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Abstract. The main aim of this work is to find some coefficient inequalities and sufficient condition for
some subclasses of meromorphic starlike functions by using g-difference operator. Here we also define
the extended Ruscheweyh differential operator for meromorphic functions by using g-difference operator.
Several properties such as coefficient inequalities and Fekete-Szego functional of a family of functions are
investigated.

1. Introduction

Let H (E) denote the class of functions which are analytic in the open unit disk E = {z: z € C, |z| < 1}.
Also let A denote a subclass of analytic functions f in H (E), satisfying the normalization conditions
f(0) = f"(0) =1 = 0. In other words, a function f in A has Taylor-Maclaurin series expansion of the form

f@@)=z+ i a,z", (z € E). (1)
n=2

We denote S by a subclass of ‘A, consisting of univalent functions. Furthermore, we denote the class of
starlike functions by S*. A function f € A is in the class S* of starlike functions if it satisfies the relation

zf' (2)
%(f(z))>0 (z € E).

A function f is said to be subordinate to a function g written as f < g, if there exists a schwarz function w
with w(0) = 0 and |w (z)] < 1 such that f (z) = g(w(z)). In particular if g is univalent in E and f (0) = g(0),
then f (E) c g (E).
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For two analytic functions f of the form (1) and g of the form

g(z)=z+ Z b,z" (z € E),
n=2

the convolution (Hadamard product) of f and g is defined as:
(f+9) @ =z+) abz" (z€B).
n=2

We now recall some essential definitions and concepts of the g -calculus, which are useful in our investiga-
tions. We suppose throughout the paper that 0 < g <1 and

N:={1,2,3,..} =No\ {0}, INo:=1{0,1,2,3,...}.

Definition 1.1. Let q € (0, 1) and define the g-number [A], by

Lk rec
Al =9 &5 k 2 -1 ,
g =1+g+g°+..+g", A=nelN.

Definition 1.2. Let q € (0,1) and define the g-factorial [n],! by

1, n=0,
| = n-1
[yt 10k, neN.
k=1

Definition 1.3. Let g € (0, 1) and define g-generalized Pochhammer symbol by
1, n=20,
— n-1
Won =S T e+m,, nen.
k=0

Definition 1.4. For t > 0, let the g-gamma function be defined as:
Lt+1)=[t,T;(H) and T,(1) =1

Definition 1.5. (see [5] and [6]) The g-derivative (or q-difference) of a function f of the form (1) is denoted by D,
and defined in a given subset of C by

fO-f(5)

£0
D = 1-q)z ’ ’
/@ { ](f/(qg), 2=0.

(2)

When q — 17, the difference operator D, approaches to the ordinary differential operator. That is
Jlim (Dyf)2) = £/ @)

The operator D, provides an important tool that has been used in order to investigate the various
subclasses of analytic functions of the form given in Definition 1.5. A g-extension of the class of starlike
functions was first introduced in [4] by means of the g-difference operator, a firm footing of the usage of the
g-calculus in the context of Geometric Functions Theory was actually provided and the basic (or g-) hyperge-
ometric functions were first used in Geometric Function Theory by Srivastava (see, for details [14]) . After
that, wonderful research work has been done by many mathematicians which has played an important
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role in the development of Geometric Function Theory. In particular, Srivastava and Bansal [17] studied
the close-to-convexity of g-Mittag-Leffler functions. The authors in [16] have investigated the Hankel de-
terminant of a subclass of bi-univalent functions defined by using symmetric g-derivative. Mahmood et al.
[10] studied the class of g-starlike functions in the conic region, while in [9], the authors studied the class of
g-starlike functions related with Janowski functions. The upper bound of third Hankel determinant for the
class of g-starlike functions has been investigated in [11]. Recently Srivastava ef al. [15] have investigated
the Hankel and Toeplitz determinants of a subclass of g-starlike functions, while the authors in [18] have
introduced and studied a generalized class of g-starlike functions. Motivated by the above mentioned
work, in this paper our aim is to present some subclasses of meromorphic starlike functions by using
g-difference operator. We also introduce Ruscheweyh differential operator for meromorphic functions by
using g-difference operator.

