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On the Schwarz Lemma at the Upper Half Plane
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Abstract. In this paper, we give a simple proof for the boundary Schwarz lemma at the upper half plane.
Considering that f(z) is a holomorphic function defined on the upper half plane, we derive inequalities
for the modulus of derivative of f(z), [f’(0)|, by assuming that the f(z) function is also holomorphic at the
boundary point z = 0 on the real axis with f(0) = R f(i).

1. Introduction

The most classical version of the Schwarz Lemma examines the behavior of a bounded, holomorphic
function mapping the origin to origin in the unit disc E = {w : |w| < 1}. It is possible to see its effectiveness
in the proofs of many important theorems. The Schwarz Lemma which has quite wide application area and
is the direct application of the maximum modulus princible is given in the most basic form as follow [5]:

Let E be the unit disc in the complex plane C. Let f : E — E be a holomorphic function with f(0) = 0.
Under these conditions, |f (w)( < |w| for all w € E and f’(0)| < 1. In addition, if the equality | f (w)| = |w|
holds for any w # 0, or |f ’(0)| =1, then f is a rotation; that is f(w) = we'¥, O real. The Schwarz lemma is one
of the most important results in the classical complex analysis,which has become a crucial theme in many
branches of mathematical research for over a hundred years [13, 15]. Also, in [14], they gave simple proofs
of various versions of the Schwarz lemma for real-valued harmonic functions and for holomorphic (more
generally harmonic quasiregular, shortly (HQR) mappings with the strip codomain.

Let E be the unit disc and S = {z € C : Jz > 0} the upper half plane in C. For i € E, L defines a
conformal self-map of E carrying i to 0. Similary, for any i € S,
z—1i
w— —
zZ4+1
is conformal map of S onto E, i to 0. It follows in particular the S and E are conformal equivalent.
Consider the function
f=) - f0) z—i
f(w) R E— w = m,
f@) = f(i)

2010 Mathematics Subject Classification. Primary 30C80; Secondary 32A10

Keywords. Holomorphic function, Schwarz lemma, Upper half plane.

Received: 17 October 2018; Accepted: 11 February 2019

Communicated by Miodrag Mateljevi¢

Email address: nafiornek@gmail.com, nafi.ornek@amasya.edu.tr (Biilent Nafi Ornek)



B. N. Ornek / Filomat 33:10 (2019), 2995-3011 2996

where f(z) = f(i) + c1 (z — i) + ¢ (z = i)* + ...
Here, f(w) is a holomorphic function in E, f(0) = 0 and ' f (w)) < 1 for w € E. Applying the Schwarz
lemma for the function f(w), we obtain

i f (1) (10 - F0)

f'(w) = —2
(f(i+2) - 7o)

P 2if" (i) (f(i)_— /?) NEVUR
(f () - F)) f@) - £0)

fr@ o

fo-fd — If()

2i

and

£ @) < 3£G).
The result is sharp and the extremal function is
f(2) = 23 () + R ().
In this case, it is get the following lemma.
Lemma 1.1. Let f : S — S be holomorphic function. Then
£ @) < 3£G). (1.1)
The inequality (1.1) is sharp with equality for the function
f(2) = 23 )+ RFG).

Consider the product
Tw-w
BQ(ZU) = 1= _k .
=1 wrw

The function By(w) is called a finite Blaschke product, where wq, wy, ..., w, € E.

Let
_ fw) f(w) oz
Qfw) = Bo(w) I”—I w-w, k= Ze+i
et 1-wew

Here, z1, 2y, ..., zx are points in the upper hasf plane with f(z;) = f(i) and wy, wy, ..., w, are zeros f(w). In
addition, Q(w) is holomorphic function in E, 3(0) = 0 and |[QQ(w)| < 1 for z € E. Therefore, (w) satisfy the
conditions of the Schwarz lemma. Thus, from the Schwarz lemma, we obtain

aw = (@70 1
f@ = f0) ] 2
k=1
C1 (1%) + Co (l%)z + 1
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Q(w): 01(1 )+cz( 2 )2w+...

