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Abstract. In this paper, we obtain the eigenvalues and Laplacian eigenvalues of the unitary addition
Cayley graph G, and its complement. Moreover, we compute the bounds for energy and Laplacian energy
for G, and its complement. In addition, we prove that G, is hyperenergetic if and only if n is odd other
than the prime number and power of 3 or # is even and has at least three distinct prime factors. It is also
shown that the complement of G, is hyperenergetic if and only if # has at least two distinct prime factors
and n # 2p.

1. Introduction

Let G = (V(G),E(G)) be a connected simple graph with |[V(G)| = n and |[E(G)| = m, where V(G) =
{v1,v2,- -+ , 0,4} and E(G) are the vertex set and edge set of G. The complement of a graph G, denoted by G,
is the graph with the same vertex set as G such that two vertices of G are adjacent if and only if they are
not adjacent in G. We use the following definitions from [[1], [2], [3], [5], [7], [10], [12]].

The adjacency matrix of G is the n X n symmetric matrix A(G) = (a;;) such that a;; = 1 if v; and v; are
adjacent and 4;; = 0 otherwise.

The eigenvalues of a graph G are defined to be the eigenvalues of its adjacency matrix A(G). Collection
of the eigenvalues of G is called the spectrum of G.

The energy of a graph G, E(G), is defined as the sum of the absolute values of the eigenvalues of A(G),
E(G) = YL, IAil, where A1, Ay, - -+, A, are the eigenvalues of G. Energy of a complete graph K, of order n is
2(n—1).

A graph Gis said to be hyperenergeticif E(G) > [E(K,) = 2(n—1) and non-hyperenergeticif E(G) < 2(n-1).

The Laplacian matrix of G is the matrix L(G) = D(G) — A(G), where D(G) is the degree matrix of G.
The Laplacian energy, LE(G), is defined as LE(G) = Y., |uj — 22|, where u1, s, -+, i, are the Laplacian
eigenvalues of G.

Let I' be a multiplicative group with identity 1. For SCT,1¢ S,57 = {s7! | s € S} = S the Cayley graph
X = Cay(T, S) is the undirected graph having vertex set V(X) = I and edge set E(X) = {(a,b) | ab™" € S}. The
Cayley graph X is a regular graph of degree |S|.
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For a positive integer n > 1 the unitary Cayley graph X,, = Cay(Z,, U,) is the graph whose vertex set is Z,,
the integers modulo #n and if U, denotes set of all units of the ring Z,;, then two vertices a, b are adjacent if
and onlyifa—b € U,. The graph X, is regular of degree |U,| = ¢ (1), where ¢ (1) denotes the Euler pi-function.

For a positive integer n > 1, the unitary addition Cayley graph G, is the graph whose vertex set is Z,, the
integers modulo 7 and if U, denotes the set of all units of the ring Z,, then two vertices a, b are adjacent
if and only if a + b € U,. The unitary addition Cayley graph G, is also defined as, G, = Cay*(Z,, U,,).The
unitary addition Cayley graph G, is regqular if n is even and semi reqular if n is odd.

Walter Klotz and Torsten Sander[10], proved that the eigenvalues of unitary Cayley graph X, are
A = Yacjengedjm=1 @ = ¢(r,n),0 < v < n—1, where w is a complex primitive n-th root of unity. The

arithmetic function c¢(r, 1) is a Ramanujan sum[11] and is defined by c(r, n) = y(t,)%, t, = m, where y
denotes the Mobius function.

The right circulant matrix Cr(¢) associated to the vector ¢ = (co,c1," -, cn-1) € R" is

Co 1 - Cpa
_ -1 Co "+ Cp2
Cr(0) =
C1 C2 DY CO

The left circulant matrix C(¢) associated to the vector ¢ = (cg,c1,- -+ ,cp-1) € R" is

Co € - Cpa
Cl 62 e CO
CL(@) =
Ch-1 Co *++ Cp=2

In [9], Herbert Karner, et al. have shown that C1(¢) = I'ICr(C), where IT is the orthogonal cyclic shift
matrix given by

II=
01 -+ 0

In the same paper, they also proved that the eigenvalues of left circulant matrix C.(C) are
Ao, Al -, £l A )2l if mis odd and Ag, Aypp, A4, - -+, £|A(n—2)2] if 1 is even, where Ais are the eigenvalues
of right circulant matrix Cg(¢).

Throughout this paper, we use p for a prime number. Also an integer n greater than 1 can be written
in the form n = p‘f] p‘z”z ---py", where py1,pa, - -+, pr are distinct prime numbers and ay, ay, - - - , @, are positive
integers.