Definition 1.6. (see [4]) A function f € H (E) is said to belong to the class PS,, if

fO=f(0)-1=0 3)
and

L(Df)(z)_L< ! (z € F). (4)

fe@Y 1-ql~ 1-¢

It is readily observed that as g — 17, the closed disk

lo-(1-97'<a-97"

becomes the right—half plane and the class S, reduces to S*. Equivalently, by using the principle of
subordination between analytic functions, we can rewrite the conditions in (3) and (4) as follows (see [19]) :

z — — 1+z
m(qu)(z)<p(z), p(z)—l_qz.
Let M denote the class of functions f of the form
f(z)—1+iaz" (5)
- z o n<~ s

which are analytic in the punctured open unit disk
E'={z:2z€C and 0<|z|] <1} =E-{0}.

A function f € M is said to be in the class MS" (@) of meromorphically starlike functions of order «, if it
satisfies the inequality

zf' (2)
_%( f@

Let P denote the class of analytic functions p normalized by

)>a (z€eE), 0sa<1.

p) =1+ Z 2", (6)

n=1

such that
R(p() >0 (z€E).

Next, we extend the idea of g-difference operator analogous to the Definition 1.5 to a function f given by
(5) and introduce the class MS, (8, A).
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Definition 1.7. Let f € M. Then the g-derivative operator or g-difference operator for the function f of the form (5)
is defined by

Dyf (2) = f(( qf)(jz) = —é + Z [n],a,2"" (z € E).
n=0

Definition 1.8. Let f € M. Then f € MS,; (B, A), if it satisfies the condition

D, f(z) 2 Ds(Dyf(2))
Z —
25 P 7@ ro1 < 1 , )

1-y 1-q|"1-9q

which by using subordination can be written as:

~2Dif @) =Dy (Do @) 1+(1-y(+9)z

(8)
1_ 1-
F@(E-7609) 9z

Remark 1.9. It can easily be seen that

lim MS, (,1) = H (B, A).

=1
The class H (B, A) was introduced and studied by Wang et al. [20, 21]. Secondly, we have

lirrl1 MS;(0,A) =H(0,A) = MS* (1),

—1"
introduced and studied by Wang et al. See [21].

Throughout this paper unless otherwise stated the parameters f and A are considered as follows:

Bz0 and%§/\<1 )
and

A‘i(n/ ﬁ' 7/) = [n]q + ﬁ [n]q [Tl - 1]q + YV, (10)

I _p
y—/\—ﬁ/\(/\+§)—§, (11)
1+

Y69 =po?. (12)
2. Preliminary Results
Lemma 2.1. [8] If a function p of the form (6) is in class P, then

—4v+2 v=0
I —vpf| <4 2, 0<vsl, (13)
4v -2, v=1.

1+z

When v < 0 or v > 1, equality holds true in (13) if and only if p(z) is
equality holds true in (13) if and only if p(z) is 1+Z
only if

(1+p\(1+z 1-p\(1-2z
p(z)_( 2 )(1—z)+( 2 )(1+z)' 0=p=l zek

or one of its rotations. For v = 1, equality holds true in (13) if and only if p(z) is the reciprocal of one of the functions
such that the equality holds true in (13) in the case when v = 0.

or one of its rotations. If 0 < v < 1, then

or one of its rotatlons If v = 0, equality holds true in (13) if and
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Remark 2.2. Although the above upper bound in (13) is sharp, it can be improved as follows:
|p2—vpf|+v|p1|2§2, 0<U§%, (14)
and
2 2 1
p2 v+ -v)|p| 52, F=v<l 15)

Lemma 2.3. [12] Let a function p has the form (6) and subordinate to a function H of the form
HiE =1+ Z Cuz".
n=1

If H is univalent in E and H (E) is convex, then
lpal S1C1l, 2L

Lemma 2.4. [2] If a function p of the form (6) is in the class P, then
|pn| <2, n € N.