1-w
w

2997

1
2T FG) + 1 (i) + ca (i) + . T 2z
k=1

— Wy
T-w 1-wrw

1Q(0)] = L <1
8f(i)kljlllwkl

and
leal < S£G) [ ] leo
k=1

The result is sharp and the extremal function is

=i Z—l

@) - f(z ZH - +_k+

_1 2 oo

fl@) = o

s
z=i _ %t

n 2zt _ Tk
1—[ +i k“
1 1=k =i
k=1 Zk*’ z+i

I}
e |

where z1, 2y, ..., z; are positive real numbers.

In this case, it is get the following lemma.

Lemma 1.2. Let f : S — S be holomorphic function. Assume that z1, 2o, ..., zx are points in the upper half plane with
f(zx) = f(i). Then we have the inequality

jeal < S£G) [ ] leo
k=1

The result is sharp and the extremal function is

n i %t
zZ+l Zk+l
fo-Tos f1 7

f(z) Zp+i z+

- 7
2—i i

n
1—[ z+i zk+z
=1

1 2l i

I}
e |

Zp+ z+H

where z1,zy, ..., zi are positive real numbers.

A significant result of the Schwarz lemma is given by Osserman as follows [16]:
Let f : E — E be an analytic function with f(0) = 0. Assume that there is a b € JE so that f extends

1+

(1.2)
Thus, by the classical Schwarz lemma, it follows that
>1. (1.3)
In addition, for b = 1 in the inequality (2), equality occurs for the function f (z) = w%, y € [0,1]. Also,
> 1 unless f(z) = we'?, O real.
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Chelst, Osserman, Burns and Krantz ([2, 8, 16]) studied the Schwarz lemma at the boundary of the
unit disk, respectively. The similar types of results which are related with the subject of the paper can be
found in ([9-11]). In addition, the concerning results in more general aspects is discussed by M. Mateljevi¢
in [12] where was announced on ResearchGate. In recent years, the Schwarz lemma at the boundary for
holomorphic mappings (see,[1], [3], [4], [6], [7],[16] [17], [18], [19], [20], [21], and references therein). Some of
them are about the estimates from below for the modulus of the derivative of the function at the boundary
points which satisfy the condition | f (b)) = 1. Also, M. Jeong [6] got some inequalities at a boundary point
for a different form of holomorphic functions and showed the sharpness of these inequalities. Also, M
Jeong found a necessary and sufficient condition for a holomorphic map to have fixed points only on the
boundary of the unit disc and compared its derivatives at fixed points to get some relations among them
[7]. For historical background about the Schwarz Lemma and its applications on the boundary of the unit
disc, we refer to (see [1], [22]).

2. Main Results

In this section, we give a simple proof for the boundary Schwarz lemma at the upper half plane.
Considering that f(z) is a holomorphic function defined on the upper half plane, we derive inequalities

boundary point z = 0 on the real axis with f(0) = R f(i).

Theorem 2.1. Let f : S — S be holomorphic function and it is also holomorphic function at the point z = 0 of the
real axis with f(0) = R f(i). Then

> J£(). 2.1)

The inequality (2.1) is sharp with extremal function
f(z) = 23 £(i) + RF().
Proof. Let us consider the following function

f&Q-fo _z-i
fo-f i

Then f(w) is holomorphic function in the unit disc E, f(0) = 0 and we take ) f (w)| < 1 for |w| < 1. Also,
we have |f(—1)) =1 for —1 = b € JE. That is, since

f(w) =

£G0) + f()

f0) = R = ==

we take

f( 1+w f(l)

flw) = iy
fi) 10
oy = FO-10
£0) - @)

and

fnf=1.
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Therefore, from (1.3), we obtain
!/ (i128) (F0 - 70)
(F (i222) - 7@

fw) =

Lif 0 (F() - £)
(f O - F@)
Lif () () - F)
(12 - 7).

IF o)l
’M‘ - 3fG)’
2

—_
IA

=) =

and

= 3f(i)

Now we shall show that the inequality (2.1) is sharp. Let
f(2) = 23 £) + RFG).
Then
f'2) =350

and

£0)] = 3£G)

O

The inequality (2.1) can be strengthened as below by taking into account ¢;

in the expansion of the function f(z).

