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Abstract. In the present article we introduce some modifications of the Baskakov operators in sense of
the Lupas operators based on the inverse Pélya-Eggenberger distribution. For these new modifications
we derive some direct results concerning the uniform convergence and the asymptotic formula, as well as
some quantitative type theorems.

1. Introduction

Urn models have been among the most popular as well as useful schemes and have received a lot of
attention in the literature. One significant point in this area is the Pélya urn model and its generalizations.
In 1923, Eggenberger and Pélya [9] devised the original Pélya-Eggenberger urn model (usually simplified
as Poélya urn) to study processes such as the spread of contagious diseases. In one of its simplest form,
the Pélya-Eggenberger urn model contains w white balls and b black balls. A ball is drawn at random
and then replaced together with s balls of the same color. This procedure is repeated n times and noting
the distribution of the random variable X representing the number of times a white ball is drawn. The
distribution of X is given by

ww+s)...-(W+k—=1s)b(b+5)-...-(b+n—k—1s)

W+b)(wW+b+5)-...-(w+b+n—1s)

PrX =K) = (’Z) M)

fork =0,1,...,n and k—1s = (k — 1)s. The distribution (1) is known as Pélya-Eggenberger distribution
with parameters (1, w, b, s) and contains binomial and hypergeometric distribution as particular cases. The
inverse Pélya-Eggenberger distribution is defined by

)

Pr(Nszrk):(n+k—1)w(w+s)'...'(w+ms)b(b+s)'...'(b+ms)

k W+b)w+b+s)-...-(W+b+n+k— 1s)
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for k = 0,1,... and is the distribution of the number N of drawings needed to obtain n white balls.
More details about Pélya-Eggenberger distributions (1) and (2) can be found in [17]. Based on the Pélya-
Eggenberger distribution (1), Stancu [24] introduced a new class of positive linear operators associated to
a real-valued function f : [0,1] — RR, given by

o - k " (n xlk=al(] — y)ln-k-al [
P (fi) = ,;;p nk(,2)f (E) =) (k) = (;) 3)

k=0

where «a is a non-negative parameter which may depend only on the natural number n and " = #(t —

h)(t = 2h) - ... (t —n—1h), 191 = 1 represents the factorial power of f with increment k. In the case when

a = 0 operators (3) reduce, obviously, to the original Bernstein operators [4] and for a = 1 we get a special

case
1 1 k=311 = p)[-k—3 k
£

k=0

introduced by Lupas and Lupas [19]. Concerning the operators defined by the relations (3) and (4), the
reader is invited to see the papers [20], [21], where some results of the recalled operators are revised. In
2014, Gupta and Rassias [15] introduced the Durrmeyer type integral modification of the operators (4) and
studied the asymptotic approximation, local and global results respectively. Further modifications in sense
of the Lupas operators (4) having as start point the paper of Gupta and Rassias are given in [1], [2] and
[16]. Using the inverse Pélya-Eggenberger distribution (2), Stancu [25] introduced a generalization of the
Baskakov operators for a real-valued function bounded on [0, +o0), given by

« 3 k n+k—1\ 1v-alylk=al (g
V;[1](f;x) = kzz;‘vn,k(x/a)f(g) kzz;‘( k )mf(;) (5)

The operators (5) include as a special case (o = 0) the Baskakov operators [3]

= (n+k—1 k k
=2 e i) ©

Taking the aforesaid papers [1], [2], [15], [16] into account, we remark that there exists a high interest for
research of some modifications of certain operators in sense of the Lupas operators (4). In the following
we introduce some modifications of the Baskakov operators based on the inverse Pélya-Eggenberger
distribution (2). For a real-valued function bounded on [0, +c0) we give the first modification

[1] e N (ntk-1 1= xlk =31 k
R _kZ ( )_kz_;‘( k )(1+x)[”+kf;1f n)’ 7

called Baskakov-Lupag operators based on the inverse Pélya-Eggenberger distribution. Using the definition
of the factorial power we can establish an explicit representation of the operators defined at (7), such that

1 2n)! n+k-1) (nx)® k
V[ u] / — ( -1,
n (f x) 2(1’1)' ( )(n + nx)(+h)
where t™ = t(t + 1)(t +2) - ... - (t + n — 1) represents the rising factorial. For any bounded and integrable

function f defined on [0, +00) we introduce the next modifications, given by

k+1 k_l 1[1’! [k k+1
(=Y o f f(t)dt—nZ(n+k )(1+x>;+k ]f f(hd ®)

k=0 n k=0
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and
(o)

D (fix) = (1-1 Y oui (v 1) f: ous (8 3) f ()t )

k=0

called Kantorovich-Baskakov-Lupas operators and Durrmeyer-Baskakov-Lupas operators based on the
inverse Pélya-Eggenberger distribution respectively. These type of summation-integral operators have
been also considered in various papers, for instance [5], [13], [15], [16].

