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Infinite system of Integral Equations in Two Variables of Hammerstein
Type in ¢y and ¢; spaces

Ishfaq Ahmad Malik?®, Tanweer Jalal?

?Department of Mathematics, National Institute of Technology, Srinagar

Abstract. The principal aim of this paper is to study the solvability of infinite system of integral equations in
two variables of Hammerstein type in the Banach spaces ¢y and ¢; using Meir-Keeler condensing operators
and measure of noncompactness. In this study we give some examples.

1. Introduction

The theory of integral equations is an important branch of nonlinear functional analysis and has attracted
the interest of many researchers. In 1895 Le Roux [16] introduced integral equations as a powerful tool
in investigating partial differential equations. This theory has many applicabilities like in population
dynamics, Economic theory, feedback systems, stability of nuclear reactors [9, 10, 20]. In this paper, our
aim is to study the infinite system of Hammerstein type integral equations in two variables of the form

b b
on5,8) = 1a(s, ) + f f Ko(s, b, 1, 72) fo(T1, T2, 0011, T2))d1d T 1)

where (s, t) € [a,b] X [a, b] in the Banach spaces ¢y and ¢;. The solvability of (1) is studied using the idea of
measure of noncompactness (MNC).

Introduced in 1930 by Kuratowski [15] the concept of measure of noncompactness was further exten-
dend to general Banach space by Banas and Goebel [6]. The classical Schauder fixed point theorem and
Banach contraction principle were generalized by Darbo [11] for condensing operators using the idea of
MNC. The method of fixed point arguments has been widely used to study the existence of solutions of
functional equations, like Banach contraction principle in [1, 18] and Schauder’s fixed point theorem in
[14,17]. But if compactness and Lipschitz condition are not satisfied these results can not be used.

The idea of MNC has been studied by many researcher and applied in various problems. Many
properties of MNC in different sequence spaces can be found in [1, 8]. Different types of infinite systems of
integral equations in two variables had been studied in [4, 5, 12, 13] by making use of MNC.
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2. Preliminaries

Notation N is used for set natural numbers, R is used for set of real numbers and IR, is used for set
of positive real numbers, interval [4,b] is denoted by I. By C(I%,IR) we denote the space of continuously
differentiable functions on I? = [a, b] X [a, b]. The Hausdorff measure of noncompactness is used frequently
in finding the existence of solutions of various functional equations and is defined as:

Definition 2.1. [6] Let (2, d) be a metric space and A be a bounded subset of ). Then the Hausdorff measure of
noncompactness (the ball-measure of noncompactness) of the set A, denoted by x(A) is defined to be the infimium of
the set of all real € > 0 such that A can be covered by a finite number of balls of radii < €, that is

x(e) = inf{e> 0:Ac UB(x,-,Ri),xi €eQRi<e(i=1,...,n),ne ]N},
i=1

where B(x;, R;) denotes ball of radius R; centered at x; € A.

Let (X, - |I) be a Banach space, for any E c X, E denotes closure of E and conv(E) denotes the closed
convex hull of E. We denote the family of non-empty bounded subsets of X by Mx and family of non-empty
and relatively compact subsets of X by Nx. The axiomatic definition of measures of noncompactness is

Definition 2.2. [8] A mapping u : Mx — R, is said to be the measure of noncompactness if the following conditions
hold:

(i) The family Ker p = {E € Mx : u(E) = 0} is non-empty and Ker u C Nx;
(it) E1 C Ey = p(Ey) < w(E2);
(i) u(E) = p(E);
(iv) u(convE) = u(E);
(v) U[AE1 + (1 - AN)E] < Au(E1) + (1 = A)u(Ep) for0 < A < 1;
(vi) If (E,) is a sequence of closed sets from My such that E,.1 C E, and gg U(E,) = 0 then the intersection set

Ee = ﬂ E, is non-empty.
n=1

Definition 2.3. [3] Let X; and X, be two Banach spaces and iy and u, be the measures of noncompactness on X;
and X, respectively. An operator T from Xy to X, is called a (u1 — o) condensing operator if it is continuous and

2 (T(E)) < p1(E) for every bounded noncompact set E C X.
If Xy = Xoand py = pp = p then T is called pi-condensing operator.

