J,

µ({F (t, yn, xn)}) 6 L(µ({yn}) + µ({xn})),

where {yn} ⊂ [ω0(t), ν0(t)] and {xn} ⊂ [Kω0(t),Kν0(t)] are monotone increasing or decreasing sequences.

(H3) G : C(J,X)→ X is a continuous increasing compact function.

Then, the system (1) has extremal mild solutions in the interval [ω0, ν0], provided that

Λ1 := 2MLb(1 + bK∗) < 1.

Proof. Let us denote I = [ω0, ν0]. For any x ∈ I, (H1) implies

F (%, ω0(%),Kω0(%)) 6 F (%, x(%),Kx(%)) 6 F (%, ν0(%),Kν0(%)).

Therefore, from the normality of Pwe get a constant c > 0, such that

‖F (%, x(%),Kx(%))‖ 6 c, x ∈ I. (6)

First, we will prove that the map Q : I → C(J,X) is continuous. Let {xn} be a sequence in I such that
xn → x ∈ I. Since G, F are continuous, so Gxn → Gx, and F (%, xn(%),Kxn(%)) → F (%, x(%),Kx(%)) for
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% ∈ J, and from (6) we get that ‖F (%, xn(%),Kxn(%)) − F (%, x(%),Kx(%))‖ 6 2c. So, by Lebesgue dominated
convergence theorem, we estimate

‖Qxn(t) − Qx(t)‖ 6 M‖Gxn − Gx‖

+M

∫ t

0
‖F (%, xn(%),Kxn(%)) − F (%, x(%),Kx(%))‖d%

→ 0 as n→∞.

Thus Q is continuous map on I.
Next, we will prove Q : I → I is monotone increasing. Let x1, x2 ∈ I, x1 6 x2. Using the positivity of

S(t, s), the hypotheses (H1) and (H3), it is easy to see that Qx1 6 Qx2. Suppose ω′0(η) +A(η)ω0(η) = h(η),
Definition 2.7 implies h(η) 6 F (η, ω0(η),Kω0(η)) for η ∈ J, and ω0(0) 6 x0 + G(ω0). Therefore, for any t ∈ J,
Theorem (2.4) yields

ω0(t) = S(t, 0)ω0(0) +

∫ t

0
S(t, η)h(η)dη

6 S(t, 0)(x0 +G(ω0)) +

∫ t

0
S(t, η)F (η, ω0(η),Kω0(η))dη

= Qω0(t).

Hence, ω0 6 Qω0. In the same way, we get Qν0 6 ν0. Let u ∈ I, so we have ω0 6 Qω0 6 Qu 6 Qν0 6 ν0, that
means Qu ∈ I. Therefore, Q : I→ I is monotone increasing.

Now, we will show Q(I) is equicontinuous on J. For x ∈ I and η1, η2 ∈ J with η1 < η2, we have

‖Qx(η2) − Qx(η1)‖ 6 ‖S(η2, 0) − S(η1, 0)‖‖x0 +Gx‖

+

∫ η1

0
‖S(η2, %) − S(η1, %)‖‖F (%, x(%),Kx(%))‖d%

+

∫ η2

η1

‖S(η2, %)‖‖F (%, x(%),Kx(%))‖d%

6 I1 + I2 + I3.

For η1 = 0, it is easy to see that I2 = 0. For η1 > 0 and ε > 0 small enough, we obtain

I2 6

∫ η1−ε

0
‖S(η2, %) − S(η1, %)‖‖F (%, x(%),Kx(%))‖d%

+

∫ η1

η1−ε
‖S(η2, %) − S(η1, %)‖‖F (%, x(%),Kx(%))‖d%

6 c(η1 − ε) sup
%∈[0,η1−ε]

‖S(η2, %) − S(η1, %)‖ + 2Mcε.

→ 0 as η2 → η1, ε→ 0,

by using the continuity of {S(η, %) : % < η} in η in uniform operator topology. Also It is clear from the
expression of I1, I3 that I1 → 0 , I3 → 0 as η2 → η1. As a result ‖Qx(η2) − Qx(η1)‖ → 0 as η2 → η1,
independently of x ∈ I. Hence Q(I) is equicontinuous on J.