There is a vast literature devoted to regular Cayley graphs but only a few papers addressed to the irreg-
ular ones to the best of our knowledge. In this paper we attempt to compute the spectrum and energy of
irregular addition Cayley graphs namely unitary addition Cayley graphs. Unitary addition Cayley graphs
is an addition Cayley graphs on Z, together with a generating set U,,.

The concept of graph energy arose in theoretical chemistry and was first defined by Gutman in 1978.
In theoretical chemistry, the m-electron energy of a conjugated carbon molecule, computed using Hiickel
theory, coincides with the energy of its “molecular”graph. In 2006, Gutman and Zhou[7] was defined the
Laplacian energy of a graph.

In [6], Gutman stated a conjecture “If G is an n-vertex graph, G # K,,then E(G) < 2n — 2”. But later
D. Cvetkovi¢ and Gutman was shown that this conjecture was false with counterexamples. All most all
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graphs are non-hyperenergetic.
Compairing the degree of hyperenergeticity of G, and X,;, G, is more hyperenergetic than X,.

This paper is organized as follows. In the second section, we consider a few preliminary results which are
useful to prove the results obtained in this paper. The third section contains the computation of eigenvalues
of G, and energy of G,. Moreover we prove that unitary addition Cayley graph G,,n > 3, is hyperenergetic
if and only if n is odd other than the prime number and power of 3 or # is even and has at least three distinct
prime factors. Fourth section deals with the bounds on the spectrum and energy of the complement of
unitary addition Cayley graph G, and also we show that complement of unitary addition Cayley graph G,
is hyperenergetic if and only if # has at least two distinct prime factors and n # 2p. In the fifth section we
present the Laplacian energy of unitary addition Cayley graph G, for all n. The Laplacian energy of the
complement of G,, is determined in the final section.

2. Preliminaries

Theorem 2.1. [12] The unitary addition Cayley graph G,, is isomorphic to the unitary Cayley graph X,, if and only
if n is even.

The following remark is obtained by using Theorem 2.1 and the result of eigenvalues of X, [10].

Remark 2.2. Let n be even. Then eigenvalues of the unitary addition Cayley graph G, are A, = y(tr)iég, 0<r<
n—1

Theorem 2.3. [8] The energy of unitary Cayley graph X, equals 2"¢(n), where r is the number of distinct prime
factors dividing n.

Theorem 2.4. [8] The unitary Cayley graph X,, is hyperenergetic if and only if v > 2 or r = 2 and p; > 2.

Theorem 2.5. [8] The eigenvalues of the complement of unitary Cayley graph X, are Ay = n —1 — ¢(n) and
A =-1- y(t,)%, where t, =

—_n__
ged(rm)”

Theorem 2.6. [8] Let s = p1p, - - - py be the largest square-free number that divides n. The energy of the complement
of unitary Cayley graph X, equals

E(X)) =21 =2+ (2" = 2)p(m) —s + [ [ @ - p).
i=1

Theorem 2.7. [8] The complement of unitary Cayley graph X,, is hyperenergetic if and only if n has at least two
distinct prime factors and n + 2p.

Theorem 2.8. [4] Let A, A1, Ay be three n X n real symmetric matrices such that A = A1 + Aa. The eigenvalues of
these matrices satisfy the following inequalities:
fOV 1<i<nand0< ] <min{i—1,n-1}, Ai—j(Al) + /\1+j(A2) > Ai(A) = /\i+]‘(A1) + /\n_]'(Az).

Theorem 2.9. [13] Let G be a connected graph. Then

2
di— 2|,
n

LE(G) < E(G) + Z
i=1

In this paper, we attempt to find the energy and Laplacian energy of all unitary addition Cayley graph
G, and its complements. From Theorems 2.1 and 2.3 we obtain energy of unitary addition Cayley graph
G, is 2"¢p(n). In the following section, we show that how to compute the energy of G, for odd n.
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3. Spectrum of unitary addition Cayley graphs

In this section, we compute the spectrum and energy of G, when n is a power of a prime, n = p”,m > 1.
In addition, we calculate the bounds of the spectrum and energy of the unitary addition Cayley graph G,
for all odd n.