The aim of this paper is to present these new modifications of the Baskakov operators based on the
inverse Polya-Eggenberger distribution, studying in each case the uniform convergence and the asymptotic
formula. In order to get the degree of approximation, some quantitative type theorems will be established.
The next part of our article is divided into four sections. A general result concerning the Korovkin theorem
for unbounded intervals, as well as the definitions of moduli of continuity, weighted modulus of continuity
and K-functional are given in auxiliary results section. Each of the following remaining three sections is
dedicated to the one modification of the Baskakov operators. In the last section we give only the definition
of the Durrmeyer-Baskakov-Lupas operators and we let an open gate for further research.

2. Auxiliary results

Let IN be the set of positive integers and Ny = IN U {0}. The monomials e;(x) = x*, for k € Ny called also
test functions play an important role in the uniform approximation by linear positive operators. In order to
establish the uniform convergence for certain operators we apply the Korovkin theorem, which says that
if a sequence of linear positive operators approximates uniformly the test functions ¢y, e; and e,, then it
approximates all continuous functions defined on a bounded interval. Since an immediate analog of the
Korovkin theorem does not hold in the unbounded interval, some restrictions are needed. Let B[0, +0) be
the space of all functions f defined on [0, +0) satisfying the inequality |f(x)| < Ms(1 + x?), where My is a
positive constant depending only on the function f. Denote by

C3g[0, +00) = B[0, +00) N C[0, +o0) and C*[0, +o0) = {f € Cg[0, +00) : lim 1|f4(_x;|2 =Ks < oo}

the spaces endowed with the norm

11 = sup SO

oo 1+a2

As it follows from the Gadzhiev papers [11], [12], the Korovkin type theorem for positive linear operators
does not hold in the space Cg[0, +00), but holds in the space C*[0, +c0) and has the following form:

Theorem 2.1. For a sequence of positive linear operators L, which satisfy the conditions
lim [|Lu(e0) = x| =0, i=0,1,2,

we get
,}i_IEOHL"f — fll = 0 for any function f € C'[0,+00).

The main tools to measure the approximation degree of linear positive operators towards the identity
operators are moduli of continuity.
Definition 2.2. Let f € C[0, +o0) be given and 6 > 0. The modulus of continuity of the function f is defined
by

@(f,0) = sup(|f(x) = fy)] : %,y €10, +00), [r =yl <), (10)

where Cp[0, +00) is the space of all real-valued functions continuous and bounded on [0, +00).
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Definition 2.3. For any f € C[0, +o0)and 6 >0
wi1(f, 0) = supf{lf(x +h) — f(x)| : x,x +h €[0,+00), 0 < h < 6} (11)
and
wy (f,0) =supflf(x+h) —=2f(x) + f(x—h)| : x,x £+h €[0,+), 0 <h <o} (12)
are the moduli of smoothness of first and second order.

Definition 2.4. Let the function f € Cp[0, +o0) endowed with thenorm |f|| = sup [f(x)|and letus consider
x€[0,+00)
Peetre’s K-functional

K (f,0) = int {[If -] +5]s

’’

b (13)

where 6 > 0and W2, = {g € C5 [0, +0) : ¢’, " € Cg [0, +o0)}. According with ([7], p. 177, Theorem 2.4) there
exists an absolute constant C > 0, such that

K (f,6) < Caa (£, V0). (14)

For 0 < A <1, p(x) = /x(x + 1) and f € Cp[0, +00), the weighted modulus of continuity and K-functional
are defined in [14] or [18] as

o 2 (f,6) = sup sup |A5(P (15)

0<h<t xxhp? (x)€[0,+c0)
where
A f @) = f(x+ 1ot () = 2f () + f (x = hop' ().

