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Abstract. In this study, we consider statistical approximation properties of univariate and bivariate A-
Kantorovich operators. We estimate rate of weighted A-statistical convergence and prove a Voronovskaja-
type approximation theorem by a family of linear operators using the notion of weighted A-statistical
convergence. We give some estimates for differences of A-Bernstein and A-Durrmeyer, and A-Bernstein
and A-Kantorovich operators. We establish a Voronovskaja-type approximation theorem by weighted
A-statistical convergence for the bivariate case.

1. Introduction

Statistical convergence was first introduced by Fast [8] and Steinhaus [10]. An extended definition of sta-
tistical convergence with the help of nonnegative regular matrix A = (a,x), called A-statistical convergence,
was introduced by Kolk in [6]. Weighted statistical convergence was defined and studied by Karakaya et al.
in [24] and also modified by Mursaleen et al. in [12]. For further information about statistical convergence
we refer to [7, 21, 22].

Weighted mean matrix method is used to present some statistical approximation properties in terms of
Korovkin-type statistical approximation theorem. An extended form of A-statistical convergence has been
introduced by Mohiuddine et al. [19] and Mohiuddine [20], namely, weighted A-statistical convergence
using a non-negative weighted regular matrix. A new characterization in terms of weighted regular matrix
has been given and a Korovkin type approximation theorem through statistically weighted A-summable
sequences of real or complex numbers has been proved, too.

Approximation theory has become a powerfull tool to obtain prominent results in many fields of
mathematics such as differential equations, orthogonal polynomials and computer-aided geometric design.
Bernstein used famous polynomials nowadays called Bernstein polynomials, in 1912, to obtain an alternative
proof of Weierstrass’s fundamental theorem [5]. Approximation properties of Bernstein operators and their
applications in Computer Aided Geometric Design and Computer Graphics have been extensively studied
in many articles.

A new type A-Bernstein operators have been introduced by Cai et al. in [15]. Bernstein operators were
modified to create known Kantorovich operators in [14]. These kind of operators have been widely studied
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by many researchers. A-Bernstein operators were also modified to define A-Kantorovich operators by Acu
etal. [1] as

n B (i+1)/(n+1)

Kup(F5) = (n+1) ) Bui(A;) ot (1)
par i/(n+1)

with Bézier bases En,i(/\; x) [25]:

- A

buo(A; ) = byo(x) — mbnn,l(x),

B3 ) = by + A (b ) - b (), i= 1,201,

’ ’ n2 -1 ’ n2 -1 ’
- A
bn,n()\/ x) - bn,n(x) - mbn+1,n(x)/ (2)

where shape parameters A € [-1, 1] and the Bernstein basis functions b, ;(x) are defined by

zwap{gfa—mmf (i=0,... 1.

They proved a quantitative Voronovskaja type theorem by means of DitzianTotik modulus of smoothness
and a Griiss—Voronovskaja type theorem for A-Kantorovich operators.

In [16], Cai et al. have introduced Bzier variant of Kantorovich type A-Bernstein operators. A global
approximation theorem in terms of second order modulus of continuity and a direct approximation theorem
by means of the DitzianTotik modulus of smoothness were established. BojanicCheng decomposition
method were combined with some analysis techniques to derive an asymptotic estimate on the rate of
convergence for some absolutely continuous functions.

In[17], Caietal. have introduced a family of GBS operators of bivariate tensor product of A-Kantorovich
type. They have given an estimate for the rate of convergence of such operators for B-continuous and B-
differentiable functions using the mixed modulus of smoothness. They have also established a Voronovskaja
type asymptotic formula for the bivariate A-Bernstein—Kantorovich operators.

Very recently, Srivastava et al. constructed Stancu-type Bernstein operators based on Bézier bases with
shape parameter A € [-1,1] and calculated their moments. They established uniform convergence of
the operators and global approximation result by means of Ditzian-Totik modulus of smoothness. they
also constructed the bivariate case of Stancu-type A-Bernstein operators and studied their approximation
behaviors [9].