Lemma 2.4. [11, Darbo’s fixed point theorem] Let E be a non-empty, bounded, closed, and convex subset of Banach
space X and let T : E — E be a continuous mapping. Assume that there exists a constant k € [0,1) such that
p(T(E)) < ku(E). Then T has a fixed point in the set E.

We know state the fixed point theorem for Meir-Keeler condensing operator which we use in this paper
to obtain the main results

Definition 2.5. [2] Let E be a non-empty subset of a Banach space X and u be an arbitrary measure of noncompactness
on E. An operator T : E — E is a Meir-Keeler condensing operator if for any € > O there exists 6 > 0 such that

e<u(E)<e+6= u[T(E)]l <e
for any bounded subset E of X.

Theorem 2.6. [2] Let E be a non-empty, bounded, closed and convex subset of a Banach space X and let u be an
arbitrary measure of noncompactness on X. If T : E — E is a continuous and Meir-Keeler condensing operator, then
T has at least one fixed point and the set of all fixed points of T in E is compact.
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In order to apply Lemma 2.4 in a given Banach space X, we need a formula expressing the measure of
noncompactness by a simple formula. Such formulas are known only in a few spaces [6, 8].

The ¢y sequence space is the set of all sequences converging to 0. Norm || - ||,, on ¢ is defined as

l@lle, = supflaxl} , () € co.
k>1

Under the norm || - ||,, ¢o is a Banach space, and the Hausdorff measure of noncompactness in ¢y is given by

X(E) = lim {sup (maxlukl)} 2)
n=00 | ek

>n

where u = (u]-) €¢pand E € M.

j=1
The ¢; sequence space is the set of all sequences whose series is absolutely convergent. Norm || - ||, on
{1 is defined as

l@lle = Yl , (@) € &
k=1

Under the norm || -||¢,, ¢1 is a Banach space, and the Hausdorff measure of noncompactness in ¢; is given by

X(E) = lim {sug (Z Iukl]} ©)
Uet \ k>n

o)

where u = (uj)] L € 61 and E € My,.
The above formulas will be used in the sequel of the paper.

3. Solution in ¢y space

In order to find the condition under which the system (1) has a solution in ¢y we need the following
assumptions:

(A1) Functions ( fj)}’il are real valued and continuous defined on the set I X R®. The operator Q defined
on the space I? X ¢y as

(s,t,0) = (Qo) (s, t) = (fi(s,t,0), f2(s,t,0), f3(s,1,0),...)

maps I? X ¢ into ¢o. The set of all such functions {(Qv) (s, 1)}y is equicontinuous at every point of
the space cy, that is given €,6 > 0

llu = vlle, <6 = (Qu)(s, 1) — (Qu)(s, D)lle, < €.

(A2) For each fixed (s, t) € I?, v(s, t) = (v]-(s, t)) € C(I?, ), the following inequality holds

a5, t, 005, )| < puls, D) + qus, ) sup {v;1} neN,

jzn

where p(s, t) and (s, t) are real valued continuous functions on . The function sequence (q i(s, 1?))},EIN
is equibounded on I? and the function sequence (p i(s, t))jeIN converges uniformly on I? to a function
vanishing identically on I?.
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(A3) The functions K, : I* — R are continuous on I4,(n = 1,2,...). Also these functions K,(s, t,x, y) are
equicontinuous with respect to (s, t) that is, for every € > 0 there exists 6 > 0 such that

|K}’l(52/ t2/ X, ]/) - K‘rl(sl/ tlrxr y)| <€ whenever ISZ - Sll < 6/ |t2 - tl| < 6/

forall (x, y) € I2. Also the function sequence (K, (s, t, x, )) is equibounded on the set I* and the constant
K defined as

K =sup {[Ku(s, £, 5, )l : (5, 8), () € B,n=1,2,..},

is finite.
(A4) Functionsr, : > > R are continuous and the function sequence (r,) is uniformly convergent to zero
on I?. The constant R defined as

R= sup{lrn(s,t)l i, el’n= 1,2,...},
is finite.
Keeping assumption (A;) under consideration we define the following finite constants as
Q =sup {qn(s, H:(s,t)elPne ]N},
P = sup {pn(s, H:(s,t)el’,ne ]N}.