The appropriate K-functional is given by

K2, (f,t2)= inf {||f gl| + 2 [ o*g”

b (16)

where

D? = {f € Cs[0,00) : f' € ACiucl0, +o), || f”

< +oo}.

There exists a connection between the weighted modulus of continuity and the appropriate K-functional
given by the following relation

W2 (fi) ~ K2 (£ ) 17)

3. Direct results for the Baskakov-Lupas operators based on the inverse Pélya-Eggenberger distribution

In introduction, for a real-valued function bounded on [0, +c0) we presented the first modification of
the Baskakov operators (5) defined by

BN . o (n+ k1) 1yl (g
v (f'x)_kzzo‘vn’k(x' () ZO‘( k )(1+x)"+k-f(5)'
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In order to compute the images of the test functions by Baskakov-Lupas operators we write them in the
following useful form

1 [n,-1] R I k=11 [k
Vi = e Y (4] as8)
k=0

(nx + n)ln-1] (nx +2n)k-11 7 \n

and recall the definition of hypergeometric series

© ko k1] plk-1]
Z a
2Fi(a,b;¢;2) = Z I T T
& k! c

where the parameters g, b, ¢ satisfy the conditionsa, b > 0,a+b < c. If z = 1, then the following representation
for the hypergeometric series in terms of Gamma function holds

I'(c) - T(c—a-Db)

2o be ) = F ) gy

+00
where I'(r) = f wledyand T(r+n)=r(r+1)-...- (r+n - 1DI(r), forn € N.
0

Lemma 3.1. For the Baskakov-Lupag operators (7) hold

V,[l%](EO}x) —1, V,[l%](el;x) =x+ %, Vr[lrll](eZ;x) =x2 4+ %

Proof. Using the representation (18) it follows

V[%](e ) = a1 & 1 e ()l 1l [(nx + 2n) - T(n)
n (nx + n)ln-1 P k' (nx + 2n)lk-1] (nx +n)n-11 T(nx + n)-T(2n)
_ nlvl (nx + m)" V- T(nx +n)-T(n) _ .
~ (nx + n)ln-1l C(nx +n)-nn=1.T(n)

; ln-1l 1 ka1 (k-1
V,l,:l ](El,x) —1 A (—)kl
(nx + n)ln IZ n o (nx+2n)lk-1l

11 Z (n+ DL () (nx + 1)1
(nx +n)n-1 (k- 1)' (nx + 2n)(nx + 2n + 1)k-1-1]

pln~1l

(nx +n)in1 nx o+ 2n

Z (n + D (nx + 1)1
k! (nx +2n + 1)1

ol nx F(nx +2n+1)-T(n—-1)
~ (nx + n)lv-1l Tnx+2n I'(nx + n) - T(2n)
ol nx  (nx+2n)(nx + ). Tnx +n)-T(n—1)
T (x+n)l x4 20 I'(nx +n)-(n—-1n-1.Tn-1)
nx

n—1 n—-1"
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n,~1]

EIPRN
Vl’l (62’x) - (nx+n)[n/_1]

=1 k2 plk-1l. (nx)[k,—l]
;; k' n?2  (nx +2n)lk-1

oAl &1 k(k—1) 4k nfel (et
 (nx + n)n1l e k! n? (nx + 2n)te—1

b1 n+1 i 1 (n + 227U (nx)(nx + 1)(nx + 2)k-2-1
no e (k—2)!

e
= . + _V 7 ;
(nx + n)ln1l (nx +2n)(nx + 2n + 1) (nx + 2n + 2)k-2-1 ~ 5 " (er;%)

=1 m+Dmx)mx+1) v 1 m+2)0 T nx+2)k11 1 1
)(mx)( ) )Zk_' ) ( ) +EV,£"](€1,'X)
k=0

= (ix + n)n 1 n(nx + 2n)(nx + 20 + 1 (nx + 2n + 2)lk-1

ol n+Dnx)nx+1) Thx+2n+2)-T'(n-2)
© (nx + n)ln1l ' n(nx + 2n)(nx +2n + 1) ' T'(nx +n)-T'(2n)
_ (n+ Dx(nx + 1) L el @2n-1x(2x+1)

n—1n-2) n—1 n-1)(n-2)

1.2
+ =Vl

O

Remark 3.2. The images of the test functions by the Baskakov-Lupag operators (7) could be also derived knowing
previously the images of the test functions by the Stancu-Baskakov operators (5).