This paper is divided into five main sections. In Section 1, we give a local direct estimate of the rate of
convergence with the help of Lipschitz-type function involving two parameters. In Section 2, we give some
estimates for differences of A-Bernstein and A-Durrmeyer, and A-Bernstein and A-Kantorovich operators.
In Section 3, we study statistical approximation properties and estimate rate of weighted A-statistical
convergence. In Section 4, we prove a Voronovskaja-type approximation theorem by K, 1(f;x) family of
linear operators using the notion of weighted A-statistical convergence. In the final section of the paper, we
establish a Voronovskaja-type approximation theorem by weighted A-statistical convergence for bivariate
case. We compute rate of convergence with the help of Lipschitz-type function and modulus of continuity
for bivariate case.

We need the following results throughout the paper.

Lemma 1.1. [1, Lemma 2.1] We have following equalities for A-Kantorovich operators:
Kn,A(l;x) =1,
1-2x  1-2x+x"—(1—x)"!
X+ +
2(n+1) n? -1
3nx(2 —3x) = 3x>+1 x" —x+n(x" +x—2x?)
3(n+1)2 (n—1)(n+1)2

Kn,/\ (t; X) =

A;

Ko (t5x) = 2% + 2.
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First we give a local direct estimate of the rate of convergence with the help of Lipschitz-type function
involving two parameters for operators (1). We write

|t — x|

Lipl* () = {f € CI0,1] : If(1) - f(x)| <M 5 xe (0,1t e[0,1])

(k1x2 + kzx + t)Z

for ky > 0,k; > 0, where 1 € (0,1] and M is a positive constant (see [13]).

Theorem 1.2. If f € sz (ko) (17), then we have

o 3n+4 Al :
|Kn'A(f’ X) f(X)| =M [12(1(19(2 + szC)(T’l + 1)2 * 2(k1X2 + k2X)(Tl2 - 1)]

forall A € [-1,1], x € (0,1] and n € (0, 1].
Proof. Let f € sz(k1 kZ)(T]) and 71 € (0,1]. First we show the statement is true for n = 1. We have

KA (f5 ) = fFQOI < [Kna(f(8) = QL)1+ f(x) K2 (15 2) = 1
<2 Jf(; )

<M Z bni(4; )

(k1x2 + kzx + t)Z

bi,i(A; %)

for f € Liplt™(1). By (kix® + kox + 7Y% < (kia® + kox) ™/ for ki > 0,k» > 0 and applying Cauchy-Schwarz
inequality, we have

- x) — 2 -1/2 Y i_ b o(A:
Kna(f52) = F@] < Mlkix® + ko) ;|n x| Bi(2;:%)
= M2’ + ko) Ko (¢~ 2,)
< Mo, ()2 (kax® + kpx) ™'/,

Hence the statement is true for = 1. By monotonicity of operators K, (f;x) and applying Holder’s
inequality two times with a = 2/n, b = 2/(2 — n) we show the statement is true for n € (0, 1]:

Jr(5)-s00

£(5)- s

n

Ky,

2 1 n 21
B hi0) (Y Buathin))
i=0 i=0

L= x) bui(A; %)\ 3
(Z‘ _+;;x2+k2;:)

=0

bui(A; %)
g(g

H

< M(k1x? + kox)™ /2{ Z (E - x) by,id; x)}2

i=0

< M(kix? + kox + t)‘”/2K§A((t - x)%;x)

3n+4 N [A] 2
12(k1x% + kox)(n + 1)2  2(kix2 + kox)(n2 - 1) |

o

This completes the proof. [
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2. Estimates for differences between A-Bernstein type operators

In this part, we shall give some estimates for differences of A-Bernstein and A-Durrmeyer, and A-
Bernstein and A-Kantorovich operators.

There are two approaches to find estimates for differences of positive linear operators and their deriva-
tives. We refer to [2] for details of differences of operators.

