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Abstract. The present paper deals with the study of CR-submanifolds of (LCS),-manifolds with respect
to quarter symmetric non-metric connection. We investigate integrability of the distributions and the
geometry of foliations. The totally umbilical CR-submanifolds of said ambient manifolds are also studied.
An example is presented to illustrate the results.

1. Introduction

Quarter symmetric linear connection on smooth manifolds M introduced in [12], is a linear connection
V such that its torsion tensor T is of the form

TX,Y) = n(NX - n(X)¢pY 1)

where 7 is an 1-form and ¢ is a (1, 1) type tensor. If $X = X, in particular then it reduces to semisymmetric
connection introduced in [11]. Further, if (Vxg)(Y, Z) # 0 for all X, Y, Z € x(M), then V is said to be a quarter
symmetric non-metric connection.

Lorentzian concircular structure manifolds (briefly, (LCS),-manifolds) introduced in [29] as a generalisa-
tion of LP-Sasakian manifold [25], has many applications in the general theory of relativity and cosmology
([32], [33]). In [23] it has shown that LCS- spacetimes coincide with generalised Robertson-Walker space-
times. So, these manifolds are interesting for geometry as well as for physics. For detail study of this type
of manifolds we may refer to ([7], [13], [30], [31], [35], [36], [37], [38]) and for study of submanifolds of
(LCS),-manifolds we may refer ([4], [14]-[21], [39]).

CR-submanifolds was introduced by Bejancu in [5]. There are several research papers (see [3], [5], [8],
[22], [28], [31]) on geometry of CR- submanifolds. Cohomology of CR-submanifolds is studied in [2], [9],
[10] In the present paper we have studied curvature properties and CR-submanifolds of (LCS)n—manlfolds
M with respect to quarter symmetric non-metric connection V. The totally umbilical CR-submanifolds of M
is also studied. Finally, we have presented an example of a submanifold of a (LCS)s-manifold to illustrate
the results.
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2. Preliminaries

A Lorentzian concircular structure manifold (briefly (LCS),-manifold) is a Lorentzian manifold M of
dimension n endowed with the unit timelike concircular vector field &, its associated 1-form n and an (1, 1)
tensor field ¢ such that

Vx& = agX, (2)
a being a non-zero scalar function satisfying
Vxa = (Xa) = da(X) = pn(X) ®3)

where p = —(&a) is another scalar, and V is the Levi-Civita connection of the Lorentzian metric g. Fora =1,
a (LCS),-manifold reduces to the LP-Sasakian manifold ([25], [34]).
In a (LCS),-manifold (n > 2) M, the following relations hold [29]:
&) =-1, ¢&=0, n¢X)=0, g(PX, ¢Y)=g(X,Y)+nX)n(Y), 4)
P*X = X + n(X)&, 5
(Vxn)(Y) = afg(X, Y) + n(X)n(Y)}, (a #0), (6
(
(

~ ~—

(Vx)Y = afg(X, )< + 2n(X)n(Y)< + n(Y)X], 7
(Xp) = dp(X) = pn(X) 8)
forall X, Y, Z e I(TM) and B = —(&p) is a scalar function.
Let M be a submanifold of dimension m of a (LCS),,-manifold M (m < n) with induced metric g and
induced connections V and V+ on TM and T+M, respectively. Then forX € I'(TM) and V € I'(T*M), Gauss
and Weingarten formulae are given by

VXY =VxY + h(X, Y) (9)

~

and
VxV = —AyX + V}*(V (10)

respectively, where h and Ay are second fundamental form and shape operator for the immersion of M
satisfying the relation [40]

g(X, Y), V) = g(AvX, Y). (11)
M is totally umbilical if
h(X,Y) =g(X,Y)H (12)

for each X, Y € I'(T'M), where H is the mean curvature vector on M and M becomes minimal if H = 0, totally
geodesic if h = 0. Throughout the paper we have taken M is a submanifold of M.

Definition 2.1. [6] A submanifold M of M is called a CR-submanifold if & is tangent to M and there is a differential
distribution D and its orthogonal complementary distribution D+ such that

(i)p(D) € D and

(ii)p(D+) C T*M.

