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Abstract. Graphs whose spectrum belongs to the interval [−2, 2] are called Smith graphs. The structure
of a Smith graph with a given spectrum depends on a system of Diophantine linear algebraic equations.
We have established in [1] several properties of this system and showed how it can be simplified and
effectively applied. In this way a spectral theory of Smith graphs has been outlined. In the present paper
we introduce cospectrality graphs for Smith graphs and study their properties through examples and
theoretical consideration. The new notion is used in proving theorems on cospectrality of Smith graphs. In
this way one can avoid the use of the mentioned system of Diophantine linear algebraic equations.

1. Introduction

Let G be a simple graph on n vertices (or of order n), and adjacency matrix A. The characteristic
polynomial of A (equal to det(xI − A)) is also called the characteristic polynomial of G. The eigenvalues
and the spectrum of A (which consists of n eigenvalues) are called the eigenvalues and the spectrum of G,
respectively. Since A is real and symmetric, its eigenvalues are real. The eigenvalues of G (in non-increasing
order) are denoted by λ1, . . . , λn. In particular, λ1, as the largest eigenvalue of G, will be called the spectral
radius (or index) of G. For general information on spectra of graphs see, for example, [2].

The spectrum of G (as a multiset or family of reals) will be denoted by Ĝ. The disjoint union of graphs
G1 and G2 will be denoted by G1 + G2, while the union of their spectra (i.e. the spectrum of G1 + G2) will be
denoted by Ĝ1 + Ĝ2; in addition, kG (kĜ) stands for the union of k copies of G (resp. Ĝ).

We say that two (non-isomorphic) graphs are cospectral if their spectra coincide. They are also called
cospectral mates. On the other hand, we say that a graph is determined by its spectrum if it is a unique
graph having this spectrum. In the literature (see, for example, [6]) the abbreviation DS (non-DS) is used to
indicate that some graph is determined (resp. non-determined) by its spectrum. Many results on spectral
characterizations can be found in [6]. For early results see [2].

The cospectral equivalence class of a graph G is the set of all graphs cospectral to G (including G itself).
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We consider the class of graphs whose spectral radius is at most 2. This class includes, for example, the
graphs whose each component is either a path or a cycle.

All graphs with the spectral radius at most 2 have been constructed by J.H. Smith [7]. Therefore these
graphs are usually called the Smith graphs. Eigenvalues of these graphs have been determined in [3]. All
eigenvalues are of the form 2 cos p

qπ, where p, q are integers and q , 0.
A path (cycle) on n vertices will be denoted by Pn (resp. Cn).
A connected graph with index ≤ 2 is either a cycle Cn (n = 3, 4, . . .), or a path Pn (n = 1, 2, . . .), or one

of the graphs depicted in Fig. 1 (see [7]). Note that W1 coincide with the star K1,4, while Z1 with P3. In
addition, the graphs Cn,Wn, T4, T5, and T6 are connected graphs with index equal to 2; all other graphs,
namely, Pn, Zn, T1, T2 and T3 are the induced subgraphs of these graphs (so the index of each of them is less
than 2). The graph Zn is called a snake while Wn is a double snake. The trees T1, T2, T3, T4, T5, and T6 will be
called exceptional Smith graphs.

The spectrum of each of these graphs can be found (in an explicit form) in [3].
A Smith graph has connected Smith graphs as components.
We denote the set of all Smith graphs by S∗; the set of those which are bipartite, so odd cycles are

excluded, will be denoted by S.
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Figure 1: Some of the Smith graphs

Let G be any graph each component of which belongs to S∗, we can write

G =
∑
H∈S∗

r(H)H, (1)

where r(H) ≥ 0 is a repetition factor (tells how many times H is appearing as a component in G).
The repetition factor r(Si) of some of the graph Si ∈ S

∗ for any relevant index i will be denoted by si. So
we have non-negative integers

p1, p2, p3, . . . , z2, z3, . . . ,w1,w2,w3, . . . , t1, t2, t3, t4, t5, t6.
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We have omitted z1 since Z1 = P3 and the variable p3 is relevant. We shall use c2, c3, . . . , for repetition
factors of the even cycles C4,C6, . . . .

For non-bipartite graphs from S∗ we have to introduce variables o3, o5, o7, . . . counting the numbers of
odd cycles C3,C5,C7, . . . .