Corollary 3.3. The central moments up to the second order of the Baskakov-Lupags operators (7) are

[1] o\ 2nx(x+1) +x(2x — 1)
Vi ((61 - x)z,x) B (n—1)(n-2)

1 x
V[ n ] — , — p
n (61 X x) n-1
Proof. Taking Lemma 3.1 into account, it follows the desired equalities. [J

Proposition 3.4. Let f be a bounded function defined on [0, +c0) with ||f|| = sup (g, |f(¥)], then

vElE | <.

Proof. Starting with the definition of the Baskakov-Lupas operators (7) and using the fact that they preserve
constants, it follows
k
1o

. k
1
Y oni (v z)f(;)
k=0
We are able to prove a result concerning the uniform approximation of the functions defined on C*[0, +00).

<A1 VI (s ) = 11£01.

(o]
1
< Z On k (x, Z)

vio| =

O

Theorem 3.5. For each function f € C*[0, +00)

: [7]
hm’Vn f—szO.
n—oo
Proof. Using Theorem 2.1 we remark that it is sufficient to verify the following three conditions

V,[l'l‘] (e;; x) — x’“ =0, i=0,1,2.

lim |
n—oo

In view of Lemma 3.1 the above three conditions are fulfilled, hence applying Theorem 2.1 we get the
desired result. J
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We establish the asymptotic behavior of the Baskakov-Lupas operators (7) giving a Voronovskaja type
theorem.

Theorem 3.6. Let f be a bounded function on [0, +oo). If there exists first and second derivative of the function f
bounded at a fixed point x € [0, +00), then

lim 7 (v,[ﬁ] (f;x) - f(x)) = xf (%) + x(1 + 0)f" (%)
n—oo
Proof. Using Taylor’s expansion formula of the function f, it follows

£ = FQ)+ (=) 09+ ot = xPF/ () + elt, 0t - 07,

where &(t,x) := &(t — x) is a bounded function and lim;_,xe(t, x) = 0. Taking the linearity of the Baskakov-

[7]

Lupas operators (7) into account and then apply the operators V"~ on both sides of the above equation, we
get

V,[l%] (f;x)— f(x) = V,E’l‘] (e1—xx) f'(x) + %V,[l’l’] ((e1 - x)z;x)f”(x) + V,E’l’] (e(t,x) -(e1 — x)z;x).
Therefore using Corollary 3.3, it follows
lim (VP’J (Fx) - f(x)) = xf () +x(1+2) f/(0) + lim n (V,E“ (et ) - (o1 - x)z;x)). (19)

We estimate the last term on the right hand side of the above equality applying the Cauchy-Schwarz
inequality, such that

VI (et - e - 0%x) < VVEF (200,20, \/V’[’H (lr=%x). (20)

Because £2(x, x) = 0 and &%(-, x) € C*[0, +o0), using the uniform convergence from Theorem 3.5, we get

lim Vi (2, 03x) = 2,00 = 0. @1)
Therefore, from (20) and (21) yields

lim (V,E“ (et ) - (es - x)z;x)) —0
and using (19) we obtain the asymptotic behavior of the Baskakov-Lupas operators (7). [

We derive some quantitative upper estimates in terms of modulus of continuity and Peetre’s K-functional.

Theorem 3.7. Let be f € Cp[0, +0), then for any x € [0, +00) and 6 > 0, it follows

- ] s2-000), wite o= (V@ -07)

Proof. Taking into account the fact that Baskakov-Lupas operators (7) preserve constants, according with
Lemma 3.1 and using the well-known property of the modulus of continuity

F69 = FI < @f b=y < (1+ 5= yl) - w(£,0),
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it follows

VB (- £ = Y v ’f - f@)
k=0

1o 1\|k
S[l*‘g%l)n,k(x,g)lg—x

Applying the Cauchy-Schwarz inequality for linear positive operators, we get

V,g’l’](f;x)—f(x)|s[1+%[2vnk( )] [ik( )(——x)Z]m]-wU,é)

k=0

dt]-a)(f,é).

12, 11
(1+6(V["](60,x)) (V[”]((el—x) x)) ) w(f,6)=2-w(f,5),

with § := (v,[ﬁ]((e1 - x)z;x))l/z. O

Theorem 3.8. Let be f € C[0,+0), then for any x € [0, +09) it follows

vl (f;x) - f(x)| <M-w, (f, %Mx)) +w(f, 60),

1
i i 2\2 )
where M is an absolute constant and 6,, (x) = (V,E”] ((el - x)z;x) + (Vl,’l’](el —x; x)) ) , Op = L]

- x; X)|.