Theorem 3.1. Let n be a power of a prime number, n = p™,m > 1. Then spectrum of the unitary addition Cayley
graph G is

— - — +
_1_pml x—y -1 0 Pml_l xTy)
1 7

where x = p" —2p" ' —land y = \/(p’” 1) + 4l

B C C
C B --- C
Proof. LetA=|. . | . | be the adjacency matrix of G, of order k = p™1,
Cc C B
0 1 1 11 1 1
1 0 1 11 1 0
: : 1 11 10
whereB=[1 1 1 0 0 1 1| andc=|1 11 01
11 1 00 1 1
11 0 11 0O 1 1 0 1 1 1
. . pXxp
1 0 1 11 1 0
Jpxp
o ] J J J J J
] J-1 ] J J J O
J ] TJ-I J J O ]
The matrix A is permutationally similar to A=]] J J J-1 O ] ] ,
J ] J o J-I J J
i ] o .- ] ] J=1 ]
/NI T N AR N 3
where [ is a matrix of order k with all entries are 1 and O is a null matrix of order k.
A T T T T T T T T T 7T
Then A = PAP 1, P= [An AlZ T Alp""z A21 A22 T A2pm—2 T Apl Apz e Appm—z]

1 if (a,ﬁ) S Hi]‘,
0 otherwise.

B=12,...,p"and H;; = {(1,i+(j—1p), 2,i+(—Dp+p™),..., (0 i+(G-p+@-Dp"H,i=12,...,p,

is a permutation matrix of order p™, m > 2, A;; = (aap), Aap = { wherea =1,2,...,p,
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j=1,2,...,p" 2 fm=1,thenP =1

-M J J J J J ]
] J-I1-M J J J J o)
] ] J-I-A ] ] 0 ]
det(A - AI) = I J ] e J=I=AI 6] Ji ]
i I 0 i i e Il i
] O ] ] ] ] ]_1_/\1
Al J+AI J4AL o J+AI
2] —J-1-AI o) o)
—det(J—1-AD'T | 2/ O —J-I1-AI --- o}
2'] 0 0 - —]—i—)\z
AL (BR)g+AD JHAL e A
2]  —J-I1-Al o) o)
—det(J—I—-AD'z | O 0 J=I-Al - o)
0 0 0 Y

p=3

-1
= det(] — I — AD) = det(—] - 1 - D= | M (54) U +AD

2] —J-1-AM
= W= NP A k-1 T R+ 1+ 0T
X [A2 + A(1 + 2k — kp) + K*(1 - p)].

Thus, the spectrum of G, is

~1-pmt -1 0o pri-1 %V)
e W (R [ VPt B

where x = p" —2p"' —land y = \/(p" - 1)2 +4p™ 1. O

The following tables gives some information about some eigenvalues of G, for n = p™.

15 largest eigenvalue |2 largest eigenvalue[3'? largest eigenvalue

— —1)2
GP p—3+ \/(2p 1)%+4 0 0
M _nym=1_ m_1)2 m—1
Gpm,m > llp =3 P2y I+ ‘Zj(r’ D +4p pm—l -1 0
M _nm=1_ m_1)2 m—1
Gpm,m > 1,p +3 P2y 1+ ‘2/(‘0 1> +4p p”’*l -1 pmf] —-1

Table 1: First three largest eigenvalues of G,,, n = p™



N.Palanivel, A.V.Chithra / Filomat 33:11 (2019), 3599-3613

3604

1! least eigenvalue 2" least eigenvalue 3" least eigenvalue
Gp,p=3 -2 0 V2
Gpp=5 -2 1-+5 0
Gpp=7 -2 -2 2- 10
Gp,p>7 -2 -2 -2
m_n,m=1_1_ m_1)2 m—1
Gpm,m >1,p=3 p"=2p" -1 \z/(p 1)2+4p -1 -1
m_nm=1_1_ m_1)2 m—1
Gyr,m>1,p=5 o P \!(P 12 +4p 1
m_om=1_q_ m_1)2 m—1
Gym,m>1,p=7 -1-p"1 -1 -p"1 s ‘2{(’9 Dy
Gym,m>1,p>7 —1—pT —1-p™T -1-p"1

Table 2: First three smallest eigenvalues of G, n = p™

Corollary 3.2. Let n be a power of a prime number, n = p™,m > 1. Then energy of the unitary addition Cayley
graph Gy is 2p™ = 3p" ™1 —p + J(p" — 12 + 4p"-L.

Corollary 3.3. Let n be a power of a prime number, n = p™,p > 3 and m > 2. Then unitary addition Cayley graph
Gy, is hyperenergetic.

Compute the exact eigenvalues of unitary addition Cayley graph G, is very tedious when n is odd. However,
in this section we obtain some bounds on the eigenvalues of the unitary addition Cayley graphs.
A lower bound for E(Gn) as given below, can be obtained from Theorems 5.7 and 2.9.

Theorem 3.4. Let n be odd. Then E(G,) > ¢(n) [M]

Corollary 3.5. Let n be odd and has at least two distinct prime factors. Then p(n) [
n =15,21,33.

Observation 3.6. The energy of G, for n = 15,21 and 33 are 30.4446,46.5331 and 78.9425 respectively. But the
corresponding values for 2n — 2 in G, are 28,40 and 64 respectively. So G, is hyperenergetic for these values.