For a given graph G ∈ S∗ the above variables which do not vanish, together with their values, are called
parameters of G. Parameters of a graph indicate the actual number of components of particular types present
in G.

From the spectrum of a Smith graph the sub-multiset belonging to odd cycles can be recognized, so we
can ignore odd cycles, and the spectrum of the remaining bipartite graph can be calculated [3]. Therefore,
only bipartite Smith graphs will be considered in the sequel.

The paper [1] describes a system of Diophantine linear algebraic equations whose solution yields
parameters of all Smith graphs with given spectrum.

The paper [3] has given foundations of spectral theory of Smith graphs. The paper [1] can be considered
as a continuation of the research initiated in [3] and further extended in [5] and [4]. See also [4] for references
to some related results on spectral determination of Smith graphs. In this paper we continue investigations
from [1].

The rest of the paper is organized as follows. Section 2 contains some preliminary results. Cospectrality
and quasi-cospectrality graphs are introduced in Section 3 as new tools for handling Smith graphs. The
structure of the cospectrality graph is investigated in Section 4.

2. Preliminary results

Let H ∈ S. Let

Ĥ = σ0Ĉ4 +

m∑
i=1

σiP̂i,

be the canonical representation (as defined in [1]) of the spectrum Ĥ of the bipartite Smith graph H. Here
σ0, σ1, σ2, . . . σm are integers with σ0 ≥ 0. This representation always exists and is unique. The expression

σ0C4 +

m∑
i=1

σiPi,

is called canonical representation of H. It defines a graph if σ0, σ1, σ2, . . . σm are non-negative, otherwise it is
just a formal expression. In the first case H is cospectral to its canonical representation but not necessarily
isomorphic.

If all quantities σi are non-negative, the graph H is called a Smith graph of type A, otherwise it is of type
B. Let I (resp. J) be the set of indices i for which σi in a graph of type B is negative (resp. positive).

Obviously, cospectral Smith graphs are of the same type.
Let PH =

∑
i∈I |σi|Pi. Components of the graph PH are paths whose spectra appear with a negative sign

in the canonical representation of the spectrum of H. The graph PH is called the basis of H. The basis of a
graph of type A is empty. If we add components from its basis to a graph of type B, it becomes a graph of
type A.

The graph KH = σ0C4 +
∑

i∈J σiPi is called the kernel of H.
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Following [1] we shall consider the corresponding component transformations:

(γ1) Wn � C4 + Pn, (δ1)
(γ2) Zn + Pn � P2n+1 + P1, (δ2)
(γ3) C2n + 2P1 � C4 + 2Pn−1,n ≥ 3 (δ3)
(γ4) T1 + P5 + P3 � P11 + P2 + P1, (δ4)
(γ5) T2 + P8 + P5 � P17 + P2 + P1, (δ5) (2)
(γ6) T3 + P14 + P9 + P5 � P29 + P4 + P2 + P1, (δ6)
(γ7) T4 + P1 � C4 + 2P2, (δ7)
(γ8) T5 + P1 � C4 + P3 + P2, (δ8)
(γ9) T6 + P1 � C4 + P4 + P2. (δ9)

They are of the form A → B or B → A meaning that in a graph the group of components A is replaced
with the group of components B or vice versa. Transformations (2) are called G-transformations. Those of the
form A→ B are denoted by γ1, γ2, . . . , γ9 and are called C-transformations. For each C-transformation A→ B
we define the corresponding opposite transformation B → A, also denoted by A ← B. Transformations
A← B are called D-transformations and are denoted by δ1, δ2, . . . , δ9.

Graphs C4,P1,P2, . . . , appearing in canonical representations of bipartite Smith graphs, are called basic
graphs. All other connected bipartite Smith graphs are called non-basic graphs. Non-basic graphs are of
two types. Graphs Wn, (n = 1, 2, . . . ),C2k, (k = 3, 4, . . . ),T4,T5,T6 are non-basic graphs of type I while graphs
Zn, (n = 2, 3, . . . ),T1,T2,T3 are non-basic graphs of type II. Note that non-basic graphs of type I have spectral
radius equal to 2 while for those of type II spectral radius is less than 2.

G-transformations γ1, γ2, γ3 and their opposite transformations δ1, δ2, δ3 are not unique since they de-
pend on the index n of the involved non-basic graphs Wn,Zn,C2n. If we want to specify this index in the
name of the G-transformation, we shall use superscripts (for example, γn

1 or δn
2).