Here, D (resp. D*) is called horizontal (resp. vertical) distribution. M is called &-horizontal (resp. &-vertical)
if & € D (resp. & € D*). Now we have

TM=Da®D*, and T*M = ¢(D*) @ 1, (13)
where p is a normal subbundle invariant to ¢. For X € I'(TM) and V € I'(T*M), we write

X =PX +QX, (14)
and

¢V =BV +CV (15)

where PX € D, QX € D+, BV = tan(¢V) and CV = nor(¢V).
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3. (LCS),-manifolds with respect to quarter symmetric non-metric connection
We consider a linear connection V on M by
VxY = VxY + n(Y)pX + a(X)pY

where 4 is an 1-form associated to a vector field A on M by

9(X, A) = a(X)

for every X € x(M). If T be the torsion tensor of M with respect to 6, then from (16), we find

T(X,Y) = n(NPX = n(X)PY +a(X)PY — a(Y)pX.
Furthermore

Vxg)(Y, Z) = -n(Vg(¢X, Z) — n(Z)g($X, Y) - 2a(X)g(pY, Z).

3339

(16)

(17)

(18)

(19)

Thus V, given in (16) which satisfies (18) and (19) is a quarter symmetric non-metric connection. The

existence and uniqueness of such connection has shown in [27] for LP-Sasakian manifolds.
Let the curvature tensor of M with respect to V and V be R and R respectively. Then we find

RX,Y)Z = RX,Y)Z+alg(@X, 2)pY — (@Y, Z)pX + n(Y)n(Z)X
—nXN2)Y +a(Y)g(X, 2)& — a(X)g(Y, Z)<]
+(2a = DIa()nX)n(Z)¢ - aX)n(V)nZ2)<l
+(a = D[a(N(Z)X — a(X)(Z)Y] + da(X, V)PZ.

After contraction we obtain the Ricci tensor S as

5(,2) = 3(Y,2) +all —a@)lg(Y,Z) - adg(¢Y, Z)
+ {na - Qa - Da@n(Y)n2) + (n = 2)(a = Va(Y)n(Z) + da(Y, $Z)

and the scalar curvature 7 as
Fo= F-(n-1a@)-A+u

where A = trace ¢ and u = trace da. Thus we have the following;:

Theorem 3.1. R, § and 7 of M with respect to V are given in (20), (21) and (22) respectively.

For M with respect to Vv, we get
(6X¢)Y = ag(X,Y)E+ (a—Dn(Y)X + 2a - 1n(X)n(Y)E
and

Vx& = (a-1)pX

4. CR-submanifolds M of (LCS),-manifold M with respect to v

(20)

(21)

(22)

(23)

(24)

Let V be the induced connection on M from the connection V and V be the induced connection on M

from the connection V. Let i and 1 be second fundamental form with respect to V and V respectively.

Then we have

VxY = VxY+(X,Y).

(25)
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From (9), (16) and (25), we get
VxY + (X, Y) = VxY + i(X,Y) + n(Y)pX + a(X)pY. (26)
Using (14) in (26), we get
PVxY + QVxY +h(X,Y) = PVxY+QVxY +h(X,Y)+n(Y)pPX (27)
+1(Y)pQX + a(X)pPY + a(X)pQY.

Comparing horizontal, vertical and normal part from both sides, we get

PVxY = PVxY +n(Y)pPX + a(X)$PY, (28)
QVxY = QVxy, (29)
RXY) = h(XY)+n(NQX +a(X)pQY. (30)
Now if X, Y € D then we obtain from (26) that
VxY = VxY+n(Y)opX +a(X)pY (31)
and
h(X,Y) = h(X,Y). (32)

For X, £ € D, h(X, &) = h(X, &) = 0. which means that V is a quarter symmetric non-metric connection and
the second fundamental forms are equal. This leads to the following;:

Proposition 4.1. If M is an invariant submanifold of M admitting v, then
(i) The induced connection V on M is also quarter symmetric non-metric.
(ii) The second fundamental forms h and h are equal.