The following theorem gives more information about the bounds of the eigenvalues of the unitary
addition Cayley graph G, if n is odd.

Theorem 3.7. Let n be odd. Then eigenvalues of the unitary addition Cayley graph G, satisfy the following
inequalities:
y(tk);f((t)) —1< Ap < (k) ;ng) for0<k<(n—-1)/2and

(tk)g(t;g 1< A< ,u(tk)’(")for m+1)/2<k<n-1

Proof. Let A = (a;;), 0 <1, j < n—1, be the adjacency matrix of G,, where

1
aij:{o

Then A = B + C, where
B:(bij)IOSi,an—l,bijz{ (1)

and

if ged(i+j,n)=1 and i#j,
otherwise.

if ged(i+j,n)=1,

otherwise,
.. -1 if gcd(i+j,n)=1 and i=j,
C=(cj)0<ij<n-10¢j= { 0 ot}g1erwis]e. ]

From the definition of B, itis a left circulant matrix with firstrow (co, c1, - - - , ¢4-1) wherec; = { (1) :)ft%gjv(\]]’gl:l’

So eigenvalues of B are y(tk) o) L for0 <k < (n—1)/2 and /"(tk)qs((tn)) forn+1)/2<k<n-1. Elgenvalues

of C are 0"~9, —19® since x € U, implies 2x € U, and y € V(G,) — U, implies 2y € V(G,) —
Thus, the result follows from the eigenvalues of B, C and Theorem 2.8. [
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Corollary 3.8. Let n be odd. Then 2'¢(n) — 2 < E(G,) < 2"¢p(n) + 221, where s = pyps -+ - py is the maximal
square-free divisor of n.

Remark 3.9. Let n be odd and square free number. Then ¢p(n) [w] > 2'p(n) — L.

Obviously, the lower bound for E(G,) in Theorem 3.4 and Corollary 3.8 are comparable. From this a better
lower bound for [E(G,) is obtained from the following theorem.

Theorem 3.10. Let n be odd and square free number. Then ¢(n) [w] <E(Gy) < 2"¢p(n) + 251,

By making use of the Theorem 2.4, Corollaries 3.3 and 3.5 and Observation 3.6, we now characterise the
hyperenergeticity of unitary addition Cayley graphs.

Theorem 3.11. The unitary addition Cayley graph G, is hyperenergetic if and only if n is odd other than the prime

number and power of 3 or n is even and has at least three distinct prime factors.

4. Spectrum of Complement of unitary addition Cayley graphs

This section deals with spectrum and energy of the complement of unitary addition Cayley graph G,
when 1 is a power of a prime, n = p™,m > 1.

Theorem 4.1. Let n = p™,m > 1. Then spectrum of the complement of unitary addition Cayley graph G, is

_pm—l -1 0 pm—l -1 pm—l)
eV AR I CES VUARES VR B
B C C 0 0 0 0
CB ... C 0 0 0 1
Proof. LetA°=|. . | . | be the adjacency matrix of G, of orderk = p™~!, where B = 00 10
cc B 01 0 0
pxp
10 0 0
0 0 01
c=10 0 10
01 0 0],
J-1 O O O
o O o ]
The matrix A° is permutationally similar to A° = o O ] O
o J - O o

where ] is a matrix of order k with all entries are 1 and O is a null matrix of order k.
Then A¢ = PA°P~!, where P is a matrix given in the proof of Theorem 3.1.
Let A be the eigenvalue of the complement of unitary addition Cayley graph G,.
det(AS = A1) = det(] — I — N)det(] — 1)’ det(~] — 7&)?

= (1= DUk - 1= Dk - DT DT (k- 1)T (-1

= (k= D)T (A=W DIED k1= k- DT

= 1)(k 1)

A)
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Thus, the spectrum of G, is

_pr_nl—l -1 0 pm—l_l pn:l)
ot -1 -ty 1 B

Corollary 4.2. Let n = p™,m > 1. Then energy of the complement of unitary addition Cayley graph G, is
pr+pml =2,

Corollary 4.3. The complement of unitary addition Cayley graph G, is non-hyperenergetic if n = p™,m > 1.

Next we have to find the bounds of the eigenvalues of the complement of unitary addition Cayley graph
G, when n is odd.

The following facts are needed for the computation of the eigenvalues of G,.

The adjacency matrix A(X5) of the complement of unitary Cayley graph X, is a right circulant matrix with
first row (co,c1, -+ ,¢n-1), Wwhere cg = 0 and

1 if ged(j, n)# 1, 1<j<n-1,
=10 otherwise.

Eigenvalues of A(X{)are A\o =n—-1-¢(n)and A, = -1 - y(tr)i((z)).