This inequality is sharp.

3. Main Results
In this section, we prove our main results.
Theorem 3.1. If f € MS, (B, A), then for any complex number

u(p-g)r*+(n-9)(1-y)o (-1-n)o

(-8) ’ b= (B-a)(1+a)n’
a(1-y) (9-1-n)o (1+9-n)0

m—wai < Ty Gt <M E GG
p(B-q)*+(n-q)(1-y)o (1+9-n)o

(B-9) ’ He (B-a)(1+a)n’

(qfl—q)a (q*n)cr
(ﬂ—q)(1+q),, < 1% é (ﬁ—q)(l+q)r” we have

Furthermore, for

0 — e + (“ -’ zﬁﬁz ;)1172— D(-7) o) < 0(21_—;;)/
(_)‘7 (1+ —1)0
1 Gy = B < Gl
o )
a1 — pa] + (<1 +q-1) (; _y;)anz HB-a)1 )W . %
where
o = q_ﬁ(l"'q)r (16)
n = (1+g9(1-y). 0o

These results are sharp.
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Proof. 1If f € MS, (B, A), then it follows from (8) that:

~2D,f () - Bz2Dy (Dy f (2))
FE(E-1609)

<¢(2),

where

_ 1+(1-y(1+9)z
B 1-gz '

¢ (2)

Define a function

_1+w(2)
pE = 1-w(z)

=1+piz+ p222 + p323 + ...,

then it is clear that p € . This implies that

_p)-1
T p@+1

w (2)
From (18), we have

2D, f (z) - fz2D, (D, f (2))

foC-Teg) e
with
Cl4pE@)+(1-y(1+9))(pGE)-1)
L T T R R
Now

T+p@)+(1-y(1+q)(pz)-1)
p(2)+1-q(p)-1)

1 1
= 1+ [5(1 +q)(1 —7)P1]Z+ [§(q+1)(1 -Y)p2

1
+Z(q2 -1)(1- y)p%] 22+ ..,
and

~2D, f () - B2D, (D f @) 1 1
e = (5 -Y(B, 6/)) {1 + [5(1 +9)(1- V)Pl]z

1 1
[5G+ DA-Dp+ 3@ -DA-DpE]2+ ).
From (5) and (19), we have

ap = —gm

on
2(6-9)(1+9q)
Thus, clearly we find that:

1 —
oy — ] = S

2(6-9)

a, =

pZ
Pz—(n+1—q)31]-

3390

(18)

(19)

(20)

(21)

(22)
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where

_uB=O+gn+(n+1-g)o
20 '

By using Lemma 2.1 in (22), we obtain the required result. [

Theorem 3.2. Let y be defined by (11). If f € MS, (B, A) and of the form (5) with 0 < B < 2, then

lao| <

T (0 B)

and

la,| £

o1l
Q, (1, ﬁ)H( Qq(frﬁ))' nel (23)

where o, 1 are given by (16) and (17) respectively with
Qq(n,ﬁ)=[n]q(l+[n—1]qﬁ)q2+q—ﬁ(1+q). (24)
Proof. Since f € MS, (B, A), therefore

—zD, f (z) — Bz*D, (Dq f (z))
F@(E-7609)

=p(, (25)

where
1 1
p < 1+ [5(1 +q)(1 —V)P1]2+ [§(q+ DA=7)p2

1
+Z(‘72 -1 - y)p%]zz +
Also

by using Lemma 2.3 and Lemma 2.4, we obtain
|pn| £n, nelN. (26)

Now the relation (25) can be written as:

_Zqu (Z) - ﬁZZDq (qu (Z)) = (3 - T(ﬁ/ Q))P (Z)f (Z) .