Consider A-Kantorovich operators in (1), A-Bernstein operators defined in [15] and A-Durrmeyer oper-
ators defined in [3]. We write A-Bernstein, A-Kantorovich and A-Durrmeyer operators as

Bua(Fi0) = ) Buii0BinPi - Binlf) = £(%);
i=0
i+1)/(n+1)

n (
K0 = Y b0kt Kup=d) [ 5 food
i=0

i/(n+1)
n . 1
Dua(f0) = ¥ Buds0Diu(f); Din(f) = (n+1) fo b (B (bt
i=0
Remark 2.1. [2] Let F : C(I) — R be a positive linear functional such that F(1) = 1. If we denote b* = F(x) and
1 ,
ui = ?F(el - brey),
then we have uf =1, ut = 0 and pf = %[F(ez) - (5?2

Theorem 2.2. Let f, f”” € C[0,1]. We have the following estimates for difference of A-Bernstein and A-Kantorovich
operators:

(i) |Bn,)\(f}x) - Kn,/\(f/' x)l < )fﬁ
(ii) [Bua(f:%) = Kua(f:2)| < 32 (f,1/Q2 Vén +2V6)) + 5 Vowr (£, 1/2 Vén + 2V6)).
Proof. We have

an(x,A) + w1 (f,1/(2n + 2));

2i+1

Bi,rz — . — l Ki/n — . [
b z,n(el) n and b 1,11(61) 2(7’1 + 1)

for A-Bernstein and A-Kantorovich operators. We also have

| 2 1
bBl,n _ be,n - |n - .
max| | = max 2+ 1) 20+ 1)

Then the following equalities hold:

. 1 \2
st =5 Bin (61 - bB"”eo) =0
Ki,?l — 1 ., Kl,ll 2 — 1
= gk (o1 = 0eo) = 24(n + 1)’

Hence we have

— - 5. Bi,n Ki/n — _1 Y b . = —1
oz, A) = ZO‘ bui 19 (1" +13") = 330 g ZO‘ build ) = S e

We prove the theorem if we apply [2, Theorem 3, Theorem 5]. [
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Theorem 2.3. Let f, f” € C[0,1]. We have the following estimates for difference of A-Bernstein and A-Durrmeyer
operators:

(i) |Bua(f;x) = Dua(fi0)| < |7l Bulx, A) + w1 (f, 1/ + 2));
(ii) [Bua(f:%) = Dualfsx)| < 3w (f, B2, A)) + 501 + 2B, (x, Daor (£, )/ (x, 1))

144

Proof. We have bPi» = B, ,(e1) = + and bPin = D (e1) = % for A-Bernstein and A-Kantorovich operators.
We also have max; |bB"f" — bPir| = L since |bBlV” - bP "”| = %

Then the following equalities hold:

#Ei'" = %Bi,n (61 - 173"'"60)2 =0;

f+1)n+1-1)

Din 1 D; 2
"= =D, — b = .
H" = 5D (e ) 201+ 3)(n + 2)2

Using all these relations we have

n
Y Buid, 0 (1 + 115™)
i=0

1

T 2m+3)n+2)y ; bi(A, )i+ 1)(n + 1~ i)

S m— 5 G P

Bn(x, A)

me(/\ x)(1 + 1)

2(n +3)(n +2)* m
_ n+1 n? (=)
T 2+ 3)n+2P " 2u+ 3+ 2P ["(1 -

n(n—1) M o

We prove the theorem if we apply [2, Theorem 3, Theorem 5]. [

N 1—4x+ 4x2 _ xn+1 _ (1 _ x)n+1 1-— xn+1 _ (1 _ x)n+l A]

3. Statistical approximation properties of univariate A-Kantorovich operators

This section is devoted to establish statistical approximation properties of univariate A-Kantorovich
operators and estimate the corresponding rate of convergence by weighted A-statistical convergence. First
we give the needed notions and notations.

Natural density of K,, is denoted by 6(K) = lim, %IK,,I provided that limit exists, where K, = {k <n:k € K},
K € Ny := IN U {0} and vertical bars denote cardinality of the enclosed set. A sequence x = (x,,) of numbers
is called statistically convergent to a number L, denoted by st-lim,, x = L, if, for each € > 0,

on:nelNand |x, - Ll 2€} =0.

A-transform of x denoted by Ax := {(Ax),} is defined as (Ax), = Y5 @uXx for a given non-negative infinite
summability matrix A = (ax), 1,k € IN. It is provided defined series converges for every n € INg. If
lim, (Ax), = L whenever lim, x, = L, we say that A is a regular method. Then sequence x = (x,) is said to
be A-statistically convergent to L, denoted by st4-lim x = L, provided that for each € > 0,

Z Ay =0 (n—>oo)

k:lxx—L|Ze



E. Ozger / Filomat 33:11 (2019), 3473-3486 3478

A-statistical convergence becomes ordinary statistical convergence which was introduced in [4] if we take
A = (C1), the Cesaro matrix of order one, and it becomes classical convergence if we take A = I, the identity
matrix. We know that every convergent sequence is statistically convergent to the same limit but not
conversely.