The eigenvalues of A(X}) + I are Ay = n — ¢(n) and A, = —y(tr)%, 1<k<n-1
Let E = (eij), 0 <i,j <n—1, where

{ 1 if ged(i+j, n)#1,
6,']' =

0 otherwise.

It is a left circulant matrix with first row (cg,c1,- -, c,—1), where

1 if ged(j, n)#1,
=10 otherwise.

If n is odd, then eigenvalues of E are n — (j)(n),y(tk)% forl1 <k <(n-1)/2and —lu(tk)% for(n+1)/2 <
k<n-1.

By Theorems 6.6 and 2.9, a lower bound for E(G}) is given in the next theorem.

Theorem 4.4. Let n be odd. Then lower bound for enerqy of the complement of unitary addition Cayley graph G, is
(1=9)[1= Z2] + @ = 3)00m) + 1 = 1= (452) 90m) + 297

Corollary 4.5. Let n be odd and has at least two distinct prime factors. Then
(n—--s) [1 - @] + 2" =3)pm)+n—-1- (%) P(n) + 2@ > 2n — 2 except n = 3p and n = 35,45, 63.

Observation 4.6. Let n = 3p and p > 3. Then eigenvalues of the complement of unitary addition Cayley graph

G, are —2.4142,-1.7321,-1,0.4142,1,1.7321 with multiplicity %5+, &2, 21 221 122 P2 g simple eigenvalues
lies in (—p,1—1p),(-2,-1),(0,1),(1,2),(p - 2,p — 1), (p + 1, p + 2) respectively. So lower bound for enerqy of the

complement of unitary addition Cayley ¢raph G,, is 7.1463g — 8.6105 and this value is greater than 6p — 2 if p > 7.
p f y yley grap q 8 p p

Ifn = 15, 35,45 and 63, then energy of the complement of unitary addition Cayley graph G, are 29.4788, 81.0735,
105.1123 and 151.1216 respectively. But the corresponding values of 21 — 2 in G, are 28, 68,88 and 124 re-
spectively. So G, is hyperenergetic for these values.

The following theorem gives more information about the bounds of the eigenvalues of the complement of
unitary addition Cayley graph G, when 7 is odd.

Let A, 0 < k < n — 1, denotes the eigenvalues of the complement of unitary addition Cayley graph G,,.
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Theorem 4.7. Let n be odd. Then eigenvalues of the complement of unitary addition Cayley graph G, satisfy the
following inequalities:
)55 — 1< A < p(t) 555 for 1 <k < (n—1)/2and

(tk)f;(trg 1<A < y(tk) ) for n+1)/2<k<n-1and

n—¢m)-1<Ag<n- qb(n)

Proof. Let A° = (d;j), 0 <1i,j < n— 1, be the adjacency matrix of the complement of unitary addition Cayley
graph G,, where

g = 1 if ged(i+jn)#1 and i# j,
7710 otherwise.
Then A€ = E + F, where

E=(€ij),OSi,jSTl—1,Ejj={ é
and

F=wm0sann_Lﬁ:{—4

E is a left circulant matrix, so eigenvalues of E are n — ¢(n), p(tk) q>(t L for1 <k < (n—1)/2 and —pu(t) =5

if ged(i+j,n)# 1,
otherwise,

if ged(i+jn)#1 and i=j,

otherwise.

q‘)(n

P(t)
for (n +1)/2 < k < n — 1. Eigenvalues of F are 09", -1""¢("  since x € U, implies2x € U, and y €
V(G,) — U, implies 2y € V(G,) — U,

Thus, the result is obtained from the eigenvalues of E, F and Theorem 2.8. [

Corollary 4.8. Let n be odd. Then (2" — 2)p(n) + 25 < E(GS) < (2" — 2)p(n) + 2L, where s = pyps -+ -py is
the maximal square-free divisor of n.

Remark 4.9. Let n be odd and square free number. Then
(n=9)[1- 22|+ @ - 3)p(m) +n - 1 - (22) p(m) + 2225 > (27 = 2)p(m) + 231,

For n is odd and square free number, a better lower bound of E(G}) is obtained from Theorem 4.4 and
Remark 4.9. Now we can rewrite Corollary 4.8 as follows.

Theorem 4.10. Let n be odd and square free number. Then
(=) [1 - 22]+ @ = 3)p(n) + 1 — 1 — (L) () + 2225 < E(GY) < (27 - 2p(n) + 3L,

Combining Theorem 2.7, Corollaries 4.3 and 4.5, and Observation 4.6, we can prove the following theorem.

Theorem 4.11. The complement of unitary addition Cayley graph G, is hyperenergetic if and only if n has at least
two distinct prime factors and n # 2p.