Which implies

(— -Y(, q)) Z [n], + Bnl,[n - 1]q) a,z"

n=0

_ (% -1, q)) [1 £y pnz”] (é +Y anz”] : 27)
n=1
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Equating the coefficients of z and z"*' on both sides of (27) , we obtain

—ap = p1

and

- (Qq(n/ ﬁ))an =0 [pn+l + Z an—jij ’
=1

or equivalently

ap = —p1
and
n
a, = 0 an-ipil.
(Qq n, ﬁ))[p " ]21 ]’7’]
Using (26) , we have
on
laol <
"= Q,0p
and also
on
1, £ ———— _ill, n € N.
= 50 [ ]
For n =1, the relation (29) yields
fog)
la I=—(1+Ia 1)
toapt

P/ N PO
= Qq(l,ﬁ)[ ’ (Qq(O, ﬁ)]

To prove (23) , we apply mathematical induction. For n = 2, (29) yields

laz] £ 1 + |ag| + laq] .
That is

on

I\

||

3ep {1 ' Qq 0p) G

p)

on

o)

Qq(z 11[ Qq(],ﬁ)]

which implies that (23) holds true for n = 2. Let us assume that (23) is true for n < k. That is

:I”

|ax| <

B Qq ) 0 [ Qq(]’ﬁ)]

Q,2.p) ﬁ[ (Q,0.) 5] Q,1, ﬁ))

3392

(28)

(29)
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Consider
o1
Quk+1,p)

gl = (1 + laol + laa| + .. + laxl)

on o1 on ( o )+ L on k_11+L
ot+1p| T o0p Taaplltoop) T owp ] (Qq(B)

on on )
_— 1+ — .
Qk+1,p) H ( Q,GiB)
Therefore, the result is true for n = k + 1. Consequently (23) holds true foralln e N. O

The following equivalent form of Definition 1.8 is potentially useful in further investigation of the class

MSq (‘B/ /\) ’

D,f (2) D, (qu (Z)) 1-yq| 1-y
e MS, (B, N) = |-z—=—— — B2 - < : 30
feMS 62 |Zf(2) @ 1|t o
Theorem 3.3. Let
1
5—T(ﬁ,q)—y>0. (31)
Also suppose that f € M and of the form (5). If
. 1
(Mg, 8,7)) laul < ;Y69 (32)
n=0
then f € MS, (B, A), where Y(B,q) and y are stated in (12) and (11) respectively.
Proof. Assuming that (32) holds true, it suffices to show that
D Dy(Dsf (2)) 1- 1-
., of @) 2 q( af )_ v 1oy (33)
f@ f@ l-gq|  1-¢

Let us consider

Dif @ ,Di(Daf @) 1-yq

o T fe 1-q
(53 B0 + ) + Tilo ([l + il In = 1y Bz Xiko ()

1+ Y0 a2t 1+ Yozt

Last expression is bounded above by — 1f

(——+ Y(B,4) + Zq)+2([n]q+[n] 1, pe Vj)| s

n=0

{1 5) |an|J

After some simplee calculations, we have

)

Y (A, lanl < (% =Y q) - y)

n=0

This complete the require proof. [
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When g — 17, Theorem 3.3 reduces to the following known result.

Corollary 3.4. (see [20]) Let
1 3
1+ﬁ/\(/\+§)—/\—§ﬁ>0.

Also suppose that f € M is given by (5). If
Y (4 pr(n=1)+y)lad S1-y 26,
n=0

then f € H (B, A).

4. Ruscheweyh g-Difference Operator for Meromorphic Functions.

Ruscheweyh derivatives for analytic function was defined by Ruscheweyh [13] and named as m-th order
Ruscheweyh derivative by Al-Amiri (see [1]). Ganigi and Uralegaddi introduced the meromorphic anal-
ogy of Ruscheweyh derivative in [3]. Recently Kanas et al. (see [7]) introduced the Ruscheweyh derivative
operator for analytic functions by using g-differential operator. We here define the meromorphic analogy
of Ruscheweyh derivative by using g-differential operator. In this section, we define and study a new class
of functions from class M by using meromorphic analogy of Ruscheweyh g-difference operator. We also
investigate the similar kind of results which have been proved in the above section.

