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Abstract. The present paper deals with the study of CR-submanifolds of (LCS)n-manifolds with respect
to quarter symmetric non-metric connection. We investigate integrability of the distributions and the
geometry of foliations. The totally umbilical CR-submanifolds of said ambient manifolds are also studied.
An example is presented to illustrate the results.

1. Introduction

Quarter symmetric linear connection on smooth manifolds M̃ introduced in [12], is a linear connection
∇̄ such that its torsion tensor T is of the form

T(X,Y) = η(Y)φX − η(X)φY (1)

where η is an 1-form and φ is a (1, 1) type tensor. If φX = X, in particular then it reduces to semisymmetric
connection introduced in [11]. Further, if (∇̄X1)(Y,Z) , 0 for all X, Y, Z ∈ χ(M̃), then ∇̄ is said to be a quarter
symmetric non-metric connection.

Lorentzian concircular structure manifolds (briefly, (LCS)n-manifolds) introduced in [29] as a generalisa-
tion of LP-Sasakian manifold [25], has many applications in the general theory of relativity and cosmology
([32], [33]). In [23] it has shown that LCS- spacetimes coincide with generalised Robertson-Walker space-
times. So, these manifolds are interesting for geometry as well as for physics. For detail study of this type
of manifolds we may refer to ([7], [13], [30], [31], [35], [36], [37], [38]) and for study of submanifolds of
(LCS)n-manifolds we may refer ([4], [14]-[21], [39]).

CR-submanifolds was introduced by Bejancu in [5]. There are several research papers (see [3], [5], [8],
[22], [28], [31]) on geometry of CR- submanifolds. Cohomology of CR-submanifolds is studied in [2], [9],
[10]. In the present paper we have studied curvature properties and CR-submanifolds of (LCS)n-manifolds
M̃ with respect to quarter symmetric non-metric connection ∇̄. The totally umbilical CR-submanifolds of M̃
is also studied. Finally, we have presented an example of a submanifold of a (LCS)5-manifold to illustrate
the results.

2010 Mathematics Subject Classification. 53C15, 53C25
Keywords. (LCS)n-manifold, CR-submanifold, quarter symmetric non-metric connection.
Received: 10 December 2018; Accepted: 26 February 2019
Communicated by Mića Stanković
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2. Preliminaries

A Lorentzian concircular structure manifold (briefly (LCS)n-manifold) is a Lorentzian manifold M̃ of
dimension n endowed with the unit timelike concircular vector field ξ, its associated 1-form η and an (1, 1)
tensor field φ such that

∇̃Xξ = αφX, (2)

α being a non-zero scalar function satisfying

∇̃Xα = (Xα) = dα(X) = ρη(X) (3)

where ρ = −(ξα) is another scalar, and ∇̃ is the Levi-Civita connection of the Lorentzian metric 1. For α = 1,
a (LCS)n-manifold reduces to the LP-Sasakian manifold ([25], [34]).
In a (LCS)n-manifold (n > 2) M̃, the following relations hold [29]:

η(ξ) = −1, φξ = 0, η(φX) = 0, 1(φX, φY) = 1(X,Y) + η(X)η(Y), (4)

φ2X = X + η(X)ξ, (5)
(∇̃Xη)(Y) = α{1(X,Y) + η(X)η(Y)}, (α , 0), (6)
(∇̃Xφ)Y = α{1(X,Y)ξ + 2η(X)η(Y)ξ + η(Y)X}, (7)
(Xρ) = dρ(X) = βη(X) (8)

for all X, Y, Z ∈ Γ(TM̄) and β = −(ξρ) is a scalar function.
Let M be a submanifold of dimension m of a (LCS)n-manifold M̃ (m < n) with induced metric 1 and

induced connections ∇ and ∇⊥ on TM and T⊥M, respectively. Then forX ∈ Γ(TM) and V ∈ Γ(T⊥M), Gauss
and Weingarten formulae are given by

∇̃XY = ∇XY + h(X,Y) (9)

and

∇̃XV = −AVX + ∇⊥XV (10)

respectively, where h and AV are second fundamental form and shape operator for the immersion of M
satisfying the relation [40]

1(h(X,Y),V) = 1(AVX,Y). (11)

M is totally umbilical if

h(X,Y) = 1(X,Y)H (12)

for each X,Y ∈ Γ(TM), where H is the mean curvature vector on M and M becomes minimal if H ≡ 0, totally
geodesic if h ≡ 0. Throughout the paper we have taken M is a submanifold of M̃.