Theorem 2.2. Under the hypothesis of the Theorem 2.1. Then

Sf(l)]
Sf i)+

The inequality (2.2) is sharp with extremal function

(1-a2) f + () - a5 FD
f@) = -
1-205 + ()

z+1

where a = ol

= 570 is an arbitrary number from [0, 1] (see (1.1)).

2999

= f’(i) which is first coeffcient

2.2)
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Proof. Let f(w) be the same as in the proof of Theorem 2.1. Therefore, from (1.2),

2
+ro] - =55
Since
(it £G) - ()
1y T ()0 T)
(F (=) - 7@)
and
fo
"= 570

it is clear that

" 3f6)
Then
2
1 + T((I)J i;f(l)
and
Sf(l)]
5 () +

The last inequality shows that the inequality intended is obtained.
Now we shall show that the inequality (2.2) is sharp. Let

(1-a5) 0 + () a2 7D
\2 :
1-205 + ()

f@) =

From the last equation, we have

H(ir2)- O+ 520z
1-w 1+u12—£0 Z+1
Then
e flyreens (1+452)
= (1 +

2w—aw?—a —a (f(l) + ; —;;z}uf(l))

_ (1- aw
(1 4+ w2 aw)2

1—-aw

and for w = -1,
fO-fG 2
fo= 2i 1+a 1 +a

Sincea = |£f—((gl, (2.2) is satisfied with equality. O

Jf@).
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The inequality (2.2) can be strengthened as below by taking into account ¢, = £o S ) which is second

coefficient in the expansion of the function f(z) = f(i) + c1 (z— i) + 2 (z - i+

Theorem 2.3. Let f : S — S be holomorphic function and it is also holomorphic function at the point z = 0 of the
real axis with f(0) = R f(i). Then

2(3£@) ~ lail)®

>9f0)1+ '
f(l) (Sf(l))z _ |c%| + |21C25f(l) - Cﬂ

2.3)

The equality in (2.3) occurs for the function
i+ (5 7O
1T+ (z+z )2

Proof. Let B(w) = w, w € E and f(w) be as in the proof of Theorem 2.1. B(w) is a holomorphic in E and
|B(w)| < 1 for [w| < 1. Maximum principle implies that for each w € E, we have | f (w)| < |B(w)|. Therefore,

o =22

f@) =

is a holomorphic in E and |(p w)| < 1for [w| < 1. In particular, we take

_ f)  fGES - fG)
P07 5w T (i) Fo)w

1-w

£ + o1 (122 = i) + e (122 — i) + ..~ )
(Fi+ e (822 - )+ oo (1422 Y + .~ FD)w
(it - i) v (s i) + -
(£~ F@ + cr (12 1) e (1222 — i)+ )
(i) +ca (i) +a (i) + -
(Zzﬁf z)+c1( 21”)+cz<i12_i;})2+
e (i) + e (i) w+ s (i1%) w? + .
(2870 + 1 (i2%) + 2 (i28) + s (i22) + .

lcal

lp)] = 57 = 2.4)
and
_ Pie356) -
Sray*
In addition, it can be seen that
o = lrol= o=,
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where b = -1 € JE.
The quotient function

o) 2@ =90
1-9(0)(w)
satisfies the hypothesis of the Schwarz lemma on the boundary, from where we obtain estimate
2 1- o)
[ — @l _ — ri_
oo = Y PR [¢/(=1)|
_ Ol feDBEn
~ 11— IB(=1) B(-1)
1+[60)
= '(=1)| = |B'(-1)|
oo VDI ECD
1+[9)]
= ——lFenl-1.
oo V-
Since
2
1- (0
O'(w) = %W(w)
(1-90)pw))
|2ic2 3 f(i)—c?| ‘ ‘
, ¢'(0)| (310))’ i3 £(i) - 2
') = =
1-loO  1-(dk)  (Tf@) =l
and
: |f )
f (—1)} = W,
we obtain