Assume that g = (g,) is a sequence of non-negative numbers so that go > 0 and Q, = Y,;_,qx — o as
n — oco. Then x = (x,) is called weighted A-statistically convergent to L, if, for every € > 0,

I

"k=0  Lx-Llze

This relation is denoted by S§ —limx = L in this case. It is clear that weighted A-statistical convergence
generalizes A-statistical convergence, which we recover by putting g, = 1 for all n € IN.
We now give main results related to statistical approximation of operators in (1).

Theorem 3.1. Let A = (a,x) be a weighted non-negative regular summability matrix for n,k € N and q = (q,) be a
sequence of non-negative numbers such that qo > 0 and Q, = Y,;_o gk — o0 as n — oo. For any f € C[0, 1], we have

SN - lim [IK 1 (f5 %) = f(®)llcio,y = 0.
Proof. Consider sequence of functions e;(x) = x/, where j€10,1,2} and x € [0, 1]. It is sufficient to satisfy

SN — lim IK;, 1 (ej; x) = ejllco, = 0, j=0,1,2.
From Lemma 1.1, it is clear that

St — lim [[Ky,1(e0; %) = eollcro,ny = O- 3)
We also have

1-2x 1-2x+x"1—(1-x)"

sup >
xe01]12(n +1) nz-1

1 o
D) T age-1) - AA)

1K, (e1; %) = eillcroa) = A

We define following sets

Q:={neN:|K,a(e1;x) —eillco = €},
O1:={nelN:An,A) 2 e- ¢

choosing a number € > 0 for a given € > 0 such that € < & Then we see the inclusion Q C (; is satisfied

and
SIS RES S o :

k=0  leQ k=0 ley

for all n € N. Passing limit as n — oo in (4) we have
St — 1}1_{{}0 1Ky, (e1; x) = ellciony = O. )

We also have

3nx(2 —3x) = 3x2+1  x™ —x +n(x™ +x - 2x?)

1Ky, 1 (e2; ) — eallcio) = su 21
" o= 31+ 1) -+ 12
15n+4 8|

n+12 n2-1 = B, ).
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Since S§ —lim, B(n, A) = 0, we get
St — Tim [IKy, 1 (e2; x) = eallcroy = 0. (6)

We get desired result combining (3), (5) and (6). O

We now estimate rate of weighted A-statistical convergence of operators K, 1(f; x).

Let A = (a,x) be a weighted non-negative regular summability matrix and let g = (g,) be a sequence
of non-negative numbers such that g0 > 0 and Q, = Y;_,qx — o as n — oo. Also let (u,) be a positive
non-decreasing sequence. We say that a sequence x = (x,) is weighted A-statistically convergent to L with
the rate o(u,) if

n

lim Z qk Z Ay = 0.

n—oo 1Y
nQn k=0  ILlx—-L|ze

In this case, we write
[stata, qn] — 0 (un) = xn — L.

Theorem 3.2. Let A = (a,x) be a weighted non-negative regular summability matrix. Assume that following condi-
tion yields:

w(f, u) = [stata, qa] — o (u,) on [0, 1], where @, = /IIKua((s — %)% %)llcpo,1)-
Then for every bounded f € C[0, 1] we have

1K, A (f; %) = f(0)llco) = [stata, gu] — o (uy).
Proof. Let f(x,y) € C[0, 1], then we have

K (f3) = FOOI < K (1) = FEx) + 9 1Ky a (1) = 1)

<w(f, 5)1<M(|t —

+ 1;x)

= w(f, K1 (1;%) + w(f, 5)%1% ((t-0%x)

for any x,s € [0,1], where ¢ = sup, o, f(x)|. Let 6 := @, for all n € N. Taking supremum over x € [0, )
on both sides, we obtain

1
1K, A (f; %) = f(0llcion) < w(f, @u) + w(f, (Pn)?HKn,A((t = %)% 2)llco) = 20(f, @)
Consider following sets for a given € > 0:
B = {n:lKua(f;x) = f®)llcroar = €},
W = {n o(f, pn) = g}

The following inequality is clear satisfied:

Mlen Z Z ki < ﬁQn Z Z qkak-

k=0 1B k=0 leW

We are led to the following fact by the hypothesis that

1K (f5 %) = f(Ollcro,) = [stata, qu] — o (4n)
as asserted by Theorem 3.2. O
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4. A Voronovskaja-type approximation theorem by weighted A-statistical convergence

We shall prove a Voronovskaja-type approximation theorem by K, 1(f; x) family of linear operators using
the notion of weighted A-statistical convergence.