Again if Z, W € D+, then we have

VW = VzW, (33)
i.e., both the connections are identical and

WZ,W) = hZ,W)+nW)PZ + a(Z)pW. (34)
If X € D and Z € D* then

VxZ + n(Z)$X, (35)
(X, Z) + a(X)pZ. (36)

VxZ
(X, Z)

Again for X € TM and V € T*M from Weingarten formula for quarter symmetric non-metric connection,
we have

VxV = —AyX + ViV (37)
Also from (10), (15) and (16), we get

VxV = —AyX + V&V + a(X)BV +a(X)CV. (38)
Thus from (37) and (38), we get
AyX — a(X)BV (39)

B

<
>
I

and

<

>
<
|

VLV +a(X)CV. (40)
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Now, for Z € D+, ¢Z € T*M and hence for any X € TM, we get

Vx@Z = —AszX +a(X){VxpZ + Z + n(Z)E), (41)
from which, we get

ApzX = ApzX —aX){Z +n(2)}&, (42)
and

Vi¢Z = VxpZ (43)
Lemma 4.2. Let M be a CR-submanifold of M with respect to quarter symmetric non-metric connection. Then

PVx¢PY — PAyoyX = ¢P(VxY) +ag(X, Y)PE + (o — n(Y)PX + 2a — Dn(X)n(Y)PE (44)

QVxPPY = QAporX = B(X,Y) +ag(X, Y)QE + (o = 1)n(V)QX + 2a = D)n(X)n(Y)Q< (45)

h(X, pPY) + VxpQY = ¢(QVxY)+ Ch(X,Y) (46)

forall X, Y € TM.
Proof. From (23), we get

VxdY = p(VxY) = ag(X, V)& + (a— ()X + (2a - DnX)n(Y)E.
Using (14), (15), (25) and (37) in above equation, we get

PYx@PY + QVx¢PY + (X, pPY) — PAyoy X — QAyor X (47)
+VEGQY — G(PVxY) — H(QVxY) — Bi(X, Y) — Ch(X, Y) =
ag(X, Y)PE + g(X, Y)QE + (a = Dn(YV)PX + (a — Dn(Y)QX
+Q2a = Dn(X)n(YV)PE + 2a — Hn(X)n(Y)QE.

Equating horizontal, vertical and normal components of (47), the result follows. [

5. Integrability of the distributions

Lemma 5.1. Let M be a CR-submanifold of M with respect to V. Then

PPIW,Z] = AgwZ — ApzW + [a(W)Z — a(Z)W] + [a(W)n(Z) — a(Z)n(W)]& (48)
+a = DInW)Z - n(Z)W]

forall W, Z € D*.
Proof. For any W, Z € D+ we have
VoW = (V20)W + H(Vz W).
Using (14), (15), (23), (25) and (37) in above equation, we get
ViW = AywZ + ¢P(V2W) + $(QVW) + BR(W, Z) + CR(W, Z) (49)
+ag(W, 2)¢ + (@ = Dn(W)Z + 2a = Dn(Z)n(W)<.
Also from (46), we get
VEiOW = $(QVzW) + Ch(Z, W). (50)
From (49) and (50), we get
O(PVzW) = -AywZ - Bh(W,Z) - ag(W,Z)¢ - (a - )n(Y)Z - 2a - n(Z)n(W)e (51)
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which implies that

PPIW,Z] = ApwZ — ApzW + (@ = Din(W)Z — n(Z)W}. (52)
In view of (42), (52) yields

PPIWZ] = ApwZ = AgzW = a(Z)[W + n(Y)E] + a(W)[Z + n(2)E] + (a = DIn(W)Z = n(Z)W],  (33)
from which (48) follows. O

Theorem 5.2. Let M be a CR-submanifold of M with respect to V. Then the distribution D* is integrable if and only
if

ApwZ = AgzW = a(Z)W —a(W)Z + (@(Z)n(W) — a(W)n(2))E + (a = H((Z)W = n(W)Z2) (54)
forall W, Z € D*.

Proof. From Lemma 5.1, it is obvious. O

Corollary 5.3. Let M be a &-horizontal CR-submanifold of M with respect to V. Then the distribution D* is
integrable if and only if

A(pwz - A¢ZW = LI(Z)W - Q(W)Z
forall W, Z € D*.

Remark 1. Let M be a CR-submanifold of M with respect to V. Then the distribution D* is integrable if and
only if

ApwZ — ApzW = a[n(Z)W — n(W)Z]

forall W, Z € D+. 3
Remark 2. Let M be a &-horizontal CR-submanifold of M with respect to V. Then the distribution D* is
integrable if and only if

A(sz = A(Pzw
forall W, Z € D+.