Definition 2.1. [6] A submanifold M of M̃ is called a CR-submanifold if ξ is tangent to M and there is a differential
distribution D and its orthogonal complementary distribution D⊥ such that
(i)φ(D) ⊆ D and
(ii)φ(D⊥) ⊆ T⊥M.

Here, D (resp. D⊥) is called horizontal (resp. vertical) distribution. M is called ξ-horizontal (resp. ξ-vertical)
if ξ ∈ D (resp. ξ ∈ D⊥). Now we have

TM = D ⊕D⊥, and T⊥M = φ(D⊥) ⊕ µ, (13)

where µ is a normal subbundle invariant to φ. For X ∈ Γ(TM) and V ∈ Γ(T⊥M), we write

X = PX + QX, (14)

and

φV = BV + CV (15)

where PX ∈ D, QX ∈ D⊥, BV = tan(φV) and CV = nor(φV).
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3. (LCS)n-manifolds with respect to quarter symmetric non-metric connection

We consider a linear connection ¯̃
∇ on M̃ by

¯̃
∇XY = ∇̃XY + η(Y)φX + a(X)φY (16)

where a is an 1-form associated to a vector field A on M̃ by

1(X,A) = a(X) (17)

for every X ∈ χ(M̃). If ¯̃T be the torsion tensor of M̃ with respect to ¯̃
∇, then from (16), we find

¯̃T(X,Y) = η(Y)φX − η(X)φY + a(X)φY − a(Y)φX. (18)

Furthermore

( ¯̃
∇X1)(Y,Z) = −η(Y)1(φX,Z) − η(Z)1(φX,Y) − 2a(X)1(φY,Z). (19)

Thus ¯̃
∇, given in (16) which satisfies (18) and (19) is a quarter symmetric non-metric connection. The

existence and uniqueness of such connection has shown in [27] for LP-Sasakian manifolds.
Let the curvature tensor of M̃ with respect to ¯̃

∇ and ∇̃ be ¯̃R and R̃ respectively. Then we find

¯̃R(X,Y)Z = R̃(X,Y)Z + α[1(φX,Z)φY − 1(φY,Z)φX + η(Y)η(Z)X
−η(X)η(Z)Y + a(Y)1(X,Z)ξ − a(X)1(Y,Z)ξ]
+(2α − 1)[a(Y)η(X)η(Z)ξ − a(X)η(Y)η(Z)ξ] (20)
+(α − 1)[a(Y)η(Z)X − a(X)η(Z)Y] + da(X,Y)φZ.

After contraction we obtain the Ricci tensor ¯̃S as

¯̃S(Y,Z) = S̃(Y,Z) + α{1 − a(ξ)}1(Y,Z) − αλ1(φY,Z) (21)
+ {nα − (2α − 1)a(ξ)}η(Y)η(Z) + (n − 2)(α − 1)a(Y)η(Z) + da(Y, φZ)

and the scalar curvature ¯̃r as

¯̃r = r̃ − (n − 1)a(ξ) − λ2 + µ (22)

where λ = trace φ and µ = trace da. Thus we have the following:

Theorem 3.1. ¯̃R, ¯̃S and ¯̃r of M̃ with respect to ¯̃
∇ are given in (20), (21) and (22) respectively.