Now we define the sequences

ωn = Qωn−1 and νn = Qνn−1, n ∈N, (7)

monotonicity of Q implies

ω0 6 ω1 6 · · ·ωn 6 · · · 6 νn 6 · · · 6 ν1 6 ν0. (8)



A. Meraj, D. N. Pandey / Filomat 33:10 (2019), 2985–2993 2990

Let S = {ωn} and S0 = {ωn−1}. Then S0 = S ∪ {ω0} and µ(S0(t)) = µ(S(t)), t ∈ J. Observe that µ(S(t, 0)(x0)) =
0 = µ(S(t, 0)G(ωn−1)) for {x0} is compact set, G is compact map and S(t, 0) is bounded. Also, with the help
of Lemma 2.10 and Lemma 2.11, we observe that

µ
(
{Kωn−1(η)}

)
= µ

( ∫ η

0
k(η, s)ωn−1(s)ds

)
6 K∗µ

( ∫ η

0
ωn−1(s)ds

)
6 2K∗

∫ η

0
µ(ωn−1(s))ds

6 2K∗η sup
s∈[0,η]

µ(S0(s)).

Now, from Lemma 2.11, (H2), (H3), (5) and (7), we get

µ(S(t)) = µ(Q(S0(t)))

= µ
(
S(t, 0)(x0 +G(ωn−1)) +

∫ t

0
S(t, η)F (η, ωn−1(η),Kωn−1(η))dη

)
6 µ(S(t, 0)x0) + µ(S(t, 0)G(ωn−1)) + 2M

∫ t

0
µ
(
F (η, ωn−1(η),Kωn−1(η))dη

)
6 2ML

∫ t

0

[
µ({ωn−1(η)}) + µ({Kωn−1(η)})

]
dη

6 2MLb(1 + bK∗) sup
t∈J

µ(S(t)). (9)

Since {Qωn−1} i.e. {ωn} is equicontinuous, by Lemma 2.10 and (9), we obtain

µ(S) = sup
t∈J

µ(S(t))

6 2MLb(1 + bK∗) sup
t∈J

µ(S(t)) = 2MLb(1 + bK∗)µ(S) = Λ1µ(S).

Since Λ1 < 1, therefore µ(S) = 0. Hence the set S is relatively compact in I, so there exists a convergent
subsequence of {ωn} in I. From (8), it is easy to see that {ωn} itself is a convergent sequence, let ωn → ω∗ as
n→∞. By (5) and (7)

ωn(t) = Qωn−1(t)

= S(t, 0)(x0 +G(ωn−1)) +

∫ t

0
S(t, η)F (η, ωn−1(η),Kωn−1(η))dη. (10)

In (10), let n→∞ and use Lebesgue dominated convergence theorem, we get

ω∗(t) = S(t, 0)(x0 +G(ω∗)) +

∫ t

0
S(t, η)F (η, ω∗(η),Kω∗(η))dη.

So, ω∗ = Qω∗ and ω∗ ∈ C(J,X). Hence ω∗ is a mild solution for (1). In the same way there exists ν∗ ∈ C(J,X)
with νn → ν∗ as n→∞, and ν∗ = Qν∗. Now we showω∗, ν∗ are extremal mild solutions. Let x ∈ I and x = Qx,
then ω1 = Qω0 6 Qx = x 6 Qν0 = ν1. From the process of induction ωn 6 x 6 νn, and ω0 6 ω∗ 6 x 6 ν∗ 6 ν0
as n→∞. That means ω∗ is the minimal and ν∗ is the maximal mild solution for (1) in [ω0, ν0].

Theorem 3.2. Suppose X is a partially ordered complete norm space, with normal positive coneP and normal constant
N , the assumptions (H1), (H3), (A1)-(A3) hold and−A(t) generates a positive evolution systemS(t, s)(0 6 s 6 t 6 b)
on X, F ∈ C(J × X × X,X), x0 ∈ X, and ω0, ν0 ∈ C

1(J,X) with ω0 6 ν0 are lower and upper solutions respectively
for (1). Moreover assume the following :
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(H4) There exists a constant L1 > 0 such that, for t ∈ J

F (t, y2, x2) − F (t, y1, x1) 6 L1[(y2 − y1) + (x2 − x1)],

where y1, y2 ∈ X with ω0(t) 6 y1 6 y2 6 ν0(t), andKω0(t) 6 x1 6 x2 6 Kν0(t).

(H5) There exists a constant L2 > 0 such that

G(y) − G(x) 6 L2(y − x), for x, y ∈ I with x 6 y.

Then, the system (1) has a unique mild solution in [ω0, ν0], provided that

Λ2 := NM
[
L2 +L1b(1 + bK∗)

]
< 1.

Proof. Let {yn} ⊂ [ω0(t), ν0(t)] and {xn} ⊂ [Kω0(t),Kν0(t)] be increasing monotone sequences. For t ∈ J and
n,m ∈Nwith n > m, the assumptions (H1) and (H4) imply

0 6 F (t, yn, xn) − F (t, ym, xm) 6 L1[(yn − ym) + (xn − xm)].