2 _ S+l
50

14 230l = IfG) — el
(8f@) e

fo)| 1}

2(Gf@7 ~1al)  Sf@ -t _ {)f’ ) 1}

(3fG)) - |2| + [2ie, 5 £(i) - 3| IfD) +leal — | If()
2(3£G) = le1l) _frol
(SFG)) |3 + 2iea f () - 2| ~ | 3f0)

and

O 350 2(3£() = lea) ]

o 2o
(3fG)" - |c712| + |21cz5f(z) - cﬂ

Therefore, we get the inequality (2.3).
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Now, we shall show that the inequality (2.3) is sharp. Let
; =iV Fn
fo)+ (=) @)
1+ (Z—‘i)z

zZ+i

f@) =

Then

£/O) = 23£().
Also, sincec; =0and ¢; = %S f(i), we take

2(3£G) ~ lail)®

-
T G-l pesso -]

= 29 f(i).

O

If f(z) — f(i) has no points different from z = i in Theorem 2.3, the inequality (2.3) can be further
strengthened. This is given by the following theorem.

Theorem 2.4. Let f : S — S be holomorphic function. f(z) — f(i) has no points in S except z = i and ¢ > 0 is also
holomorphic function at the point z = 0 of the real axis with f(0) = R f(i). Then

23£(i) || 10 (3%5)
25 (i leal In (55) - ic23 £ - ]|

2.5)

£0)] = 5f(i)[1 -

In addition, the result is sharp and the extremal function is
f(z) =23 £() + R£().

Proof. Let c; > 0, f(w), B(w) and ¢(w) be as in the proof of Theorem 2.3 and the function f(z) — f(i) has no
points in S except z = i. Thus, the function f(w) has no more zero than zero. Having in mind inequality
(2.4), we denote by In ¢(z) the analytic branch of the logarithm normalized by the condition

B lca lcal
In(0) = ln(ﬁf(i)) <0, S <1

The auxiliary function
_ Ing(w) — Ind(0)
"~ In¢(w) + Ind(0)

is holomorphic in the unit disc E, |[P(w)| < 1 for w € E, ®(0) = 0 and |[®(-1)| = 1 for -1 € JE. So, we can
apply (1.2) to the function ®(w). Since

2n¢0)  ¢/(w)
(In(w) + Ing())” P

D(w)

' (w) =

and
21In¢(0) ¢’'(-1)

@/(-1) = ,
(Ing(=1) + () *CD
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we obtain
2 2[Ing©)  |¢'(-1)
— < (1) =
1+1@(0)| : [In(-1) + In ()] [ P
_ —21n¢(0) [N f(—l)B’(—l)'
In® p(0) + arg? p(~1) | B(-1) B(-1)?
—2In¢(0) DRI
= 1n2¢(0)+arg2q5(—1){f( o= B
. ~2lng() f’(O.))_1
I’ p0) | If0)
_ =2 [lrof |
~ Ing(0) | IO '
Since
N )
0= 250 me0
|2ic2 3 f(i)—c3| ' . )
o= 0 _Prdfo—d

25!?(‘1‘) ‘ln(sljf?‘oﬂ . _ZSf () e 1“(8%)

and therefore, we get

2 .2 £(0)] .
i3] _ln(ﬂ) I£(i) '

. JfG
23 (el inf 4] Jo

By getting elementary arrangements, we obtain

25 £(i)lor | In® (45 _rol

23f(0)lalIn (g2h) - i3 f() -2~ IfO)

and

23 (i) eal n? (75
25 (i leal In (55) - ic23 £) - ]|

£(0)] = I£G) [1 -

Since |c1| = I £(i) is satisfied with equality. O

3004

Theorem 2.5. Let f : S — S be holomorphic function and it is also holomorphic function at the point z = 0 of the
real axis with f(0) = R f(i). Assume that i,z1,2, ..., z are points in the upper half plane with f(zy) = f(i). Then we

have the inequality
n
’ ; J
f O] = 3£G) (1 + L (26)
=1
n i 2
2{ss0 f1[2 e
+ - k=1
o |z | . . n 43z
(flf(z)kljl b ) _|C1|2+k1;[l Xl Zsz(z)cz—c§+5f(z)c1(1+k§l le‘zim’iZkil)
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Moreover, the equality in (2.6) occurs for the function