Theorem 3.1. Under assumptions (A1) — (As), the infinite system of integral equations (1) has at least one solution
u(s, t) = (vj(s, t))jdN in cg for fixed (s, ) € I?, whenever (b — 2)’KQ < 1.

Proof. We define the operator F on the space ' = C(I%, ¢y) by
b b
(Fo)s, 1) = (Fos ) =rs 0 + [ [ Kol tmu e fmn, o ot et
b b
= (rl(S/ t) + f f Ki(s, t, 11, T2) fi(T1, T2, v1(T1, T2), V2(T1, T2), . . HdT1dT2, (4)
a a
b b
ra(s, t) + f f Ka(s,t, 1, T2) fo(T1, T2, 01(T1, T2), V2(T1, T2), . . JdT1dT2 , . ... )

for all (s,t) € I and v = (Uj)je]N

(s,t) € I? then using assumptions (A1) and (A3) we have

€ cg. We first show that F maps the space I into itself. Let n € IN and

b b
|(F0)n(5/f)|ﬁ|rn(5/t)|+ffKn(S,t,Tl,Tz)fn(TLTz,U(Tl,Tz))dTlde

b b
S|rn(5,t)|+Kf f |f(T1, T2, 0(T1, T2))ldT1dT2.

Thus, by assumption (A4) and the fact that (f,(s, ¢, v(s, t))) is in ¢y space we have

lim (I(Fo)a (s, ) = 0.
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Hence, (Fv)(s, t) € cp for any arbitrarily fixed (s, t) € I.
Then we have,

llo(s, t)lle, = max
n>1

b b
rn(sl t) + f f KH(S/ t/ Tl/TZ)fVl(Tlr TZ/ U(Tll TZ))dTldTZ

b b
f f Ko(s, 71, T2)folt1, T2, (11, T2))dT1d T

< max|r,(s, t)| +
nx1
b b
SR+I£131XIf|Kn(5,t,71,’f2)||fn(T1,Tz,U(T1,Tz))ldTlde
= a a

b b
<R+ Kf f malx (pn(n, T2) + qu(T1, T2) SUP {|?Jj(71, T2)|}] dti1dTs
a q Nz

jzn

<R+ Kb - a)*[P +Ql[v(t, s)lle, ]-
So we have

[1- (b -a)*KQlllo(t, s)lle, < R+ (b —a)*KP
R+ (b -a’KP (5)
llo(t, $)lle, < 0= (b-aKQ] (=Ro).

Therefore, using (4) we conclude that F is a self mapping on I".

Also ||(Fv)(s, t) = 0l] < Ro, so the operator F maps By, (ball of radius R centered at origin) in I" into itself.
We now show that F is continuous on Bg,. To do so fix € > 0 and v € Bg,. Then for arbitrary u € Bg, with
llu — v|| < €, arbitrary fixed (s, t) € > and n € IN. We have

|(Fu)(s, ) = (Fo)(s, B)l

b b
f f Kn (S/ t/ T1, TZ) [fn(Tll T2, H(Tll TZ))dTldTZ - ﬁ'l(Tll T2, U(Tll Tz))] dTldTZ

(6)

b b
< [ [ st m el e e, etz - fiw, o, ) dedr,
Now, using the assumptions (A;), define the set 6(¢) as
o(e) = sup{lfn(s, tu) — fa(s, t,0) :u,v €co,llu—"1ll, <e€(s,t) € Pon= 1,2,...}

Then, 6(¢) - 0ase — 0.
So, by (6) and assumption (A3) we have

|(Fu) — (Fo)| < (b — a)*Kd(e).

Hence, F is a continuous operator on Br,. We now show that F is a Meir-Keeler condensing operator, that
is givene > 0and 6 > 0

e<x(Bgr)<e+d = x(F(Bg)) <e.