Theorem 4.1. Let A = (ay) be a weighted non-negative regular summability matrix and let (x,) be a sequence of

real numbers such that S — limx, = 0. Also let K1 (f; x) be a sequence of positive linear operators acting from
Cgl0, 1] into C[0, 1] defined by

I%n,)\(f; x)=(1+ xn)Kn,A(f; x).
Then for every f(x,y) € Cgl0,1], and f’, f” € Cg|0, 1] we have

f() f”()

S~—hmn{ K (fi3) = f0)] = 5=(1 - 22) + == =x(1 - 2).

Proof. Let x € [0,1] and f’, f”" € Cp|0, 1]. Applying K,,,,\( f;x) to both sides of Taylor’s expansion theorem,
we have

Rop(f30) = f(0) = f (0K a(t = x;%) + wKﬂ/\((t )% %) + Ko A ((t = x)%e(x, 1); %),

which yields to
H{Kn,A(f; x) — f(x)} =nf ()1 +x)Ky1(t - x;x) + gf” ) + x2,)Kya((t — x)% x)
+1(1 + x,)K 1 ((E = x)%e(x, 1); X).

We also have the following relations

, n(1-2x) n(l-2x+x" —(1-x)"1)
n{Kn,/\(f; .X) - f(x)} {f ( )( 2(7[ + 1) + 7’[2 -1 )
F(x) (nx(1-x) n(l-6x+6x2) 2n[x"1(1x) + x(1x)"*1]

) ( nt 1 3+ 172 21 )

= 1f @Kt =)+ 5 f (XKt = 0%) + 11+ 5K (¢ = x e, )

f @)
2

<xy {nf (x)A(n,A) +n C(n, /\)} +n(1 + x,) Ky 2 ((F — x)ze(x, 1); x)

< X, (nA1A(1, A) + 1A C(n, A} + n(1 + x,) K A ((E = x)%e(x, 1); X),

where
1-—2x 1—2x+x”+1—(1—x)”+1 1 Al
K —- X = < X
aA(t =X X) 2(n+1)+ o _2(n+1)+n2_1,
Ko a((t= 0% %) = nx(1 — x) N 1-3x+3x% 2A[X"(1x) + x(1x)"1]  4Ax(1—x)
' (n+1)2 3(n +1)? n21 (n + 12(nl)
3n+4 |/\|
— =C(n,A
S D e T CA)

by [1, Lemma 2.3] and

A1 = sup |f'(x)] and Ay = sup |f"(x)l.
x€[0,1] x€[0,1]

Moreover, by Theorem 3.1 we obtain
SN — lim (K ((t — x)%€(x, £); %)) = 0.
n—00

Since Sff —limx, = 0, we get desired result. O
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5. Approximation properties of bivariate A-Kantorovich operators

In this part, we establish a Voronovskaja-type approximation theorem by weighted A-statistical con-
vergence for bivariate case. We compute rate of convergence with the help of Lipschitz-type function and
modulus of continuity for bivariate case.

Let 7 =[0,1] x [0,1] and (x, y) € I, then we consider bivariate A-Kantorovich operators

kp+1 ky+1

m+1

Ry (fix,y) = (4 D)(m +1) Y Y Bogy (M1 0bs, (A2 ) f * f F(u, v)dudo

ky
k1=0 k=0 n+l m+l

for f(x,y) € C(J), where Bézier bases bk (A1;x) and by, x, (A2; x) (A1, Az € [-1,—1]) are defined in (2).
As an immediate consequence of Lemma 1.1 we have the following lemma:

Lemma 5.1. The following equalities hold:

Ky (1x,y) = 1;
1-2x 1-2x+x""1—(1-x)*!