Definition 4.1. Let f € M. Then the meromorphic analogue of Ruscheweyh g-differential operator is defined as

+

N | =

1

MRf(2) = f @)+ p(q,0+1;2) = Yuanz",  z€E, 5> -1, (34)

I
—_

n

where
( 6+1‘z)—1+EDo z"
¢ q/ 7 - z o ljbn

and

[6+n+1]q!

n = m. (35)

From (34), we have
MR (2) = f(z), MR f(2) - [2], MR)f (q2) = 2D, f (2)
and

z7'D, (z’"” f (z))

MR} f (@) = —
I

, m € IN.

Note that
1

lim ,0+1,2) = ————
q—>1*¢(q ) z(1-2)°*"!
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and

lim MR (z) = f (2) » ————,
i MRS @) = Q)
which is the well-known Ruscheweyh differential operator for meromorphic functions introduced and
studied by Ganigi and Uralegaddi [3].

Definition 4.2. Let f € M. Then f € MS$ (B, A), if it satisfies the condition

__Di(MRIf@) g2 Dy(DMRIfG)
MR, f(z) MR f(2) o1y 1 36)
-y 1-g|=1-¢

which by using subordination can be written as
~2Dy (MRYf () = B0y (DOMRF @) 141y (1 +)
(2 -Y@ ) MRf (2) 1-4¢z

Remark 4.3. Firstly, it can easily be seen that

(37)

MS;) (B, 1) = MS; (B, 1),

where MS,; (B, ) is the class of functions defined in Definition 1.8. Secondly, we have
lim MS; (B, A) =H (,A),
—1"

where the class H (B, A) was introduced and studied by Wang et al. For detail see [20, 21].

The following results can be proved by using the similar arguments as in Section 3, so we choose to omit
the details of proofs.

Theorem 44. If f € MS;? (B, A), then for any complex number p

u(B-) 1+ (=) (1-)oy? < _(a=1-n)ov}
(4=$)470n ' H = G-o(ramn
o(1-y) (9-1-n)oy? (1+9-n)oy?
R EH R ot G0 =H = Gpgm’
u(B-)n*yr+(n-q)(1-y)oy3 s _(+g-n)oyg
G-0)in ’ ) R
(9-1-n)oy} (9-n)ov}
Furthermore for T <us TR
o (FB-DP (41— (0 —V)osbé) . 0(1-7)
I = el + ( B - ) 1P ol = G-

(g=m)oy? (1+g-n)oy?
(B-1)(1+q)nyn Sp< (B-a)(1+q)ny:”

(+q-nA-y)oyg—p@B -y o(1-
lay — pag +( > e lagl* < -7
(B =) n*in
where o, 1 and 1, are given by (16), (17) and (35) respectively. These results are sharp.

and
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By putting 1, = 1, the above result is proved in Theorem 3.1.

Theorem 4.5. Let y be defined by (11). If f € MSZ (B, A) of the (5) with 0 < B < 2, then

PN p——
Qq(olﬁ)lxbo
and
n-1
P p— (1 on ) N 38
s g man I gop) "N )

where o, 1 and Qg (n, B) are given by (16), (17) and (24) respectively.
By choosing 1, = 1, the above result is proved in Theorem 3.2.

Theorem 4.6. Let

%—Y@@—7>& (39)
Also suppose that f € M is given by (5). If

. 1

2 dn (Mgt < 2 =X, -, (40)

n=0

then f € /\/(S;s (B, A) where Y(B,q), Vn and y are given in (12), (35) and (11) respectively.
When 6 = 0 and 4 — 17, Theorem 4.6 reduces to the following known result.

Corollary 4.7. (See [20]) Let
1 3
1+ﬁ/\(/\+§)—/\—§‘8>0.

Also suppose that f € M is given by (5). If

Z(n+ﬁn(n_l)+7/)|an|§1—7/—2ﬁ,
n=0

then f € H(B,A).
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