Using the definition of measure of noncompactness in ¢y (2) and the assumptions (A,), (A3) and (A3) we
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have

X(F (BRD)) = lim [ sup {max [ok(t, 5)|}}
n—eo v(st)eBR n

< lim | sup { (Irk(s Bl + f f Ki(s, t, 11, T2) fi(T1, T2, 0(T1, T2))dT1d T2 )}}
=00 | o(s:)<BR,,

<lm| sup {m ( f f |fk(71,12,v(71,’c2))|d’cldfz)}
=00 U(s t)EBRO k>"

<lim| sup {ma pk(Tl, T2) + qi(T1, T2) sup {|vj(7-'1, Tz)l}] dTlde)
"2 o(s heBg, k>” jzk

<(b-a?KQyx BRO)

Thus,
» €
x (F(Bry)) < (b —a)"KQ x (Br,) <€,= x (Bg,) < b—aPKa
—(h— )2
Taking, 6 = e(l(b ?a);z G;( QY we obtain € < x(Bg,) < € + 0. Therefore F is a Meir-Keeler condensing

operator on Bg, C ¢g. Since F satisfies Theorem 2.6, F has a fixed point in Bg,. Therefore the system (1) has
a solutionin¢y. O

Example 3.2. Consider the following infinite system of Hammerstein type integral equations in two variables

1 22 (sHt+T 4T
(s, t) = — arctan(s + £)"+ sin[———17 2
n 1 J1

n

@)

! 1+4n* + (11 + 12)°[4 + sup,,, {[ox(1, T2)1}] ded
“( A[(T, + 1) + 12 ) it
for (s,t) €[1,2] x[1,2]andn =1,2,--- .

Comparing (7) with (1) we have

1
ra(s,t) = - arctan(s + )" , Ky(s,t,x,y) = sin

7

(s+t+x+y)
n

fu(t1, T2, 0(T1, 72)) = ln(

1+ 4n? + (11 + 12)*[4 + supy, {lox(t1, T2)|}]
4[(T1 + T2)2 + 1’12]

( 1+ (11 + 12)? supys, {lvk(T1, T2)|})
=In

4[(t1 + 12)% + n?]

Denoting, by I, the interval [1,2], we show that the assumptions of the Theorem 3.1 are satisfied. It is obvious that
the operator Fy defined by

(F19) (s, £) = (fu(s, t,v(s, 1)),

transforms the space I X ¢q into co. Next we show that the family of functions {(F1v) (s, D) s nerz is equicontinuous at
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an arbitrary point v € cg. Fixe > 0,n € N,v € ¢g and (s, t) € 2, let u € cq such that ||u — ||, < €. Then,

|fn(sl t,U) - fn(S, tr u)l
1+ (11 + 12)*sup{lvi(ty, T2)I} 1+ (11 + 2)*sup{lug(ty, )}
ln[l + ] ln[l + ]

k>n k>n
4[(11 + 12)? + n?] 4[(11 + 12)% + n?]

(11 + 12)?
< |4[(71 + 122 + 17 [Sktlnp [ok(T1, T2)I} — Sklinpﬂuk(fl,rz)“”

< 1su {lox — wil}
_16k>£) k k

Hence, || fu(s, t,0) = fu(s,t, u)H < %Ilv —ulle, < 1z, 80 the family of functions {(F10) (s, t)}(s,t)ezg is equicontinuous.
Now, fix (s, t) € I3,v € co and n € N, then

1+ (71 + T2)’sup{lox(t1, 12)I}

k>n

1
Inf1+ 4[(11 + 12)? + n?]

|fn(s, t, v)|

1+ (11 + 12)?sup{loe(t1, T2)I}
k>n

4[("[1 + T2)2 + 712]

1 (11 + T2)?

Tt 2] A R+ ]sup{|vk(rl,72)|}

(s +1)?
4[(s + )2 + n?]

functions and py(s, t) converges uniformly to zero. Also |g,(s, t)| < le foralln=1,2,.--

Letting, pu(s,t) = and qu(s, t) = it is clear that p,(s,t) and q,(s, t) are real valued

4[(s + )2 + n?]

Hence, P = 1 and Q = sup{gu(s, t)} =

s,tel?
The functzonsK (s, t, x, y) are continuous on 14 [1,2]x[1,2]x[1,2]x[1, 2] and the function sequence (K, (s, t, x, y))
is equibounded on I5. Also

K=sup {IKn(s, t,x, Yl (s, 1), (xy) € Bne ]N} =1.
Now, fix € > 0, (x,y) € I3 and n € N then for arbitrary (s1, 1), (s2, t2) € I* with

s2 — s1] << |t2 —-tl <

Nlm

We have

SS+h+x+y s1+th+x+y

|I<‘rl(52/ ter/y) _Kn(slrtllxly)| < n n

2 =)+ (2 =)

IN

1
—(Is2 —s1| + |t — ¢
n(|2 1+t = 1)

IN

€.