For M̃ with respect to ¯̃
∇, we get

( ¯̃
∇Xφ)Y = α1(X,Y)ξ + (α − 1)η(Y)X + (2α − 1)η(X)η(Y)ξ (23)

and

¯̃
∇Xξ = (α − 1)φX. (24)

4. CR-submanifolds M of (LCS)n-manifold M̃ with respect to ¯̃
∇

Let ∇ be the induced connection on M from the connection ∇̃ and ∇̄ be the induced connection on M
from the connection ¯̃

∇. Let h and h̄ be second fundamental form with respect to ∇ and ∇̄ respectively.
Then we have

¯̃
∇XY = ∇̄XY + h̄(X,Y). (25)
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From (9), (16) and (25), we get

∇̄XY + h̄(X,Y) = ∇XY + h(X,Y) + η(Y)φX + a(X)φY. (26)

Using (14) in (26), we get

P∇̄XY + Q∇̄XY + h̄(X,Y) = P∇XY + Q∇XY + h(X,Y) + η(Y)φPX (27)
+η(Y)φQX + a(X)φPY + a(X)φQY.

Comparing horizontal, vertical and normal part from both sides, we get

P∇̄XY = P∇XY + η(Y)φPX + a(X)φPY, (28)
Q∇̄XY = Q∇XY, (29)
h̄(X,Y) = h(X,Y) + η(Y)φQX + a(X)φQY. (30)

Now if X, Y ∈ D then we obtain from (26) that

∇̄XY = ∇XY + η(Y)φX + a(X)φY (31)

and

h̄(X,Y) = h(X,Y). (32)

For X, ξ ∈ D, h̄(X, ξ) = h(X, ξ) = 0. which means that ∇̄ is a quarter symmetric non-metric connection and
the second fundamental forms are equal. This leads to the following:

Proposition 4.1. If M is an invariant submanifold of M̃ admitting ¯̃
∇, then

(i) The induced connection ∇̄ on M is also quarter symmetric non-metric.
(ii) The second fundamental forms h and h̄ are equal.

Again if Z, W ∈ D⊥, then we have

∇̄ZW = ∇ZW, (33)

i.e., both the connections are identical and

h̄(Z,W) = h(Z,W) + η(W)φZ + a(Z)φW. (34)

If X ∈ D and Z ∈ D⊥ then

∇̄XZ = ∇XZ + η(Z)φX, (35)
h̄(X,Z) = h(X,Z) + a(X)φZ. (36)

Again for X ∈ TM and V ∈ T⊥M from Weingarten formula for quarter symmetric non-metric connection,
we have

¯̃
∇XV = −ĀVX + ∇̄⊥XV. (37)

Also from (10), (15) and (16), we get

¯̃
∇XV = −AVX + ∇⊥XV + a(X)BV + a(X)CV. (38)

Thus from (37) and (38), we get

ĀVX = AVX − a(X)BV (39)

and

∇̄
⊥

XV = ∇
⊥

XV + a(X)CV. (40)
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Now, for Z ∈ D⊥, φZ ∈ T⊥M and hence for any X ∈ TM, we get

¯̃
∇XφZ = −AφZX + a(X){∇⊥XφZ + Z + η(Z)ξ}, (41)

from which, we get

ĀφZX = AφZX − a(X)
{
Z + η(Z)

}
ξ, (42)

and

∇̄
⊥

XφZ = ∇
⊥

XφZ. (43)

Lemma 4.2. Let M be a CR-submanifold of M̃ with respect to quarter symmetric non-metric connection. Then

P∇̄XφPY − PĀφQYX = φP(∇̄XY) + α1(X,Y)Pξ + (α − 1)η(Y)PX + (2α − 1)η(X)η(Y)Pξ (44)

Q∇̄XφPY −QĀφQYX = Bh̄(X,Y) + α1(X,Y)Qξ + (α − 1)η(Y)QX + (2α − 1)η(X)η(Y)Qξ (45)

h̄(X, φPY) + ∇̄⊥XφQY = φ(Q∇̄XY) + Ch̄(X,Y) (46)

for all X, Y ∈ TM.

Proof. From (23), we get

¯̃
∇XφY − φ( ¯̃

∇XY) = α1(X,Y)ξ + (α − 1)η(Y)X + (2α − 1)η(X)η(Y)ξ.