Theorem 5.4. Let M be a CR-submanifold of M with respect to V. Then the distribution D is integrable if and only
if

h(X, ¢Y) = (Y, $X), forall X, Y € D. (55)
Proof. For X, Y € D, we have from (32) and (46) that

PQVxY) = h(X,§Y) - Ch(X, Y), (56)
from which we get

PQLX, Y] = h(X, $Y) = h(Y, $pX). (57)
Therefore D is integrable if and only if the relation (55) holds. [

Remark 3. Let M be a CR-submanifold of M with respect to V. Then the distribution D is integrable if and
only if h(X, ¢Y) = h(Y,¢pX) forall X, Y € D.
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Theorem 5.5. Let M be a CR-submanifold of M with respect to V. If the distribution D is integrable and the leaf of
D is totally geodesic in M then

g, Y), ¢Z) + (a = Dn(2)g(X, Y) + Ca = Dn(X)n(Y)n(Z) = 0 (58)
forall X, Y e Dand Z € D*.

Proof. 1f D is integrable and leaf of D is totally geodesic in M then Vx¢Y € D for X, Y € D. Now for X € D
and Z € D* we have from (47) that

OP(VxZ) = —AyX +VidZ - §QVxZ) ~ $I(X, Z) ~ (@ = D(Z)X ~ Qo — Dn(X)n(2)E. (59)
From (14), (15) and (59), we find

0 9(Vx9Y, Z) = —g(¢Y, VxZ) = —g(¢Y, PVxZ) = —g(Y, pPVxZ)
= 9(ApzX + Bh(X,2),Y) + (a - Dn(2)g(X, Y) + 2a = Dn(X)n(Y)n(Z)

forall X, Y e Dand Z € D*.
Now using (11) and (32) in the above relation, we get (58). [

Corollary 5.6. Let M be a &-horizontal CR-submanifold of M with respect to V. Then the distribution D is integrable
and the leaf of D is totally geodesic in M if and only if

gh(X,Y),$Z) =0, forallX, Y € Dand Z € D*. (60)

Proof. The direct part follows from Theorem 5.5. For converse part, let the relation (60) holds. Then using
(7) in (60), we get

0 = g(i(X, Y),0Z) = g(VxpY, ¢Z) = g(VxY, Z),

which implies that VxY € D for any X, Y € D and the leaf of D is totally geodesic in M with respect to
quarter symmetric non-metric connection. This completes the proof. [J

Theorem 5.7. Let M be a CR-submanifold of M with respect to V. Then the distribution D* is integrable and the
leaf of D* is totally geodesic in M if and only if

g(X, Z), W) + a(X)g(Z, W) + a(X)n(Z)n(W) + ag(Z, W)n(X) + 2a = Dn(X)nZ)n(W) = 0 (61)
forall X € Dand Z, W € D*.
Proof. For all Z, W € D+, we have from (47) that
PPVW = —AuwZ +V5dW — ¢(QVZW) — ph(Z, W) (62)
—ag(Z, W)é — 2a = n(Z)n(W)é — (a = 1)n(W)Z.
Now, taking inner product of (62) with X € D we get
g(@PVZW, X) = —g(AswZ, X) — ag(Z, W)n(X) — (2a = )nX)n(Z)n(W).
Using (11) and (36) in the above equation, we get

gPPVZW,X) = g(h(X,Z),dW) +a(X)g(Z, W) + a(X)n(Z)n(W) (63)
+ag(Z, W)n(X) + 2a = HnX)n(Z)n(W),

from which (61) follows. The converse part is trivial. [J

Corollary 5.8. Let M be a &-horizontal CR-submanifold of M with respect to V. Then the distribution D+ is
integrable and the leaf of D+ is totally geodesic in M if and only if

g(X, Z), pW) +a(X)g(Z, W) + ag(Z, W)n(X) = 0 (64)
forall X € Dand Z, W € D*.
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Corollary 5.9. Let M be a &-vertical CR-submanifold of M with respect to V. Then the distribution D* is integrable
and the leaf of D+ is totally geodesic in M if and only if

g(X, Z), oW) +a(X)g(Z, W) + a(X)n(Z)n(W) = 0 (65)

forall X € Dand Z, W € D*.

Definition 5.10 ([1], [24]). A CR-submanifold M of a (LCS),,-manifold M with respect to V is called Lorentzian
contact CR-product if M is locally a Riemannain product of Mt and M, , where Mt and M, denotes the leaves of the
distribution D and D+ respectively.