Proof. For x € [0, +o0) we define the operators
Fn =vid o - £(255) + F @ 22)

L1 1
We remark that V,[,”] (eg;x) =1and V,E”] (e1;x) = x, i.e. the defined operators (22) preserve constants as well
as linear functions. Therefore

V,[,%] (1 —xx)=0. (23)
Letbe g € W2 and x, t € [0, +o0). By Taylor’s expansion formula, we have
t
90 =90+ (=09 @+ [ (-0 @i
X
Applying the operators (22) on both sides of the above equation, we get

1 1 1 t
V,[,”] (g;%) — g(x) = ¢'(x) - V,[f](el —xx) + Vr[f] (f (t—u)g” (u)du; x)

nx

= Vr[l%] (ft (t—u)g” (u)du;x) - fn_l (nrﬁcl - u)g"(u)du.

On the other hand

t
f (= w0y du| < (= 92l

then

1 1 2
78 g5 - 0] < (Ve =50+ (Ve =) ) g
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Using the definition (23) of the operators V,E’l’] and Proposition 3.4, it follows

7 g0 - g @]+ lp ) - F @]+ [ (25) - F )
gﬁ tw (fr 0w),

vl () - f] <[V (- g+
<4l||f-g||+62 @

1 1 2 1
with 62(x) = VL;] ((61 - x)z;x) + (V,[;l’](el -x; x)) and 6, = V,[;l’](q -x; x)).

Now, taking infimum on the right-hand side over all g € W2, and using the relation (14), we get

VI (£ - £ (0] = 4K (£, 162 (0) + @ (£,60) < M- w2 (£, 204(0) + @ (£, 54),
where M is an absolute constant. []

Our last result of this section proposed for study is to obtain the degree of approximation with the help of
the Ditzian-Totik modulus of continuity.

Theorem 3.9. Let be f € C[0, +00), then for any x € [0, +o0) we have

Vi (i - f| <42 (.5 VB - D0V w) o £

).

Proof. We consider again the auxiliary operators defined at (22), given by the following relation

n—1

where B is an absolute constant.

Al = v (- £ (Z55) + £ .

Taking the definition of the Baskakov-Lupas operators (7) and Lemma 3.1 into account, for g € D we get
as in Theorem 3.8 that

1 1 t ey
7 (gi2) - g < VI ( I x) v [ - ool ()
X X
Fort <u < x,1in ([8], p.141) is proved the following inequality
t—ul _ It—x (25)

P () ~ 9 (x)°
If we use this inequality in the relation (24), then we get

nx

'f“ (p‘z"(u)' nx —u|du (26)

n—1

1 1 t
i (g0 - g0 < VI ( f o Wt~ uldu;x) o[ + o™

(V,E” ((61 - x)z;x) + (V,E%](el - x; x))z) /

< (P—Z)\ (X) H(PZ/\g//
where

t
flt—XI
x

Based on Corollary 3.3 we can give the following estimations

[] V(L x _x+D) @)
(V” (el—x,x)) _(n—l) < =1y _(n—1)2'

g”(u)| du < (t—x)*-

gll
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[2] o) 2nx(x +1) +x2x—1)  2x(x+1)(n+1)-3x _2x(x+1)(n+1) A 5
ile-95Y s = T e S weDn 2 Sa-i” @
and
1 2 @?(x) 1 B
VI (e - 0% %) + (V[ ey - x; x)) - (A+ n—l) < g7, @7)
where A and B are absolute constants. The relations (26) and (27) provide
Vi) (g0 - 90| < —<p2<1 P [le*g” (28)

Furthermore, for all bounded functions f defined on [0, +o0), applying the result from Proposition 3.4 on

the auxiliary operators V[%] it follows
PH ] < [ o+ (25 )+ I ol < 3 (29)

Let f be a bounded function defined on [O, +c0) and g € D2 %, then taking the relations (28) and (29) into
account, we get

Vi (£ - f(x)\ =

~[“(f;x)—foc>+f(” )- 70
il - m)( [ ) = g0 + |7 (g3 - 9| +

<4|)f g”+n 1(P2(1 /\)(x)H(PZ/\ " +w( ] nfl')'