z=i _ %7

£ - (5) T 11 ===

2kt z—i
k=11-35 %
i =

o) = — =
_ E 2+ zpti
1 (Z+i) H 2l g
k=11-I5 =

where z1,2y, ..., 2y are positive real numbers.
Proof. Let

fi15) - f() 0 z—i
f( 1+w m’ z+1

Also, w1, wy, ..., wy, be the zeros of the function f(w) in E that are different from zero. The function

Bi(w) = wH o __wk

1-—
=1 wrw

f(w) =

is holomorphic in E and |Bi(w)| < 1 for z € E. From the maximum principle, for each w € E, we have the
inequality | f (w)| < |B1(w)|. The composite function

is holomorphic in E and |A(w)| < 1 for [w| < 1. In particular, we have

cl(lw)+c(12“;u) + .. 1

A(‘LU) =
208 () + e (i25) + 2 (i) + o f1 222
_ o (5 )+Cz(12’w) W .. 1
lef(l) +C ( ) + CZ( 2w ) ﬁ Ww ’
@) = — <
IfG0) IT el
k=1
and
23900 -+ 3t 1+ . )
INOI= i

n
(I£(0))* TT ol

k=1
Moreover, it can be easliy seen that for b = —

bFb) Aw
o -V

B (b)| =
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and

] =1+ Y Lkl

2
k=1 1+ wy

The auxiliary function

ey 2 A = A0
1 - A(0)A(w)
is holomorphic in E and [Y(w)| < 1 for |[w| < 1, Y(0) = 0 and [Y(b)| = 1 for —1 = b € JE. From (1.2), we obtain
2 , 1 _ A 0 2 ,
|1 - AOAD)|
1+[AO) ¢ ,
P =1)| = |B;(=1)|; -
< oo =B e)
Since
: 1-1AOF
T(w) = ——2O_w)
(1-AO)A@))
and
2i3 f(i)e;=c} +3 f(Der (1+ 2 ﬂ)’
=1tk
, NO . (3f@) il
ol = 5= -
1-1A(0)l
1-— |Clyl
I£@) Ml
k=1
n 2i3 f(i)cr — c% + I f(i)r (1 + Y 1uz;;klz)
k=1
= || - )
- (Sf(i) [1 IWkI) = leaf?
k=1
we obtain
2
n 2i3f(i)c2—c%+3f(i)u1 1+)§ 1'lfj’k|2
L+ IThed ( = ]

n 2 2
(570 f o -t
k=1

< = N _ 1 ,
f(i)kl:lllwkl_‘cll Sf(l) P |1+wk|2

M 2
2[(8f<i> Jul |wk|) —|c1|2)

n 2 n n )
(Sf(i) 11 \wkl) —lesP+TTIodl 263 fli)es—2+3 f(i)g1(1+ 5 M)‘
k=1 k=1 = k

3 (i)kf[]'“’k'*'“' {If'<0)| 1 i 1—|wk|2}
S n_ ~ — —

70 fordel | 20 & it ?
and

£0)| > Sf(i)(l 4y %

k=1
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. 2
2(3f(i) 1:[ |wk|_|Cl|)

+ .
(570 kljl|wk|) e+ [T 202 +5f(z>c1(1+z S )’
Also, for wy, = ﬁ' we have
—1 2 4SZk
1—lul>=1- = =/
Zk + i |Zk + 1|
2 2
Zr — 1 4 |z
u+mﬁzh+ | = 'Ly
Zr t1 |z + 1
4SZk
1—lwl® it Iz
= — ==
1+wel®  dal |z
|z +i]
and
2 45Zk 3
1—|wel” i 48z ze+i 49z,
Wy i lmriPaci |z -2iRz -1

Therefore, we obtain inequality (2.6) with an obvious equality case. [

Motivated by the results of the work presented in [17], the following result has been obtained.