Theorem 5.11. Let M be a &-horizontal CR-submanifold of M with respect to V. Then M is a Lorentzian contact
CR-product if and only if

ApwX + an(X)W +a(X)W =0 (66)
forall X € D and W € D*.
Proof. As the leaves of D+ are totally geodesic, we have from (64) that

gAwX + an(X)W +a(X)W,Z) = 0
forall X € D and Z, W € D+, which implies that

ApwX + an(X)W + a(X)W € D. (67)
Now for X, Y € D and W € D+, we have

g(ApwX + an(X)W +a(X)W,Y) gAewX,Y) = g(gb(%XY - VxY), W)

g(VxpY, W) = g(VxpY, W) = 0,

which means that

AgwX + an(X)W + a(X)W € D*. (68)
From (67) and (68), we get (66). Conversely, let (66) holds. Then, for Z € D+, we get

g(W(X, Z), pW) + a(X)g9(Z, W) + an(X)g(Z, W) = 0,
which implies that the leaves of D+ are totally geodesic. Next for all X, Y € D and W € D+, we have

g(VxY, W) g(VxY, W) = g(@Vx, ¢W)

= g(Vx9Y, W) = g(h(X, ¢Y), pW)
= g(AewX, PY)

= gl-an(Y)W —a(X)W, ¢Y)

= 0.

Therefore, the leaves of D are totally geodesic in M. So, M is a Lorentzian contact CR-product. [
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6. Totally umbilical CR-submanifolds

In this section, we study totally umbilical CR-submanifolds of (LCS),-manifolds. Let M be a totally
umbilical CR-submanifolds of M with respect to V.
Then for Z, W € D+ we have from (7) that

VZoW = ¢(VzW) = alg(Z, W)E + 2n(Z)n(W)E + n(W)Z]. (69)
Using (9), (10) and (14) in (69), we get

—ApwZ + vgq)w = P(PVzW) + ¢(QVZW) + ph(Z, W) + alg(Z, W)E + 2n(Z)n(W)E + n(W)Z}. (70)
Taking inner product of (70) with Z € D+ and using (11), we get

~g((Z, Z), pW) = g(ph(Z, W), Z) + adg(Z, W)(Z) + 2(Z) + n(W)g(Z, Z)}. (71)
In view of (12), (71) yields

g(H, ¢W) = —ﬁ[q(z, W)g(6H, Z) + g (Z, W)n(Z) + 2117(Z) + n(WIIZIP)]- (72)

Interchanging Z and W in (72), we obtain

9H 9Z) = 1 [9(Z, W)g(oH, W) + alg(Z, Wyn(W) + 22 (W) + n(Z2)IIWI]. (73)
Substituting (72) in (73), we get after simplification
_ 9z W>2] _ [n(W)g(z,W)_ ]_ U(Z)n(W)[n(Z)g(Z,W) ~ ]
[1 iZRIwiE |7 0D e T 1A T2 e | iz 1) )
__g&W) [n2)gZ, W) _
WP [ 1ZP ”(W)]‘O'

Hence we get the following theorems:

Theorem 6.1. Let M be a &-horizontal totally umbilical CR-submanifold of M with respect to V. Then one of the
following holds:

(i) M is minimal in M,

(ii) dim D+ =1,

(iii) H € T'(u).

Theorem 6.2. Let M be a &-vertical totally umbilical CR-submanifold of M with respect to V. Then dimD+ = 1.

Remark 4. The Theorem 6.1 and Theorem 6.2 also holds good in case of considering M with respect to V.

7. Cohomology

In this section we have studied cohomology of CR-submanifold of M with respect to V and obtain the
following:

Lemma 7.1. Let M be a &-vertical CR-submanifold of M with respect to V. Then the invariant distribution D is
minimal if

9(ApzX, §X) = —an(Z)g(X, ¢X) (75)
forevery X € Dand Z € D*.
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Proof. For X € D and Z € D+, we have from (16) that

9(Z,VxX) = 9(Z,VxX) = 9(Z,VxX) (76)
By virtue of (2), (4) and (7), (76) yields

9(Z,VxX) = —g(VxdZ, $X) + an(Z)g(X, pX). (77)
Using (10) in (77), we find

9(Z,VxX) = g(ApzX, $X) + an(Z)g(X, pX). (78)
Replacing X by ¢X in (78), we obtain

9(Z,VoxpX) = g(ApzX, pX) + an(Z)g(X, ¢X). (79)
From (78) and (79), we get

9(Z,VxX) + 9(Z, VoxpX) = 29(Agz X, pX) + 2an(Z)g(X, $X). (80)
Thus the result follows from (80). O