Ron(sxy)=x+ 2(n+1) * 2 -1 A

Ry (tx,y) =y + 21m_fy1) + 1-2y+ 3/;;1_—1(1 -y A
Rl x,y) = 22 + 220 Qéxl I)sz L (anr_nl(;;:)i “2oMs;
Ry (%, y) = v + 3my (23_( :’lyi I)fyz +1 N Yy — gﬂ +_rri()¥:1+i;)z - 2y2)2 L.

Theorem 5.2. The sequence K, (f;x, ) of operators convergences uniformly to f(x,y) by weighted A-statistical
convergence on I for each f(x,y) € C(I), where C(X) is the set of all real valued continuous functions on I with the
norm

I fllecr= sup |f(x,v)|-
(x,y)el

Proof. It is enough to prove the following condition

SN~ lim KM (eri(x, )i, y) = X'y, G, j) €1(0,0),(1,0), (0, 1)}

n,m—00

converges uniformly on 7. We clearly have

52] - lim Kﬁ};%/\z (eoo(x, ¥); X, ¥) = epo.

m,n— o0
We have
¥ o ol . (1-2x)(n + 1) + 2x" = 2(1 — x)**!
S];\] - n,lrrlzllloo Kn,lm 2 (elO(Xr ]/)r X, ]/) = S% - r}g{}o (x + 2(1’12 _ 1) A

= ep(xy);

N 7 N 1-2 +1) + 2y = 2(1 — y)"™H!
SY - lim KM (en(x,y)iny) = S - lim (y+( pm+1) + 2™ ~2(1-y) Az)

2(m? —1)
= € (xr y)
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by Lemma 5.1, and

SN — lim K} (ena(x, ) + eo(x, y); %, y)

n,m—co

- 3nx(2-3x) = 3x2+1 1! —x+n(x" +x—2x?)
_oN _ 2
=54 n,lnlzr—I}oo{ * 3(n+1)2 " (n—1)(n+1)? 2h
2 3myQR-3y) -3y +1 Y™ —y+my™ +y -2y
+ + 2A,
3(m + 1)? (m—1)(m+1)2

= en(x, y) + exn(x, y).

Bearing in mind the above conditions and Korovkin type theorem established by Volkov [23]

SA& — lim Kﬁ},;fz (eii(x, y);x, y) = xiyj

m,n—oo0

converges uniformly. [

5.1. A weighted A-statistical Voronovskaja-type theorem for bivariate case
Lemma 5.3. Let A = (au) be a weighted non-negative regular summability matrix and let (x,) be a sequence of real

numbers such that S — limx, = 0. Also let ]Kﬁf,fz( f;x,y) be a sequence of positive linear operators acting from
Cg(T) into C(X) defined by

KM (f;x, ) = (1+ x)R2(f; x, ).

Then, we have

~ ; 1-2x
Sy = lim n K (s - xx,y) = ——
- 1-2y

. A A . — .
Sy = lim n KL (= yix, y) = ——

SN — lim n K22 (s — 0% x, ) = x(1 - 2);
SN~ lim n K2 ((t - y)%x, ) = y(1 - v).

Proof. Since S§ —limx,, = 0 holds, the following relation
n IKQ},;AZ(S -xxy) = n (1+ xn)K,Al},;{\z(s —X;X,Y)
= 1 (1+ ) [Kii (5%, y) — Ko (13, y)|

n(1 — 2x) N 1—2x+ 2" — (1 —x)™! N
2 +1) 21

= (1+xn)[

implies SAﬁ —lim, o n ]Kﬁ},f2 (s —xx,y) = (1 —2x)/2. Also the following relation
n K2 (s -x%xy) = n (+x)K (-5 y)

n (1+xy,) [KQ},;AZ (s%; x, y) — ZxKﬁ},;fz (sx,y) + szﬁ}n’?z(l i X, y)]

B n?x(1-x) n(1-3x(1-x))
= ) =y 31+ 1)
. 2nA1 (11 = x) + x(1 — x)™1) . 4nAix(1 - x)
nz-1 (n + 1)2(nl)

implies SY — lim, e 1 IK}2((s = 0% %, y) = x(1 —x). O
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Theorem 5.4. Let f(x,y) € C*(X), then, we have

_— o 1-2x 1-2 x(1-x 1-y)
Sx—]}g{l{}n []Kﬁ,;«,l/\ (f’x,y)_f(x,y)] = 2 fx+ 5 yfy+ ( > )fxx+ y > y f]/]/.