5. Laplacian energy of unitary addition Cayley graphs
In this section, we discuss the Laplacian energy of the unitary addition Cayley graph G,.
Theorem 5.1. Let n be even. Then Laplacian eigenvalues of the unitary addition Cayley graph G, are ux =

b(n) - p(t) 55,0 <k <n—1.

Proof. Let L(G,) = (i), 0 <i,j < n -1, be the Laplacian matrix of G,, where

-1 if ged(i+j,n)=1 and i#j,
lij = (]5(1’1) if i= j,

0 otherwise.
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Then L(G,,) = ¢p(n)] — A(Xy).

Therefore Laplacian eigenvalues of the unitary addition Cayley graph G, are

t = p(n) - tk)g((f)),ngSn—l. O

Corollary 5.2. Let n be even. Then Laplacian energy of the unitary addition Cayley graph Gy, is 2"¢(n), where v is
the number of distinct prime divisors of n.

Theorem 5.3. Let nbeodd. Then Laplacian eigenvalues of the unitary addition Cayley graph G,, are —u(t) 3))(2)) +(n)

for 0 <k < 1 and y(tk)i((z)) +¢m) for B <k<n-1.

Proof. Let L(G,) = (Iij), 0 < i, j < n— 1, be the Laplacian matrix of G,,, where

-1 if ged(i+j,n)=1 and i#j,
i = P(n) if ged(i+jn)# 1 and i=j,
T d(n) -1 if ged(i+jn)=1 and i=j,
0 otherwise.

Then L(G,) = M + ¢(n)], where

-1 if ged(i+jn)=1,

0 otherwise.

It is a left circulant matrix with first row (cg, ¢1, -, cy—1), where

{ -1 ifged(j, n)=1,
C]‘ =

M:(mij),OSi,an_lrmij:

0 otherwise.

So eigenvalues of M are —y(tk)% for0<k<(m-1)/2and y(tk)fg((:) for

(n+1)/2 < k < n—1. Thus Laplacian eigenvalues of the unitary addition Cayley graph G, are —pu(ty) ) +¢(n)

Ote)
for0<k< sl andy(tk);f((t”k)) +¢m) for B <k<n-1. O

Corollary 5.4. Let n be odd. Then Laplacian spectral radius of unitary addition Cayley graph G, is ¢p(n) + g)((p"l)).
Corollary 5.5. Let n be odd. Then algebraic connectivity of unitary addition Cayley graph G, is ¢(n) — %.
Corollary 5.6. Let n be odd. Then ¢(n) — é(” < k(Gy,), where 1(G,,) is vertex connectivity of Gy,.
Now we can set our main result.
Theorem 5.7. Let n be odd. Then Laplacian energy of the unitary addition Cayley graph G, is
nl+2)-s-1
LE(Gy) = () [7]

where s = p1py - - - py is the maximal square-free divisor of n.
Proof. Laplacian energy of G, is,

n—-1 m
LE(G,) = ZO‘ - ==

_#( dy(",))(P(”) n—1 ( e, )(P( n) -1
= ¥ I g0 - (S oon| + Y |SEEEE o - (2L o).
o<i<st ¢ (W) 2l <icn—1 ¢ ( ged(i, n))

1)

Divide the sum in equation (1) into two parts,
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1. —gcd"i -5 is a non square-free number

2. 7 dr(lz ) is a square-free number(SF)
Then LE(G,) = S1 + Sy + S3, where

- ¥

7

o - (== o0

0<isn—1, 7 #SF
~ e ) O
= Y M +909)  (“=) pm)| and
0<i<™5l, e eSF ¢ (W)
(e ) () -1 I
S3 = — + P(n) - P(n)].
L <i<n—1, ;s €SF (P(gcd(z n)) ( )

Part I: Suppose is a non square-free number.

gcd(z 1)
We know that number of solutions of the equation u (m) =0isn-s.
Therefore

= -9 o0 - (") o0

Part II: Suppose -5 is square-free number.
In S; and 53 two possibility arises one is

one is

gcd (in)

gcd(z )
S4 and S5 and S3 by S¢ and Sy. Now we have two sub cases.
Sub case I:

n—1

Assume S, = Z w

+ ) -
S o(at) 5

)cp(n)l

3609

3)

has an even number of distinct prime divisors and the other
has an odd number of distinct prime divisors. We can denote the corresponding sum in S, by