Theorem 2.6. Let f : S — S be holomorphic function, f(z1) = f(i), z1 € S and it is also holomorphic function at the
point z = 0 of the real axis with f(0) = R f(i). Then

32y Sf0i|f O]+
2 3f() (1 il t SR Ol 2.7)

(31®) (1— 457 ) | @)|3z1|f O)|-3fFO)|f (20)|Fz1-3 ()| £ <z1)|

X |1+

(9£G) (1— ij’jliz )+|f @321 | @)+ F)|f @) Sm+ I )| £ (21)] 'Zl'

The inequality (2.6) is sharp, with equality for each possible values ’(zl)( .
Proof. Let
—w
qw) = 1 T

Also, let h : E — E be a holomorphic function and a point w; € E in order to satisfy

‘ h(w) — h(w)) - g

1 = h(w1)h(w)

Il—w w
and

Ih(w)] + |q(w)|

h(aw)| < T IO
O oo @)

2.8)

by Schwarz-pick lemma [5]. If v : E — E is a holomorphic function and 0 < |w1| < 1, letting
o(w) — v(0)

h(w) =
@) w (1 - Wv(w)
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in (2.8), we obtain

v(w;)—0v(0) ‘_'_ |q(w)|

o@) =00 | _ fm(=Cow)
w(l - U(O)U(W) 1+ % |’1(w)|
and
Cl+|g(w
[o(O)] + ] 15t
[o(w)] < ICl+|q(w)] ”
1+ [0(0)] |wl| 1+(Cl|g(w)|
where
_ v(w1) — v(0)
W (1 - v(O)v(uM))
If we take
(w)
( ): fw—wl 7
Ui
where then
£ @) (1 = il AL
o(wy) = Q’ o(0) = @
w1 w1
and

f @) (1-lwi ) " 1
w1

C _ w1

w1 w1

where |C| < 1. Let |v(0)] = a and

fo

w1

' £ @) (1-wi )

w1y

+

£o

w1y

- *(wn) (1l
lel(l + ‘—f - 54;1 —!

)

From (2.9), we get

D+|g(w)]

1+D|q(w)|
D+g(w)]
1+D|q(w)|

a+ |w|

|f@)| < ol |g(w)|
1+ ajw|
and

D-+[q(w)| 2 D+|q(w)]
1— |f(w)| N 1+ alw| T+DJg)] o fwl |L](ZU)| - ‘Q(w)‘ [w] TDlw)]

1- = D+|g(w) B
o (1= ) (1 + a ol 2222

3008

(2.9)

(2.10)
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Let x(w) =1+ a|w| 3;'7;:3)” and t(w) =1+D )q(w)l. Then
-l ) 1- [wp 1- g
@) = T rare@ IO T @ P T ey
Since
lim x(w) = lim1+,8|z|M =1+a,
w—-1 w—-1 1+D |q(w)|

hmfwo:hmﬂ+DhmM=1+D
and

w — 2

(1= ReaP) (1 - )

4

1—|q(w)|2 = 1—’

1-ww )1 - w_1w|2

passing to the limit in (2.10) and using (2.11) gives
2 1—fwf” 1—|w1|2)
1+ +aD———
(1+a)(1+D)( 11+ w 11+ w;
I-jwf  1- 1-D1-fuf
|wl|2 L1l-a (1 N |w1|2)
lT+w* 1+a 1+D1+w|