Proof. First we write the Taylor’s formula of f(s, t)

fot) = fEp)+fls—x)+ fylt—y) + = {fxx(s — X2+ 2fiy(5 =Xt = y) + fuy(t — 1)?)
+e(s, 1) (5 = 202 + (¢ = v)?) 7)

for (x,y) € I, where (s,t) € I and €(s,t) — 0 as (s,t) — (x,y). If we apply sequence of operators
]KA1 AZ( f;x,y) on (7) bearing in mind linearity of operator, we have

Ko *(frs, ) = fxy) = fule K (s = 052, y) + fyle K (= )%, )
3L = 0% ) + 2 K (6~ 06 - 9 )
+fyle}\1 (- y)%x, y)} + ]KQ},;AZ (s(s, t) ((s —x)? +(t - y)z) ;X, y) )
Applying weighted A statistical limit to both sides of the last equality as n — oo, we have
S§ - r}ggn [I[(Q},;Az(f; s,t) — f(x, y)] = S§ - lim n{fx(x, YKL ((s = x); %, 1) + fy(x, YK (- y); %, y)}
48— lim 2 K (6 - 9%, y)
2 KOs = 2 = 1) 9) + Fu KU (= 15, )
+S§ - 1}1_{{)10 n]KQ},;AZ (e(s, t) ((s —x)*+ (- y)z);x, y) .

If we apply Holder inequality to the last term of previous equality, we have

K2 (e6s, ) (5 = 07 + (= )2)5%,y) < VKIS (265,05, 1) (K2 (65,0 (s = 0% + (= )45, 1).

Since S§ ~lim,, 2K} ((s—x)*; x, y) and S§ —lim,, n?K} 2 ((t-y)*; x, y) are finite and lim,, K;* (e2(s, ); x, y) =
€% (x,y) = 0, we have

lim n? ]KQ},;AZ (e(s, t) ((s -+ (- y)4);x, y) =0.
By Lemma 5.3 and S§ —lim, e n ]KQ},;M ((s = x)(t — y); x, y) = 0 we obtain the desired result. [

5.2. Rates of convergence of bivariate operators

Now we compute the rate of convergence of operators K,Al}"’fz (f;x, y) to f(x, y) by means of the modulus
of continuity. We first give the needed definitions.
Complete modulus of continuity for a bivariate case is defined as follows:

w(f,8) = sup {If(s,) = fx Pl yJls =22 + (£ = )2 <)

for f € C(1,) and for every (s, f),(x, y) € L4 = [0,a] X [0,b]. Partial moduli of continuity with respect to x
and y are defined as
w1 (f/ 6)
wa(f, 6)

sup {lf(x1, y) — f(x2, )| : y €[0,b] and |x1 — x5 < 0},
sup {If(x, y1) — f(x, y2)| : x € [0,a] and |y1 — yo| < 6}.
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Peetre’s K-functional is given by

K(f,0) = inf - +6
(0= _int If = gllewrs) + Slllczz.n)

for 6 > 0, where C?*(Z,) is the space of functions of f such that f, W and (] =1,2)in C(Z,) [11]. We

now give an estimate of the rates of convergence of operators anmAz (f;x, y).

Theorem 5.5. Let f(x,y) € C(I), then we have

Ko (f;x,9) = f (v, y)| < 4o (f; VC(n, A1), vC(m, 1))
for all x € T, where C(n, A1) and C(m, A,) are defined in Theorem 4.1.