Since the positive cone is normal, therefore

‖F (t, yn, xn) − F (t, ym, xm)‖ 6 NL1‖(yn − ym) + (xn − xm)‖. (11)

So by Lemma 2.9, we get

µ({F (t, yn, xn)}) 6 NL1(µ({yn}) + µ({xn})).

Hence the assumption (H2) hold, and Theorem 3.1 is applicable. Therefore (1) has minimal mild solution
ω∗ and maximal mild solutions ν∗ in [ω0, ν0]. From (5), (H4), (H5), and the positivity of the operator S(t, s),
we get

0 6 ν∗(t) − ω∗(t) = Qν∗(t) − Qω∗(t)

= S(t, 0)(G(ν∗) − G(ω∗)) +

∫ t

0
S(t, η)[F (η, ν∗(η),Kν∗(η)) − F (η, ω∗(η),Kω∗(η))]dη

6 L2S(t, 0)(ν∗ − ω∗) +L1

∫ t

0
S(t, η)

[
(ν∗(η) − ω∗(η)) + (Kν∗(η) −Kω∗(η))

]
dη.

Since the positive cone is normal, therefore

‖ν∗ − ω∗‖ 6 N

[
L2M‖ν

∗
− ω∗‖ +ML1b

(
‖ν∗ − ω∗‖ + ‖Kν∗ −Kω∗‖

)]
6 NM

[
L2 +L1b(1 + bK∗)

]
‖ν∗ − ω∗‖ = Λ2‖ν

∗
− ω∗‖.

Since Λ2 < 1, so ‖ν∗ − ω∗‖ = 0, i.e. ν∗(t) = ω∗(t), ∀t ∈ J. Thus ν∗ = ω∗ is the unique mild solution for (1) in
[ω0, ν0].

4. Example

Now we consider an example to show how our abstract results can be applied to a concrete problem.
Consider the following partial differential equation :

x′(t, z) + a(t, z) ∂
2

∂z2 x(t, z) = 1
25

e−t

1+et x(t, z) +
∫ t

0
1
50 e−sx(s, z)ds, z ∈ [0, π], t ∈ J = [0, b],

x(t, 0) = 0, x(t, π) = 0 t ∈ J,
x(0, z) = ex(t,z)

1+ex(t,z) + x0(z), z ∈ [0, π],
(12)
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where X = L2([0, b] × [0, π],R), x0(z) ∈ X, a(t, z) is continuous function and satisfies uniform Hölder
continuity in t. Define

A(t)x(t, z) = a(t, z)
∂2

∂z2 x(t, z), (13)

with domain

D(A) = {x ∈ X : x,
∂x
∂z

are absolutely continuous,
∂2x
∂z2 ∈ X, x(0) = x(π) = 0}.

It is well known that −A(t) generates a positive evolution system of bounded linear operators S(t, s) on X
and satisfy the conditions (A1)-(A3) (see [18]). Put

x(t)(z) = x(t, z), t ∈ [0, b], z ∈ [0, π],

F (t, x(t),Kx(t))(z) =
1
25

e−t

1 + et x(t, z) +

∫ t

0

1
50

e−sx(s, z)ds,

(Kx(t))(z) =

∫ t

0

1
50

e−sx(s, z)ds,

(Gx(t))(z) =
ex(t,z)

1 + ex(t,z)
. (14)

Then the system (12) can be rewritten into the abstract form of (1). Now, assume that x0(z) > 0 for z ∈ [0, π],
and there exists a function v(t, z) > 0 such that

v′(t, z) +A(t)v(t, z) > F

(
t, v(t, z),Kv(t, z)

)
, t ∈ J, z ∈ [0, π],

v(t, 0) = v(t, π) = 0, t ∈ J,
v(0, z) > G(v(z)) + x0(z), z ∈ [0, π].

From the above assumptions, we have ω0 = 0 and ν0 = v(t, z) are lower and upper solutions for the system
(12). By (14), it is easy to verify that the assumptions (H1) and (H3) hold. Suppose {xn} ⊂ [ω0(t), ν0(t)] be a
monotone increasing sequence. For n 6 m

‖F (t, xm,Kxm) − F (t, xn,Kxn)‖ 6
1
25

(
‖xm − xn‖ + ‖Kxm −Kxn‖

)
, hence

µ
(
F (t, xn,Kxn)

)
6

1
25

(
µ({xn}) + µ(Kxn)

)
.

Therefore, assumption (H2) is satisfied. So, by Theorem (3.1), we conclude that the minimal and maximal
mild solutions for (12) exist between the lower solution 0 and upper solution v.
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