Using (14), (15), (25) and (37) in above equation, we get

P∇̄XφPY + Q∇̄XφPY + h̄(X, φPY) − PĀφQYX −QĀφQYX (47)

+∇̄⊥XφQY − φ(P∇̄XY) − φ(Q∇̄XY) − Bh̄(X,Y) − Ch̄(X,Y) =

α1(X,Y)Pξ + 1(X,Y)Qξ + (α − 1)η(Y)PX + (α − 1)η(Y)QX
+(2α − 1)η(X)η(Y)Pξ + (2α − 1)η(X)η(Y)Qξ.

Equating horizontal, vertical and normal components of (47), the result follows.

5. Integrability of the distributions

Lemma 5.1. Let M be a CR-submanifold of M̃ with respect to ¯̃
∇. Then

φP[W,Z] = AφWZ − AφZW + [a(W)Z − a(Z)W] + [a(W)η(Z) − a(Z)η(W)]ξ (48)
+(α − 1)[η(W)Z − η(Z)W]

for all W, Z ∈ D⊥.

Proof. For any W, Z ∈ D⊥ we have

¯̃
∇ZφW = ( ¯̃

∇Zφ)W + φ( ¯̃
∇ZW).

Using (14), (15), (23), (25) and (37) in above equation, we get

¯̃
∇
⊥

ZφW = ĀφWZ + φP(∇̄ZW) + φ(Q∇̄ZW) + Bh̄(W,Z) + Ch̄(W,Z) (49)
+α1(W,Z)ξ + (α − 1)η(W)Z + (2α − 1)η(Z)η(W)ξ.

Also from (46), we get

¯̃
∇
⊥

ZφW = φ(Q∇̄ZW) + Ch̄(Z,W). (50)

From (49) and (50), we get

φ(P∇̄ZW) = −ĀφWZ − Bh̄(W,Z) − α1(W,Z)ξ − (α − 1)η(Y)Z − (2α − 1)η(Z)η(W)ξ (51)
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which implies that

φP[W,Z] = ĀφWZ − ĀφZW + (α − 1){η(W)Z − η(Z)W}. (52)

In view of (42), (52) yields

φP[W,Z] = AφWZ − AφZW − a(Z)[W + η(Y)ξ] + a(W)[Z + η(Z)ξ] + (α − 1)[η(W)Z − η(Z)W], (53)

from which (48) follows.

Theorem 5.2. Let M be a CR-submanifold of M̃ with respect to ¯̃
∇. Then the distribution D⊥ is integrable if and only

if

AφWZ − AφZW = a(Z)W − a(W)Z + (a(Z)η(W) − a(W)η(Z))ξ + (α − 1)(η(Z)W − η(W)Z) (54)

for all W, Z ∈ D⊥.

Proof. From Lemma 5.1, it is obvious.

Corollary 5.3. Let M be a ξ-horizontal CR-submanifold of M̃ with respect to ¯̃
∇. Then the distribution D⊥ is

integrable if and only if

AφWZ − AφZW = a(Z)W − a(W)Z

for all W, Z ∈ D⊥.

Remark 1. Let M be a CR-submanifold of M̃ with respect to ∇̃. Then the distribution D⊥ is integrable if and
only if

AφWZ − AφZW = α
[
η(Z)W − η(W)Z

]
for all W, Z ∈ D⊥.
Remark 2. Let M be a ξ-horizontal CR-submanifold of M̃ with respect to ∇̃. Then the distribution D⊥ is
integrable if and only if

AφWZ = AφZW

for all W, Z ∈ D⊥.

Theorem 5.4. Let M be a CR-submanifold of M̃ with respect to ¯̃
∇. Then the distribution D is integrable if and only

if

h(X, φY) = h(Y, φX), for all X, Y ∈ D. (55)

Proof. For X, Y ∈ D, we have from (32) and (46) that

φ(Q∇̄XY) = h(X, φY) − Ch(X,Y), (56)

from which we get

φQ[X,Y] = h(X, φY) − h(Y, φX). (57)

Therefore D is integrable if and only if the relation (55) holds.

Remark 3. Let M be a CR-submanifold of M̃ with respect to ∇̃. Then the distribution D is integrable if and
only if h(X, φY) = h(Y, φX) for all X, Y ∈ D.