Therefore, (K, (s, t, x,y)) is equicontinuous.
Also, 1,(s, t), is continuous for all (s,t) € I% and for all n and r,,(s, t) converges uniformly to zero.
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1
The value of the factor (b — a)*KQ = ~ < 1. Since the conditions in Theorem 3.1 are satisfied, the infinite system in
(7) has a solution in co. This solution belongs to the ball Bg, C co where

R + (b — a)?K arctan4 + 1
_R+b-aKQ _ = :L—Larctan(ll).

R, = =
"7 1o (b-a)2KQ 1-1 3

4. Solution in ¢; space

In this section we consider the system of equations (1). The existence of solution for the system (1) is
found in ¢; space keeping the following assumptions under consideration:

(C1) Functions ( f]-)]?";1 are real valued and continuous defined on the set I X R*. The operator Q defined

on the space I? X ¢; as

(s,t,v) = (Qo) (s, 1) = (fi(s,t,0), fa(s, t,0), fa(s, £,0),...),

maps I* X {; into ¢;. The set of all such functions {(Q) (s, £)} »p is equicontinuous at every point of
the space €1, that is given e,0 > 0

lu = lle, <6 = [I(Qu)(s, t) — (Qu)(s, Dl <e.
(Cy) For fixed (s, t) € I%, v(s, t) = (vj(s, t)) € C(I?, £1), the following inequality holds

|fuls, t,0(s, £))] < au(s, £) + dus, B)[oal, n=12,3,...

(o)

where a(s, t) and d;(s, t) are real valued continuous functions on I?. The function series Z a,(s, t) is
n=1

uniformly convergent on I? and the function sequence (d i(s, t)) is equibounded on I?. The function

jEN

[

a(s, t) given by a(s, t) = Z a,(s, t) is continuous on I?> and the constants D, A defined as

n=1
D= sup{d,,(s,t) ‘s, el’, ne ]N},
A = max {a(s, f):(s,t) € IZ},

are finite.

(C3) The functions K,, : I* — R are continuous on I*,(n = 1,2,...). Also these functions K,(s, t, x, y) are
equicontinuous with respect to (s, t) that is for all € > 0 there exists a 6 > 0 such that

|Ki(s2, t2, x, ) — Kyu(s1, t1, %, y)| < € whenever [s; —s1| < §,[t, — | <6,

forall (x, y) € I2. Also the function sequence (K, (s, t, x, )) is equibounded on the set I* and the constant
K defined as

K= sup{IKn(s, t,x,y)l:(s,t),(xy) € Pn= 1,2,...},
is finite.
(Cs) Functions r, : I> - R are continuous and the function sequence (r,) € C(I?, ().
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Remark 4.1. Since I> = [a, b] X [a, ] is a compact subset of R?, so the assumption of continuity in (Cy) implies that
r, : I = R is uniformly continuous, which implies that the function sequence (ry(s, t)) is equicontinuous on 12, as
for every € > 0 there is a 0 > 0, such that for all (s1,t1), (s2, t2) € 2,

a1, 11)) = (a2, t2)) Nl < Y IEn(52,12) = T2, 1)
n=1

8)
<eg,
whenever, |(s1,t1) — (s2, t2)| < 0. Also from inequality (8) it is clear that the function series Z ru(s, t) is convergent
n=1

on I? and the function 1(s, t) defined as
(5,8 = Y (s, t),
n=1

is continuous on I2. Further the constant given by
R = max{r(s, t) : (s, t) € I},
is finite.

Theorem 4.2. Under assumptions (C1) — (C4), the infinite system of integral equations (1) has at least one solution
u(s, t) = (v]-(s, t‘))],GIN in €1 for fixed (s, t) € I, whenever (b — a)’KD < 1.