Taking infimum on the right-hand side over all g € Dﬁ and using the relation (17), it follows

)*w('nf1D
4 Ki,/\ (f, };B(n 3 1)-1@2<1—A)(x)) +w (f, 'nxj')
),

4@, (f% VB(n - 1)-%<p<1-”(x)) + a)( ,

TS

vEL(Fin) - f] <4 (Hf |+ 4(nB_ 5 @l

=~
-1

where B is an absolute constant. [

4. Direct results for Kantorovich-Baskakov-Lupas operators based on the inverse P6lya-Eggenberger
distribution

First modification of the Baskakov operators in sense of Kantorovich operators was given by Ditzian
and Totik [8], in order to approximate Lebesgue integrable functions. Several researchers introduced and
studied new forms of Kantorovich operators being in close connection with Baskakov, Stancu and Lupas
operators, for instance [23], [22], [10], [14], [16], [6]. Being motivated by the aforesaid works, in introduction
for any bounded and integrable function f defined on [0, +c0) we gave the second modification (8) called
Kantorovich-Baskakov-Lupas operators based on the inverse Pélya-Eggenberger distribution, defined by

g =n Y osled) [ roa=nY ("1 1)(1:_x;;Tk__"]f f()a

k 0 n k 0
Using some well-known rules for computation with factorial powers, the Kantorovich-Baskakov-Lupas
operators (8) could be written in the following useful form

nontm1l & 1 plk-1. (nx)lo~1] kel
= — t)dt. 30
(fx) (nx+n)" 1Z4k (nx + 2n)k-11 - )i @) (30)
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Lemma 4.1. For the Kantorovich-Baskakov-Lupas operators (8) hold

— 1 — 2 —
2x + 1)n l, K[;] (exx) = 2% + 2(2n = 1)x* +3(n — 1)x N L

2n(n —1) " (n—1)(n-2) 3n?

K e =1, K e =x+

Proof. Using the representation (30) and Lemma 3.1, for the Kantorovich-Baskakov-Lupas operators it
follows

nonn & 1 kL (el

— dt
(nx + n)["r—ll k! (nx + 2n)k=11 i

K,[ﬁ] (e0;x) =

b1l 1 k11 ()1l

R F
(nx+n)[n 1] kl (nx + 211 =V, (eg; x) = 1.

1 S 1 el (et o5
K (e = 2 2 -
(nx + n)[" ] k! (nx + 2n)! k

tdt

a1l &1 2k+ 1 kel (el
(nx (nx + n)ln-11 4 k! 2n? (nx + 2n)k-1
2x+1n-1

2n(n —1)

= VI e + EVE“ (coix) = x +

. R T o s
K[u] ’ = I f tz dt
n (62 x) (nx + 11) n,~1] Z k! (nx + 271) k-1

_onent 1 3R 4+3k+1 al (gl
C (nx + n)["/—ﬂ e~ k! 3n3 (nx + 2n)lk—-1

2(2n — 1)x% +3(n — 1)x

= V[ ](ez,x)+ V[ ](el,x)+ —V[”] (eg;x) = x> + D0 =D ot

O
Corollary 4.2. The central moments up to the second order of Kantorovich-Baskakov-Lupas operators (8) are

[1] 2x(1 + x)n? + 2x(nx — 1) 1
7 K ((e - JC)Z ) n(n _ 1)(n — 2) + 31/12 .

21, . v_@x+Dn-1
K" (en = ;) = 2n(n —1)

Proof. Taking Lemma 4.1 into account, it follows the above equalities. [

Proposition 4.3. Let f be a bounded function defined on [0, +c0), with ||f|l = sup,(g ,) |f(¥)], then

| <.

Proof. The definition of Kantorovich-Baskakov-Lupas operators (8) and the fact that they preserve constants
provide

k1

n- ivnk(x —) ) ’ f(Hdt

k=0 "

k+l

<n- ivnk(x —)]k‘

K| = [Fe)de < NIl Kieorx) = DI
k=0 i
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The uniform approximation of the functions defined on C*[0, +0) is given in the following;:

Theorem 4.4. For each function f € C*[0, +00) yields

K,[ﬁ]f—fﬂ - 0.