_“(ycd’zi,n))qb( ) gcd(1n) q'L)( )
=) It o) - $(n) +¢(n) - $(n)
L) 0 e Dy (e
—¢(n) n-1 P(n) n—-1
=) |7 +omn) - (n) (n) - (n)
;: (P(gcdr(li,n))-‘-gbn ( )¢n +; (gcd(zn)+¢n ( )¢n|
-1 n-1 1 n-—1
- o) 1- — L -
o ; _¢(gcd'fi,n>) ' ( " ) ¢ (5ttm) ' ( " )
:qb(n)z 1n _1+( ” )]+¢(H)Z[ _(n;l)]
(P (QCd(i 71)) Ss gcd(l n))
) M arm RUCO R ot IREEC) Wy
S (gcd(t 1) Ss gcd(z 1) )

+¢<n>521—( )c/><n>521
_qb(n)Z ) ¢(n)[§1—z1l+(n

54U55 gcd(z ) Ss

ez
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Sub Case II:

(e 61)
¢(9cd(zn))

= ¢(n)
5§7 (P (gcd(z 1)

From (2), (3), (4) and (5),

LEG) = 01 -9)[00m) - (=2 ) o] + 9002 - 90 [21 - Zl] (=)ot {Zl - le
S S5
#0001 1-2, l (”;1)¢m)§:1—§:4
Se Se Sz
= (1-9)|o(0n) - ( )mﬂ+wmuwmh]eip—2}+24
Sy Ss Se S7
+(”_1)¢(n){§1—§1—;1+21]

= 01-9)[000 (=2 o] + 00027 - 9 + (=) st
Thus, Laplacian energy of the unitary addition Cayley graph G, is

n(1+2’)—s—1]

Suppose S3 = Z

SeUS7

+900 - (=2 o)

)+¢(n)[z 21}—(”;1)@71){21—21]. 5)

Se Sz

n

LE(Gy) = <P(n)[

where s = p1p; - - - p, is the maximal square-free divisor of n. [

6. Laplacian energy of complement of unitary addition Cayley graphs

This section covers Laplacian energy of the complement of unitary addition Cayley graph G, for all n.
Theorem 6.1. Let n be even. Then Laplacian eigenvalues of the complement of unitary addition Cayley graph G, are
0and n — ¢(n) + y(tk);(n) 1<k<n-1.
Proof. Let L(G;) = (lfj), 0 <1i,j <n -1, be the Laplacian matrix of G, where

-1 if gcd(i+jn)# 1 and i#j,
c 4 O
lij B g o i)ftil_el]*;vise.
Then L(G}) = (n — 1 — p(n))] — A(X5).
The eigenvalues of —A(X},) are ¢(n) + 1 —n and y(tk)% +1for1 <k <n—1. Thus Laplacian eigenvalues

of the complement of unitary addition Cayley graph G, are 0 and n — ¢ (1) + u(t) 5 ‘W jforl<k<n-1. O

Corollary 6.2. Let n be even. Then Laplacian energy of the complement of unitary addition Cayley graph G, is
2n =2+ (2" =2)p(n) —s,

where s = p1py - - - py is the maximal square-free divisor of n.
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In order to find the Laplacian energy of the complement of unitary addition Cayley graph G, we need
to know the following facts.
o)
bt
Therefore eigenvalues of —A(X() — I are Ag = ¢p(n) —n and A, = u(t,) ;(f)), 1<r<n-1.

Consider N = (n;;), 0 <i,j < n—1, where

{ -1 if ged(i+j, n)#1,
1’11']' =

From Theorem 2.5 eigenvalues of X are Ag =n—1—¢(n) and A, = -1 — u(t,) ==

0 otherwise.

It is a left circulant matrix with first row (cg,c1,- -, ¢,—1), Wwhere

) if ged(j, n)#1,
=10 otherwise.

If n is odd, then eigenvalues of N are ¢(n) — n and y(tk)j:((;)) for 1 < k < (n-1)/2 and y(tk)f((tk)) for
n+1)/2<k<n-1

Theorem 6.3. Let n be odd. Then Laplacian eigenvalues of the complement of unitary addition Cayley graph G, are

0and n + u(te) f((ti) ¢(n) for1 <k < ”2;1 and n — y(tk)j:((;?) ¢(n) for ”T” <kg<n-1

Proof. Let L(G,) = (lfj), 0 <1i,j <n—1,be the Laplacian matrix of G§,, where

-1 if ged(i+jn)# 1 and i#j,
o) n- 1—¢(n) if ged(i+jn)# 1 and i=j,
i n—¢(n) if ged(i+jn)=1 and i=j,
0 otherwise.