Application of any G-transformation does not change the spectrum of the corresponding graph. More-
over, we have the following theorem from [1].

Theorem 2.1. Let H1 and H2 be Smith graphs with corresponding bases PH1 and PH2 . If graphs H1 and H2 are
cospectral, then the graph H1 + PH1 can be transformed into H2 + PH2 by a finite number of G-transformations.

Example 2.1. The cospectral equivalence class of graph W1 + T4 consists of the following seven graphs:
W1 + T4, P1 + C6 + W1, P1 + C4 + T4, P2 + C4 + W2, 2P2 + 2C4, 2W2 and C6 + C4 + 2P1. This was proved in [4]
using extended system of equations and in [1] using condensed system of equations. We shall now prove
the statement using Theorem 2.1.

Indeed, graph W1 + T4 has 12 vertices, and we have: Ŵ1 + T̂4 = 2Ĉ4 + 2P̂2.
The seven graphs in question are represented in Fig. 2 in a special manner. For each of these

graphs we can easily establish by inspection which G-transformations are applicable. After applying a
G-transformation another graph form the set is obtained. Possible G-transformations are indicated at Fig.2
by arrows with the corresponding transformation names. The claim on seven cospectral graphs is now
evident.
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Figure 2: The cospectral equivalence class of graph W1 + T4

3. Cospectrality graphs and quasi-cospectrality graphs

Example from the previous section can be generalized.
For any A-type graph G we define its cospectrality graph C(G) in the following way. Vertices of C(G) are

all graphs cospectral with G, i.e. the set of vertices of C(G) is the cospectral equivalence class of G. Two
vertices x and y are adjacent if there exists a G- transformation transforming one to another. Of course,
if x can be transformed into y by a G-transformation, then y can be transformed into x by the opposite
transformation. Hence, C(G) is an undirected graph without multiple edges or loops. By Theorem 2.1.
graph C(G) is connected.

The following proposition is obvious.

Proposition 3.1. If G,H ∈ S are cospectral graphs of type A, then C(G) = C(H).

The following lemma is useful.

Lemma 3.2. Let G be a bipartite Smith graph of type A. The numbers of non-basic Smith graphs, contained as
components in graphs corresponding to adjacent vertices in C(G), differ by 1.

Proof. Any G-transformation changes the number of non-basic graphs by 1.

Theorem 3.3. For any A type Smith graph G, the cospectrality graph C(G) is bipartite.

Proof. By Lemma 3.2. graphs associated to adjacent vertices of C(G) contain the number of non-basic
graphs of different parity. Hence, C(G) can properly be colored by two colors.

A cospectrality graph is not always a tree. For example, C(T5 + T6 + 2P1) contains a quadrangle induced
by vertices

V1 = T5 + T6 + 2P1,V2 = C4 + P3 + P2 + T6 + P1,V3 = T5 + P1 + C4 + P4 + P2,V4 = 2C4 + P4 + P3 + 2P2.

V2 and V3 are obtained from V1 by γ8 and γ9 respectively while V4 is obtained from V2 or V3 by γ9 and γ8
respectively .

For any B-type graph G we define its quasi-cospectrality graph QC(G) as QC(G) = C(G + PG), i.e. as the
cospectrality graph of the kernel of G.
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Although all graphs cospectral to the kernel G + PG are contained as vertices in QC(G), only vertices
which contain the basis PG give rise to a graph cospectral to G.

A condensed version of QC(T5 + T6) is given in Fig. 2 of [1]. We have T5 + T6 = 2C4 + P4 + P3 + 2P2 − 2P1.
The kernel 2C4 + P4 + P3 + 2P2 of T5 + T6 is located in the center of the figure. Two D-transformations are
necessary to obtain graphs which contain the basis 2P1 starting from the kernel and only such vertices give
rise to graphs cospectral to T5 + T6.

The graph QC(T5 + T6) = C(T5 + T6 + 2P1) is given here in Fig. 3 with all details.

We see that G-transformation δ1 is used with various non-basic graphs (δ1
1, δ

2
1, δ

3
1, δ

4
1).

In Fig. 3 Smith graphs are presented as disjoint unions of connected Smith graphs where the symbol +,
denoting the disjoint union, is omitted. This gives the idea that a Smith graph can be thought as a family
of symbols representing its components. G-transformations are then just replacements of some symbol
groups with other symbol groups.