Proof. Taking Lemma 4.1 into account, the following three conditions hold

lim ’

n—oo

Kb (e - ‘=0, i=012

lim |
n—oo
Next, applying Theorem 2.1 we get the desired result. [

Theorem 4.5. Let f be a bounded and integrable function on [0, +c0). If there exists first and second derivative of
the function f in a fixed point x € [0, +00), then

1 1
lim n (K[] (f;x) - f(x)) - (x N E)f' ) +x(1+2) ().
Proof. Using Taylor’s expansion formula of function f, it follows

fH) = f)+ ¢ —-x)f(x)+ %(t - x)zf”(x) +e(tx)(t - x)%,

where &(t,x) := &(t — x) is a bounded function and lim;_,,&(t, x) = 0. Taking the linearity of Kantorovich-

1
Baskakov-Lupas operators (8) into account and then by applying the operators K,[l”] on both sides of the
above equation, we get

K (£ = 100 = K o1 =50 ) + KU (1 = 0% 2) 170 + KU (et 0 - e = 02).
Therefore using Corollary 4.2, we get
tim 1 (K (720 = £ ) = (v 3) @+ x40 77600 + Bim o (KT (669 0 - 0%9)). )

We estimate the last term on the right hand side of the above equality by applying the Cauchy-Schwarz
inequality, such that

K,[ﬁ] (s(t, x) - (e — x)z;x) < \/M\/K'El] ((61 h x)4;x) ' 2

Because £2(x, x) = 0 and &%(-, x) € C*[0, +o0), using the convergence from Theorem 4.4, we get

lim Kb (26t ;%) = 200 = 0. (33)
Therefore, from (32) and (33) yields

lim (K[] (et ) - (es - x)Z;x)) —0
and using (31) we obtain the asymptotic behavior of the Kantorovich-Baskakov-Lupas operators (8). [

Theorem 4.6. Let be f € C[0, +00), then for any x € [0, +o0) yields

K ()= £ 0] < N- £, 370) + 00 ),

1

1 1 2\ 2 1
where N is an absolute constant and y, (x) = (K,E] ((81 - x)z;x) + (K,[ﬂ](el -x; x)) ) Vo = KL"](el - x; )|
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Proof. For x € [0, +o0), we define the operators

2n“x +n

N - e R ) G4

We remark that IZ,EZ] (eg;x) =1and K,EZ] (e1;x) = x, i.e. the defined operators (34) preserve constants as well
as linear functions. Therefore

K,[l%] (e1 —x;%) = 0. (35)
Letbe g € W2 and x, t € [0, +c0). By Taylor’s expansion formula, we have
t
70 =90+ (=09 @+ [ (-0 Wi
X
Applying the Kantorovich-Baskakov-Lupas operators (8) on both sides of the above equation, we get

R (g2 — 90 = 70 - Ko — x3) + KA ( f (= u)g" (u) x)

2n2x4n-1

I O N A O f W (2% 4n—-1 1\
=K, (j; (t—u)g (u)du,x) ) = 1) ulg” (u)du.
On the other hand

t
f (t - u)g” (u) du

& (7,2 - g < ( (- x)Z;x)+(I<L“<e1—x;x>)2)-||g”u.

< (t=27-lg"ll

then

Using the definition (35) of the operators K[%] and Proposition 4.3, it follows
K (- £ 0| < (R (= g + (R (@) = g 0| g 0 = £ ) | (st - £ o)
54”1:_9”"‘7/,1(3() i +(U(frym)/
1 1 2
with y2(x) = K,[f] ((el - x)z;x) + (K,[q”](el - X x)) and y, =
Now, taking infimum on the right-hand side over all g € W2, and using the relation (14), we get
1 1 1
K (10— £ 0] < 4ka (£, 2 @) + @ (F70) <N -2 3900 + @ (7).

where N is an absolute constant. [

—x;x)'.

5. Durrmeyer-Baskakov-Lupas operators based on inverse Pélya-Eggenberger distribution

The third modification of the Baskakov operators called Durrmeyer-Baskakov-Lupas operators based
on the inverse Pélya-Eggenberger distribution is given in introduction for any bounded and integrable
function f defined on [0, +0), by

D[,H(f;x):(n 120nk fmvnk( D f @ (36)
k=0

As we announced in the aim of this paper, we give only the definition of the Durrmeyer-Baskakov-Lupas
operators and we let an open gate for further research.
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