= 1+

Moreover, since

1_|ro
1-a 1-10(0) _ w | wil -
1+a 1+ [v(0)] 1+|f(0)| [w1] +
)zl—i _ ol
Z14i Sf(z)
| le
Z1+i S Ji0)
7@ (i-fer ) +'f’<0)
1 TU‘] W‘l
- L] en(al) | o
1-D L ) ey
1+D f’(l1)(1 Z19) +'f’(0)
lUl 'lUl
1+ Fen(i-lo1P) ]| £
[y |[1+ — fT ]
2 e (|2 | o
)2 SF0 [1 o ] W{,)
z1—i + z1—i
EE EE
- lz+i21 f/(z1) Jio)
2|l 4, | @7 IO {1 2+ ] i)
Bl R i i
Z)+ 7+
- il f1e)(, |z P J40)
@iz If0) {] z+ ] Sf(xi)
R AN VL SR N A
zq+ zq+
1+ e+ fE) () 217*’:’2 7o)
1=l @2 IfO) | 1=+ T7G)
o] | R = — ey
B 7+
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(2.11)
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i1 £ (, 2P| o E+i2 /e (|2 P £0
Clul | Y 22 Jf0) [1 ~1+i| ] I 570 ||_|_ep? 550 ! 21+i| T7G).
zq+i M E zl—t: zq—i
1_D _ Zl+l Zl+1 Zl+l Zl
1+D — lz+i2 f (21) ‘21 {2 (i) lz+i[2 f(21) ‘21 i £0)
Gt | P (2i)2 If0) 21+ T7G) (2i2 If0) z1+ T7G)
Z+ + B 21 + B + 21
Zy+ z)+ Zy+ ﬁ
zy—i 2 lz+i2 | f'(z1) (1 i )' £ G) \z+[\2 f'(z1) (1_ 21— 2)
o+ T | 550 o+ )| 5o 7| 550 7+ IFG)
e e If’(:) |Jr i | £ (1| 2= P\ £0
o T | 550 o2+4| )| 5r® T |50 o+ 57
and
<12
zZ1—1 49z,
Z1+1 |z + i
z1—il* 4zl
1+ | = =
Z1+1 |z1 + 1|
we take

r—1y > Sz, IfOlea=il=|f @)l +i
i 1)|_(1 il S f@—il+|f Ol +il

(Sf(i))z(l— 492y )+|f’(21 192117 O1-3 0] @]9 -9 0] @)

X |1+

(Sf@)z(l— “Zl ) f’(zl)lﬁzl|f’(r)|+5f(z)|f’(zl |920+3 0| z0) it
From definition of , we have

(1- w)zf ( iﬂ“’u)(f(i)—m)

f'(w) =
(f( 1+w) f(l))
and
| o
0= S

Thus, we obtain the inequality (2.7).
Now, we shall show that the inequality (2.7) is sharp.

3010

Since v(w) = J© isa holomorphic function in the unit disc E and [v(w)| < 1 for |w| < 1. we obtain

W=7

Tow
< ||
and
||
)< fel
1 — fa|

We take w; € (—1,0) and arbitrary two numbers x and y. Let

1 (s [2
. x( J:Jll ) + wil B i}/(l—|w1|2)+x
w1 (1 +ch1 fon ) w% 1 +xy1 [or”

The auxiliary function

w—wq

—x 1-wyw

— + W =
@ T
h _ wiw
(w) - 1 —_— w-wy
1w 1 X 1-wyw
- w_1 11 W=7

1-wyw
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is holomorphic in E and |h(z)| < 1 forz € E. Let

w—wq
—X 1-wyw
—+wW W=7

_ w — w1 w1 1+leﬂw
f(w) - wl —_— w-wq
- wlw 1 _ X M+ 1-wyw

W]

w1 1+M1-ﬂw

From (2.12), with the simple calculations, we obtain

17w2 2 N N 17w2 2 N
1 1-M _x X 1 1-M _x
, 1-w? (1+(1—zv1)2 (1+1)? )(1 wy )+w1 (1+(1—w])2 (1+n)? )(1 Z"l)
f D=1+ 7+ 7
(1-wy) (1_4)
B

L1 L e (q o, 19 eey(-ed)-y(1-eh)x
(w2 =x+w A-wr)® w+ab(1-w?)+y(1-w?)+x | ©
. 4 0
Since |f'(-1)| = "g%(,.))', we take

2q-i 7
T zy+

\2 zq-i 2 zq—i 2 zq—i 2
) Gl )
2 2 RV

( —%) z%+ub(1—(%) )+y(1—(%) )+x

FO)]=3f@)|1+ 1‘(%)2 Mis
1

X |1+

3011

(2.12)

Thus, since Rz; = 0 and 0 < Jz; < 1, choosing suitable signs of the numbers x and y, the last the last
equality shows that (2.7) is sharp. [
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