Proof. We define the operator G on the space 'y = C(I?, £;) by
b b
(@060 = (@O0 =rts, 0+ [ [ Kooty mf (o172 00, e
b b a a
= (rl(s, t) + f f K](S,t,’fl, Tz)f](’[l, Tz,vl(’l'l,"Q),Z)z(Tl,Tz),...)dTlde , (9)
b b
as)+ [ [ Katstm (e oo ), o, ) e )

for all (s,t) € P and v = (vj) N € 1. We first show that G maps the space Iy into itself. Let n € N and

j€

(s,t) € I? then assumptions (C;) and (C3) give

Y 1GO) (s, 1)

n=1
<Y s n+ Y]
n=1 n=1

© b b
R+ Z f f K (s, t, 71, T2)| )fn(ﬁ, T, (11, Tz))‘ dtidt,
n=1 Y4 a

b b
f f Ko(s, 1,71, T2)fo(T1, T2, 0071, T2))dTad s
a a

IN

0 b b
<Rk [ [ latn, )+ duton, o, el
n=1v1 a

0 b b oo b b
< R+K f f Hn(Tl,Tz)dTlde) + KD (f f |Z)'(T1, T2)|) dTld’l’Q.
;( a a ; a a !
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Using, Lebesgue monotone convergence theorem [19] we obtain

o b b b b
Z [(Gv)u(s, ) < R + Kf f a(ty,t2)dt1d7T, + KD (f f Z |Z)]'(T1,T2)|] dtidt,
a Ja a Ja 5

n=1
< R+ KA(b - a)> + KD(b — a)* sup{llv(s, t)lle, : (s, t) € I} (10)
< R+ KA(b - a)* + KD(b — a)?|[v]Ir,
< 00,

Thus, (Go)(s, t) belongs to ¢; space for arbitrarily fixed (s, t) € I%.

Further,
o b b
ot 0l = Y s+ [ [ Kuts b ) oo e, e
n=1 a Ja
<R+ KA®D = a)? + KD(b - al[olle,. using (10)

As, KD(b — a)* < 1 s0 we get

[1 - (b —a)*KD]llv(t, s)ll,, <R + (b —a)*’KA
o R+ (b —a)*KA (11)

It < o= —pko] R

Therefore, using (9) we conclude that G is a self mapping on I'7.
Also, [|(Go)(s, t) — 0] < Ry, so the operator G maps Bg, (ball of radius R; centered at the origin) into itself.

We now show that G is continuous on Bg,. To do so fix € > 0 and v € Bg,. Then for arbitrary u € Bg, with
|l —olle, < e, arbitrary fixed (s, t) € PandneN.

1(Gu)(s, 1) = (Go)(s, D,

ol b b
= Z f f Kn (Sr t/ T1, TZ) [f‘rl (Tll T2, M(T], T2)) - fn(Tlr T2, U(Tll TZ))] dTldTZ
n=1 Y4 va

b b
SZ[f|Kn(5,l‘,T1,T2)||fn(T1,T2,M(T1,T2))—fn(Terz,U(T1,T2))|dT1dT2

n=1

(12)

o b b
< KZf f |fn(Tl,T2, u(t1,12)) — fulT1, T2, v(Tl,Tz))|dT1de-
n=1 Y4 a

Now, using the assumptions (C;), define the set 0(¢) as
o(e) = sup{lfn(s, t,u) = fu(s,t,v) : u,v € Bg,, |lu—20ll,, <e€,(s,t) € Pon= 1,2,...}.
Then, 6(¢) - 0ase — 0.

So, by assumption (C3) using Lebesgue monotone convergence theorem [19], we obtained from inequality
(12)

b b 0
GG 1) = @0l <K [ [ Y [uten e, ) = oo 3,00, )] diad

n=1

b b
< Kf f I fa(T1, T2, 1) = fu(T1, T2, O)llg, dT1d T2
< (b —a)’Ko(e).

(13)
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As, (13) holds for arbitrary fixed (s, t) € I?, so

IGu — Goll,, < sup {I(Gu)(s, £) - (Go)(s, Bl |

(s,t)el?

< (b - a)*Ks(e).

Hence, G is a continuous operator on Bg, .
We now show that G is a Meir-Keeler condensing operator, that is given e > 0 and 6 > 0

e<x(Bgr)<e+d = x(G(Bg)) <e.