Let{ey, -+, eg €541 = Qe1, -+ €25 = Peg, €441, *+ , -1 = €2g4p-1,m = €294p = &} is alocal pseudo orthonormal
basis of x(M) such that {e1,- -, ez} is a local basis of D and {ez;11," -, e24+p} is a local basis of D+. We take
{w!,---, 0} as dual basis of {e1, -, ey} and {0%*1, ..., 627*~1 1} as the dual basis of {exg41, -+, €204p-1, &}

Letv = @' A w?- - A @™ is the transversal volume form of a foliation ¥+ defined by D* on M. Then

dv =)' A& Adaw! A A0,

Thus dv = 0 if

dv(Wy, Wa, Xq,+++ , X24-1) = 0 (81)
and

dv(Wy, Xy, -+, Xo4) =0 (82)

for any Xy, Xp,--+,Xo; € Dand Wy, W, € D+,

By straightforward we can say that (81) holds if D* is integrable and (82) holds if D is minimal. Consequently
v is closed if (54) and (75) holds simultaneously.

Again we take the p-form vt = 621*1 A .- A 627771 A 17 50 that

O'(e)) = 6;, 0, =0,i, j=2q+1,29 +p - 1. Then by similar argument v is closed if D* is minimal and D is
integrable i.e. D* is minimal and h(X, ¢Y) = h(Y, $pX) for X, Y € D. Thus we get the following theorem:

Theorem 7.2. Let M be a compact CR-submanifold of M with respect to V. Then the transversal volume form v

defines a cohomology class c(v) := [v] € H¥(M; R), 2q = dimD if (54) and (75) holds simultaneously.
Furthermore if D* is minimal and h(X, ¢pY) = h(Y, pX) for X, Y € D holds then H*(M,R) # 0 foranyi € {1,--- ,q}.

8. Example

In this section we construct an example of a (LCS)s-manifold as similar in [20], then we verify Proposition
4.1 and the relation (20).
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Example 8.1. Let us consider the manifold M = {(x,y,z,u,v) € R® : (x,y,z,u,v) # (0,0,0,0,0)}. We take the

linearly independent vector fields at each point of M as

— okz(, 9 a _ ,—kz d _ ,—2kz d — ,—kz(,, 2 J — ,kz d
ep=¢€ (x£+y@), =€y, =L, ep=e (uz, +v35;), es=e % for some scalar k.

Let g be the metric defined by

1, fori=j#3,
glei,e)) =1 0, fori#j,
-1, fori=j=3.

Herei, j€{1,2,---,5}.

Let 1) be the 1-form defined by 1(Z) = §(Z, e3), for any vector field Z € x(M). Let ¢ be the (1,1) tensor field defined
by pe1 =e1, ey =er, ez =0, ey =es, Pes = es. Then using the linearity property of ¢ and § we
have n(e3) = =1, ¢*U = U + n(U)E and §(oU,dV) = §(U, V) + n(U)n(V), for every U, V € x(M).Thus for
es = &, (¢, &, 1, §) defines a Lorentzian paracontact structure on M. Let V be the Levi-Civita connection on M with
respect to the metric §. Then we have [e1,e2] = —e ey, [e1,e3] = ke e, [e1,e4] = 0, [e1,e5] = 0, [e2, €3] = ke ey,
le2,e4] = 0, [e2,e5] = 0, [ea, €3] = ke ey, [e5, €3] = ke e5 , [es, e5] = 0.

Now, using Koszul's formula for §, it can be calculated that V, e; = ke=*%e3, V,e3 = ke™?%e;, V,e1 = e ey,
Veer = —e ey +ke %3, V,e5 = ke ¥ ey, V,,e5 = ke ey, V,eq =ke e, Voes =ke s, Ve =e es,
and V,.es = —e” ~2kzp,,

and rest of the terms are zero.

Since {e1, €5, €3, €4, €5} is a frame field, then any vector field X, Y € TM can be written as

X = X161 + X267 + X363 + X464 + X565,
Y = yie1 + Y2 + yzes + yses + yses,

where x;,y; € R, 1=1,2,3,4,5 such that

X1Y1 + X2l — X3Y3 + XaYs + x5Y5 # 0

and hence

F(X,Y) = (x1y1 + X2Y2 — X33 + XalYa + X5Y5) . (83)
Therefore,

VxY = ke [x1yser + xayzea + (X1y1 + X2y2 + XaYs + Xs5Ys5)es (84)

—k:
+X4Y3€4 + X5Y3e5] + €7 [—XoYy1€1 + Xol1€2 — X5Y/5€4 + X5Y/4€5].