Proof. The following inequalities are satisfied

Ko (fi%,y) = f(x, )l
<K (If(s,t) = f(x,y)ix, y)

< Kyt (a) (f, \/(S —x)2+(t- y)z);x, V)

o (f; Vi, Av), JC(m,A»)[ = Al)c(m = )KM(\/(s—x)2+<t—y>2;x,y)]
7 /41 7 /2

because defined bivariate A-Kantorovich operators are linear and positive by definition of operators and
complete modulus of continuity of f(x, y). We also have

Ky (fix,y) = fay)l < o(f; VCn, Ay), V/Cim, 1))

L K o 1/2
g [1 " C(n, A1)C(m, A,) {Kﬁ’%z ((S - X%, y) Ry ((f -y, y)}

\/KﬁlmA2 (CREITER) \/ Ko (= y/%x,9)
+
e Clm, 12)

+

by Cauchy-Schwartz inequality. Choosing C(11, A1) = Kﬁ},;fZ((s - x)%;x,y) and C(m, Ap) = Kﬁ},;fz((t -y%xy)
for all (x, y) € I we complete the proof. O

Theorem 5.6. Let f(x,y) € C (1), then the following inequality holds
Ko (Fx,9) = £ ()| < 2[wr (£ CV2(0n, A1) + @2 (£ €20, A2))]
where C(n, A1) and C(m, A,) are defined in Theorem 4.1.
Proof. By definition of partial modulus of continuity of f(x, y) and Cauchy-Schwartz inequality, we have

Kz (Ffix,y) = fayl <K (1fGs, ) = fx y)lix, y)
<K (s, 8) = fo DX, y) + Ky (1 (s 1) = £ y)lix, )
<K (lan(f s = xDlx, y) + Ky (lo2(fF5 1t = Dl x, y)
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< wi(f,C(n, A1) [1 + C(n,Al)Kﬁjﬁ;\z (s — x|; x, y)]

+awa(f, C(m, A2)) [1 + Ry (1t =yl x, y)]

1
C(m, A2)
< wi(f,C"(n, 1)) [1 + I (KA1 e ((S —x)%x, ]/>)1/2]
C2(n, A1)
+wa(f, CY2(m, Ay)) [1 + _r (IZQ%\Z ((t P, y))l/z] .
Cl2(m, Ag) U
Choosing C(n, A1) and C(m, A,) as defined in Theorem 4.1, we complete the proof. [

We define the Lipschitz class LipM(El,Ez) for the bivariate case as follows:

[£(s,1) ~ flx, )] < Mls 5P |t - o
for By, B2 € (0,1] and (s, ), (x, ) € Ta.

Theorem 5.7. Let f € LipM(,El,Ez). Then, for all (x,y) € 1 5, we have

KM (f;3, ) = 0 )l < MCP2(n, A1) P (m, M),
where C(n, A1) and C(m, A,) are defined in Theorem 4.1.
Proof, We have

Kot (fx,y) = f(x, y)l

IA

Ry (£, 0 = f(x, y)ix, y)

< MR} (s — xlP =y x, y)

= MR (s — x| x, RO (- vl x, ),
since f € LipM(,El,Ez). Then we have

Ko (fx,y) = f(x, y)l
< MUK (s — x5 2, ) PR (1; 2, ) PRI (1E = w2 x, p)PHR (1 x, y)) P2
= MCP/2(n, 1)CP/2(m, A,)

by applying the Holder’s inequality for p; = 5 2= 75, an ndp, = = ,qz = ﬁ O
2

Theorem 5.8. Let f(x,y) € C}(Z ), then we have

IR (f5,9) = FO6 ) < C20m, A) | £, ) ller,y +C20m, A0) 1| £y, ) llcz.,
where C(n, A1) and C(m, Ay) are defined in Theorem 4.1.

Proof. The following equality holds

f(t)—f(s)zfﬁ,(u,s)du+ffv(x,v)du
x y

for (s, t) € 1. Applying defined operators on both sides of the last equality, we have

t S
f fulu, s)du|; x, y) KﬁlmAz ( f folx, v)du|; x, y).
X Yy

Ko (fx,y) = fx, )l < KMZ(
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By the help of following relations

j;; t fu(u, s)du
L s folx, v)du

we have

< N ACY) llea,) s — 1

IA

Il £y v) ey It =yl

Ry (f;x, ) — f,y)
<N e ) ey K (s = x5, y) + 1| f,06 9) ey Kave (it = ylix, ) -

Using Cauchy-Schwarz inequality, we have
Ki (fix, ) = fOoy) < 1Al ) o K2 (G5 = 2% 2, y )V PRGE (12, y)) 2
11 £ 06 y) ey R (8= )% x, y 2R GS (1x, y)) 2,

This completes the proof. [
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