Then L(G;) = N + (n — ¢(n))[, where N = (n;j),0<i,j<n-1,n;j = { 61 gt}géfggén#l

From the above discussion we get eigenvalues of N are ¢(n) — n and y(tk)% forl1 <k < (m-1)/2 and
—lu(tk)g( ) for m+1)/2<k<n-1
Therefore Laplacian elgenvalues of the complement of unitary addition Cayley graph G, are 0 and n +

u(t) 5 — ¢(n) for 1 <k < %5l and n - y(tk)i((t'z)) ~¢pm)for 2 <k<n-1. O

Corollary 6.4. Let n be odd. Then Laplacian spectral radius of the complement of unitary addition Cayley graph G,

; )
s+ g = ¢(n).

Corollary 6.5. Let n be odd. Then algebraic connectivity of the complement of unitary addition Cayley graph G, is
q)(pl) (75( )

Theorem 6.6. Let n be odd. Then Laplacian energy of the complement of unitary addition Cayley graph G, is

@] @ - Dpm)+n—1- (”T_l)¢(n),

where s = p1py - - - py is the maximal square-free divisor of n.

LE(G,) = (n—5s) [1 -

Proof. Laplacian energy of G, is,

n—1 n—1

LE(G;) = n— 27”1 + n—pi—n+1+eomn) - @‘ + %, where m = E(G})
i=1 i=1

LE(G)) = Z #(Wl)qb(n) +1- ) + Z —y(wl)qb(n) +1- ) +n—-1- (n 1)¢(n).
1<i<it ¢(W) " 1 <i<n-1 ¢(W> "

(6)
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Divide the sum in equation (6) into two parts,

1.
2

n .
gcd(i ) 1S a non square-free number

R d(l o is a square- -free number(SF)

Then LE(GS) = Sy + Sy + S5 + 1 — 1 — (%) ¢(n), where

n
G - Lo
. n
1<i<n—1, s €SF
#\ getm ) 2 () n
5, - Z (5) IR B
ot ¢ () n
1<i<iz, qrd?i,)t) eSF ged(in)
® ( gcdlzi,n)) P(n) p(n)
S3 = - +1-
n+l <i<n (Z) ( n‘ ) h
e<isn-1, m(‘ m) eSF ged(in)
Part I: Suppose 7 7 is a non square-free number.

We know that number of solutions of the equation p (W) =0isn-s.
Therefore

=(n—s)[1—@}

n

Part II: Suppose - 7 1s square-free number.

In S, and S3 two possibility arises one is T )

one is gcd(z )

S4 and S5 and S3 by S¢ and Sy. Now we have two sub cases.
Sub case I:

#(Gim) o) o
() "
o)

Assume S, = Z
S4USs

i p(gm) o0

Y () 000 oy

| ¢ (wim) "R o)
P(n) P(n) ) qb(n
= +1- + — +1- —=
Z qb (gcd?i,n)) n ; ¢ ( gcdr(li,n))

) (1) o) e
= Z ; ) +1- } Z -1+ T}

Sy (P (gcd(i,n) Ss !7Cd(7 ‘Vl))

—<p(n)Z +Zl ¢()Zl+¢()2 21+ (”)21

Sa gcd(z n) Sa Ss gcd(z n) Ss

“om 3, [T z} L2 zl—z]

54U55 ycd(z n)

3612

(8)

has an even number of distinct prime divisors and the other
has an odd number of distinct prime divisors. We can denote the corresponding sum in S, by

©)
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Sub case II:
w(wtm) o0 o
Suppose S3 = -_—t+1-—
L e
=q5(n)2—1 —21—21 ) 21—21. (10)
SUS; @(m) Se S; L S

From (7), (8), (9) and (10),

LE(G;):(n—s)(1—@)+¢(n)(zf—1)+ Zl—Zl—Zl+Zl
Sy Ss Se

Sy
_ ¢ 21_21—21+21 +n—1—(n—_1)¢(n)
n Sy Ss Se S7 "
:(n—s)(l—@)+qi)(n)(2r—1)+n—1—(n;1)¢(n)-

Thus, Laplacian energy of the complement of unitary addition Cayley graph G, is

LEG) = r-9)|1= 22 2 gt -1 (2,

where s = p1p; - - - p, is the maximal square-free divisor of n. [

7. Conclusion

In this paper we obtain the following results based on different types of eigenvalues of G, and G, where

nis an odd integer. y and (7 denotes the Laplacian eigenvalues of G, and G,.
1)/\k<pk,1§kSn—1and)\o>yg.

2)/\k<[jk,1ﬁk§1’l—1andA0>ﬂo.

3)/\_k<[.1k,1SkSﬂ—1andA_0>[Jo.

4)/\_k<[LIk,1SkSn—1and)\_0>[LI0.

5) k>, 1 <k <n-1ifn>2¢(n) and tip = 0 = po.

6) Ik < tr, 1 <k <n—-1if n <2¢(n) and (7 = 0 = yo.
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