From the above it can be easily seen that (¢, &,n,§) is a (LCS)s structure on M with a = ke™* # 0 such that
X(a) = pn(X), where p = 2k?e~=.
We set A = ey. Then a(X) = g(X, A) = x1. Hence from (16), we get
6){Y = ke_ZkZ[xlyg,el + Xoy3zer + (x1y1 + XolY2 + XalYs + X5y5)€3 (85)
+x4Y3€4 + X5Y3€5] + e (—xzyzel + XoY162 — X5Y5€4 + x5y465)
—Y3 (x161 + Xp€y + Xg€4 + X5€5) + X1 (y161 + Yoe2 + Va4 + y5€5) .

Also, for Z = z1e1 + zpep + z3e3 + Zaes + z5e5,2; € R, i = 1 to 5, we have

Vx)(Y,Z) = z3(aiys + Xaya + Xaya + Xsy5) — 2X1 (V121 + YaZo + YaZa + Y525)
+ 0.

Thus in an (LCS)s-manifold the quarter symmetric non-metric connection is given by (85). Let f be an isometric
immersion from M to M defined by f(x,y,z) = (x,v,2,0,0). Let M = {(x,y,z) € R3 : (x, y,2) # (0,0,0)}, where
(x, y, z) are the standard coordinates in R. The vector fields
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e1=e(x g + y%), ey = e”“%, es = €22 Z are linearly independent at each point of M.
Let g be the induced metric defined by
1, fori=j#3,
gleie)) =1 0, fori#j,
-1, fori=j=3.
Here i and j runs over 1 to 3.
Let V be the Levi-Civita connection on M with respect to the metric g. Then we have [e1,e;] = —e %y, [e1,63] =

ke=%zey, [y, €3] = ke 2Ze,. Clearly {e4, es} is the frame ﬁe~ld for the normal bundle T*M. If we take Z € TM then
¢Z € TM and therefore M is an invariant submanifold of M. If we take X, Y € TM then we can express them as

X = xie1 + x5 + X363,
Y = yie1 + Yaer + y3es.
Therefore

VxY = ke ™ [x1yze1 + xayser + (X1y1 + XaYa + XaYa + Xsys)es] + € [—xaye + Xayres].

Now from (85), the tangential part of VxY is given by

VxY = ke [xjyser + xaysex + (x1y1 + xay2)es] + €7 (=xa10e1 + x2y1€2)
—y3 (X181 + x202) + X1 (Y181 + V202)
= VxY + 1(V)0X +a(X)pY.
And
(Vx9)(Y,Z) = z3(xiy1 + x212) — 2x1(y121 + Y222),
= 0.

which means M admits quarter symmetric non-metric connection. Also, it is easy to see that
h(X,Y) = h(X, Y) = ke™*(xay3es + X5y3¢5) + e (=x5y5e4 + X5Yaes).

Thus the Proposition 4.1 is verified.
Now, if R and R be the curvature tensors of M with respect to V and V respectively then we can easily calculate

R(er,ex)en = Ko ey — e 2%,
R(ey,e3)es = e e,
R(er, e1)er = Kl ey — %%,
R(es,e3)e5 = ke e, (86)
R(es,e1)er = —kPe e,
R(es, ex)er = —kPe e,
R(e1,e0)es = 0.
Again from (16), we have
Veer = ke®e; +e1, Veer = ea, Vees = (ke — ey,  Veer = e ey, Veeo = —e ™ e; + ke e;,
Ve,e3 = (ke 2 — 1)ey and rest of the terms are zero. Therefore
Rler,ex)en = Ko™ e; — e %) — ke e — ke e,
R(er,e3)es = Ke ey + ke e,
R(er,e1)er = Kl ey — e 2%, — ke e,
R(es,e3)e3 = Kk2e e, + ke 2%, (87)
R(es,e)er = —k2e ey — ke e,
R(es, ex)en = —kPe e,

R(er,e)es = (ke ™% —1)es.
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Now from (86), (87) and using the relation da(X,Y) = %{Xa(Y) — Ya(X)} — a[X, Y], we can easily verify (20).
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