Using, the definition of measure of noncompactness in ¢; (3) and the assumptions (C5), (C3) and (Cy) we
have

6 = sup {Z o

zz(s,t)eBR1 >n

b b
f f Ki(s, t, 11, 12) fi(T1, T2, 0(T1, T2))dT1d7T,
a a

<lim| sup {Z (Irk(s, Bl +
k>n

n—eo v(s,t)eBR1

[ b b
S}l_l’){)lo sup {Z (Irk(s,t)|+Kf f |fk(’f1,TZ/U(T1,T2))|dT1dT2)H

,v<5’t)EBR1 k>n

[ b b
< &1_{130 Z Ire(s, )l + K sup {Z (f f a(t1, T2) + di(T1, T2)lUK(T1, T2)|dT1dT2)H-
k>n a a

= v(s,t)EBR1

Using, Lebesgue dominated convergence theorem gives

b b
X (G(Bg,)) < ,}1_{2 [Z Ire(s, )] + K{f f Z (71, T2)dT1dTo+
k>n a k>n

a

b b
D f f sup [Z ey Tz)|] dwm}]
a a v(s,t)eBR1

k>n

b b
< KDf f lim{ sup [Z Ivk(’cl,’(z)l] dtidt,
a a "% v(s,t)€Br; \ k=1

< (b-a)*KD x (Bg,)-

Therefore,

€
X (G(Bg,)) < (b—a)’KD x (Bg,) <¢&,= x (Bg,) < (b= a?KD'
e(1 — (b — a)*’KD)

(b —a)?KD
operator on B, C {1. As G satisfies all the conditions of Theorem 2.6, so G has a fixed point in Bg,. Therefore
the system (1) has a solution in £;. [

Taking, 0 =

we obtained € < x (Bg,) < € + 6. Therefore G is a Meir-Keeler condensing

We now give an example to support the result

Example 4.3. Consider the following infinite system of Hammerstein type integral equations in two variables

2 2
a
U,(s,t) = - In[(s + ) + n]+f f arctan(s +f+ 71 + 7o + n)((T1 + 1p)2e M)
1 J1

14
sinn(1; + 1) v2(11, T2) 4

(T1+ 02 +1% 1+03(11,12) + -+ + V3(11, T2)

)dT1d’T2
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for (s, t) € [1,2] x [1,2], @ > 0 a constant.
Comparing the system with (1) we have
a
ra(s, t) = = In[(s + t) + n],
Ku(s,t,x,y) = arctan(s + t + x + y + n),
sinn(s + t) v2(s, 1)
(s+12+n 1403, )+ +03(s,1)

for (s, t),(t1,72) €[1,2] x[1,2]and n =1,2,--- .
Clearly, r,(s, t) is continuous on If =1[1,2] x[1,2].
Moreover, for fixed (s1,t1),(s2,t2) € 12, we see that

fuls, t,01,00,...) = (s + £)2e "D 4

(rn) (51, t1)— (1) (52, t2)

= Y Iru(s1, b)) = (s, 1)
n=1

3

= 1
=a ) —|In[(s: + t) + 1] = Inf(s; + ) + 7]
n
n=1
= 1 s1+t—5— 1t
a2y 2 (1+—)
aan n Sy+t+n
n=1
= 1
SaZn—|51+t1—Sz—t2|

Il
—_

n
< afls1 = sal + [t = £2]]C(3).
where, C(s) denotes Riemann zeta function.

Choosing & = so that sy — sp] < §, |ty — to| < &, we obtain

_c
al(3)’
Il (rie) (s1,t1) = (rn) (52, L)l < €.
Also, for every (s, t) € If we have
a a 2 1
ra(s,t) < ﬁln(4+n) < ) 4+n Sa(ﬁ + m)
Hence,
R=max{y r.(s, 1) :(s,t) el*
21 ' (15)
= a(2C(2) + C(1.5)).
which is finite. Thus, assumption (Cy) and Remark 4.1 are satisfied.