We see from Fig. 3 that there are 15 graphs cospectral to T5 + T6 + 2P1 including T5 + T6 + 2P1 itself.
In fact, the following theorem has been proved.

Theorem 3.4. The only cospectral mates of the graph T5 + T6 + 2P1 are 14 graphs represented in Fig. 3.
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Figure 3: Cospectrality graph of the graph T5 + T6 + 2P1

Using G-transformations we can easily prove the following theorem.
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Theorem 3.5. The only cospectral mates of the graph Zn + Wn are the following four graphs: Zn + C4 + Pn,
C4 + P1 + P2n+1, W1 + P2n+1 and W2n+1 + P1.

Proof. The only G-transformation applicable at the graph Zn + Wn is γ1 giving rise to the graph Zn + C4 + Pn.
Now δ1 reproduces the previous graph while γ2 yields C4 + P1 + P2n+1. Applying now δ1 in two different
ways we get graphs W1 + P2n+1 and W2n+1 + P1. We cannot obtain new graphs any more since applying
opposite transformation of those used leads to previous graphs.

Theorem 3.5 and other similar results can be proved using system of Diophantine linear algebraic
equations but the approach with cospectrality graphs and G-transformations is obviously more effective.
In particular, cospectrality graphs can be used in finding all Smith graphs with the given spectrum, thus
avoiding the use of system of Diophantine linear algebraic equations.

One can easily construct sets with arbitrarily many cospectral Smith graphs.

Example 3.1. Graphs
(n − k)(C4 + P1) + kW1, k = 0, 1, . . . ,n

are non-isomorphic and cospectral. We have C(nC4 + nP1) = C(nW1) = Pn+1.

If involved graphs are considered as labeled graphs, the G-transformation δ1 can be applied in several
different ways. However, since the resulting graphs are isomorphic, we shall consider all such applications
of δ1 as the same one.

Example 3.1. gives rise to the following theorem.

Theorem 3.6. Given a positive integer n, there exist n mutually non-isomorphic cospectral Smith graphs.

4. The structure of a cospectrality graph

Consider the cospectrality graph C(G) of a bipartite Smith graph G of type A.
The vertex v0 representing the canonical representation of G is called the c-center of C(G).
For any vertex v of C(G) we define H(v) to be the graph which is represented by v. The rank rankH of a

Smith graph H is the number of non-basic components of H. We have rankH = b1 + b2 where b1, b2 denote
the number of non-basic graphs of types I and II respectively.

Numbers of non-basic graphs can be expressed in terms of graph parameters:
b1 = w1 + w2 + · · · + c3 + c4 + · · · + t4 + t5 + t6, b2 = z2 + z3 + · · · + t1 + t2 + t3.
Vertices of C(G) are partitioned into layers according to ranks of corresponding graphs. Layer k contains

vertices v such that rankH(v) = k. The largest rank of a vertex in C(G) is called the c-radius of C(G). The
vertices with largest rank are called peripheral vertices. Their rank is equal to the c-radius. Applying
a D-transformation on a vertex enhances its rank while C-transformations diminish the rank. Using
C-transformations we are approaching the c-center while by D-transformations we go from c-center to
peripheral vertices.

Note that notions of center and radius in cospectrality graphs (c-center and c-radius) and in general
graphs are differently defined. As an illustration see Example 3.1.

For further consideration we need the following equations [1] for parameters and coefficients of canonical
representation

(F0) = (w1 + w2 + w3 + · · · ) + (c2 + c3 + · · · ) + t4 + t5 + t6 = σ0,

(F1) = p1 + w1 + (z2 + z3 + · · · ) − 2 (c3 + c4 + · · · ) + t1 + t2 + t3 − t4 − t5 − t6 = σ1.

We immediately obtain b1 + c2 = σ0 and b2 + p1 + w1 − 2 (c3 + c4 + · · · ) − t4 − t5 − t6 = σ1.
Now the following proposition is immediate.
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Proposition 4.1. The number of non-basic components of type I of a graph H ∈ S is at most equal to the coefficient
σ0 in its canonical representation.

Some information on the number b2 of non-basic components of type II can be obtained from equations
(F0) and (F1). However, for a precise estimation of b2 coefficients σi with higher i are relevant. In particular,
coefficients σ11, σ17, σ29 are relevant (cf., D-transformations δ4, δ5, δ6).

It would be interesting to obtain some (upper) bounds on the number of vertices of the cospectrality
graph C(G).
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