Then, the function K, (s, t, x, y) is continuous in I‘l1 and

Ky (s, t,x,y) = |arctan(s + t + x + y + 1)

Tt
<.
2

Thus, the function sequence (K,) is equibounded on 1‘11. Also, for fixed (s1,t1), (s2,t2) € If and n € N then for
(x,y) € I we have

|Kn(51/ tl/ X, y)_Kn(SZ/ tZ/ X, y)|
= |arctan(s; + t; + x + y + 1) — arctan(s; + £, + x + y + n)|
<ls1—sol + 1t —tol.
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Therefore, the function sequence K,(s, t,x, y) is equicontinuous with respect to (s,t) € I* uniformly with respect to
(x, y) € I2, the value of the constant K given as

K = sup{Ku(s, t,x, 1) : (5,1), (x,y) € I}, n € N} .

N[

Hence, all assumptions of (C3) are satisfied.

Aguain,
_ sinn(s + t) 02
s, t,0)| < (s + )% 4 . 1
fulsi o)l < (6 4+ s+t)2+n* 1+07+-- 405
1 2
< (s + 1) 4 . i
+1) S+t +n |1+02 4+ +03
1 V]
< (s 4+ t)PeEH 4 — (v
(5+1) (s+152+n3 1+v$l(| )
1
<5+t — — o,
G+ 2[(s + )2 + n3]| o
; 2 ,—n(s+t) 1 ;
Taking, a,(s,t) = (s + t)%e and dy(s, t) = ———————= gives

T 2[(s + )2 + 1]

[fu(s, £, 0)| < ay(s, t) + du(s, B0yl

. . ) 4 .
Obviously, the functions ay,(s, t) are continuous on If, forany (s, t) € If we have |a,(s, t)| < ﬁe’z, and the function

- +1)?
series a(s,t) = Z a,(s, t) = S“ _) 1/ is uniformly convergent on the interval I%.
n=1
Also,
1 1 1
du(s, ) = o—5—— < = < 5,
(s, ) 2(s+t)2+n3] ~ 2n3 T 2

or all n € N. Hence, the function sequence (h,(s, t))is equibounded on I?. The value of the constants A, D are
q q 1

‘D=z, 17)

_ ) 2| 16
A_max{a(S,f)-(Srt)ell}_ez_l’ 2

and (b — a)*KD = g Using (11), (15), (16), (17) we obtain
B aC2)+CB))+(2-1*x 1 x %

! 1-% (18)
~1.84 fora =0.10

Finally, we check whether the assumption (C1) is satisfied. Fix v = (v,) € Bg, C {1 and € > 0, then for any



I. A. Malik, T. Jalal / Filomat 33:11 (2019), 3441-3455 3454

u = (uy) € Br, with |[u — lle, < €, then for fixed (s,t) € I?, we have

(o8]

|@uen- =Y lA 0= s o)
o =
= sinn(s + t) u? 2
) L
p— (S+t)2+1’l3 1+M1+"'+M% 1+v%+...+vi

[oe]
L oo 2 2 2 2 2
SZﬁlun(1+vl+---+vn)—vn(1+u1+---+un)|

n=1

3

IA
1
3 -

2 2 20,2 2 20,2 2
[lun - Un' + |Lln(01 +-t vn) - un(ul +- un)'

=
I
—_

+ qul(u% + - +ufl)—vfl(u% + ~--+uf,)|]

(o]

1 2 2(1,,2 2 2 2 2 21(,,2 2
Z _3[ Un' + Mn(|?)1 - M1| +-t Ivn - unl) + |un - vnl(ul Rl un)]'
n=1

=

Since, vy, u, € Br,,n € N so |v,| < Ry, [u,| < Ry s0

=1
|@uen- <3 (bl + o128 2
b n=1
W (for = (o] + al) + -+ o = (ol + D)
< 2R Z ! — ity — 01+ nR3) + R? [Z o: — u; |H
n=1 I’Z i=1
=1
= 2Rllu~olly ), — [@+nR?) + R3
n=1
= 2Ry[lu - oll,, ([1 + R2C3) + R3C(2)).
Thus, choose 6 = < , then for ||lu — vlle, < 6 we have

2Ry ([1 + R2JC(3) + R3C(2)

<E.

|@uen-

Hence the assumption (C1) is also satisfied, therefore by Theorem 4.2 we conclude that the system in (14) has a solution
in Br, C {1 where Ry is given by (18).

Acknowledgement: The authors are grateful to the anonymous referees for their careful reading of the
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