T. Pal et al. / Filomat 33:11 (2019), 3337–3349 3343

Theorem 5.5. Let M be a CR-submanifold of M̃ with respect to ¯̃
∇. If the distribution D is integrable and the leaf of

D is totally geodesic in M then

1(h(X,Y), φZ) + (α − 1)η(Z)1(X,Y) + (2α − 1)η(X)η(Y)η(Z) = 0 (58)

for all X, Y ∈ D and Z ∈ D⊥.

Proof. If D is integrable and leaf of D is totally geodesic in M then ∇̄XφY ∈ D for X, Y ∈ D. Now for X ∈ D
and Z ∈ D⊥ we have from (47) that

φP(∇̄XZ) = −ĀφZX + ∇̄⊥XφZ − φ(Q∇̄XZ) − φh̄(X,Z) − (α − 1)η(Z)X − (2α − 1)η(X)η(Z)ξ. (59)

From (14), (15) and (59), we find

0 = 1(∇̄XφY,Z) = −1(φY, ∇̄XZ) = −1(φY,P∇̄XZ) = −1(Y, φP∇̄XZ)
= 1(ĀφZX + Bh̄(X,Z),Y) + (α − 1)η(Z)1(X,Y) + (2α − 1)η(X)η(Y)η(Z)

for all X, Y ∈ D and Z ∈ D⊥.
Now using (11) and (32) in the above relation, we get (58).

Corollary 5.6. Let M be a ξ-horizontal CR-submanifold of M̃ with respect to ¯̃
∇. Then the distribution D is integrable

and the leaf of D is totally geodesic in M if and only if

1(h(X,Y), φZ) = 0, for all X, Y ∈ D and Z ∈ D⊥. (60)

Proof. The direct part follows from Theorem 5.5. For converse part, let the relation (60) holds. Then using
(7) in (60), we get

0 = 1(h(X,Y), φZ) = 1( ¯̃
∇XφY, φZ) = 1(∇̄XY,Z),

which implies that ∇̄XY ∈ D for any X, Y ∈ D and the leaf of D is totally geodesic in M with respect to
quarter symmetric non-metric connection. This completes the proof.

Theorem 5.7. Let M be a CR-submanifold of M̃ with respect to ¯̃
∇. Then the distribution D⊥ is integrable and the

leaf of D⊥ is totally geodesic in M if and only if

1(h(X,Z), φW) + a(X)1(Z,W) + a(X)η(Z)η(W) + α1(Z,W)η(X) + (2α − 1)η(X)η(Z)η(W) = 0 (61)

for all X ∈ D and Z, W ∈ D⊥.

Proof. For all Z, W ∈ D⊥, we have from (47) that

φP∇̄ZW = −ĀφWZ + ∇̄⊥ZφW − φ(Q∇̄ZW) − φh̄(Z,W) (62)
−α1(Z,W)ξ − (2α − 1)η(Z)η(W)ξ − (α − 1)η(W)Z.

Now, taking inner product of (62) with X ∈ D we get

1(φP∇̄ZW,X) = −1(ĀφWZ,X) − α1(Z,W)η(X) − (2α − 1)η(X)η(Z)η(W).

Using (11) and (36) in the above equation, we get

1(φP∇̄ZW,X) = 1(h(X,Z), φW) + a(X)1(Z,W) + a(X)η(Z)η(W) (63)
+α1(Z,W)η(X) + (2α − 1)η(X)η(Z)η(W),

from which (61) follows. The converse part is trivial.

Corollary 5.8. Let M be a ξ-horizontal CR-submanifold of M̃ with respect to ¯̃
∇. Then the distribution D⊥ is

integrable and the leaf of D⊥ is totally geodesic in M if and only if

1(h(X,Z), φW) + a(X)1(Z,W) + α1(Z,W)η(X) = 0 (64)

for all X ∈ D and Z, W ∈ D⊥.
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Corollary 5.9. Let M be a ξ-vertical CR-submanifold of M̃ with respect to ¯̃
∇. Then the distribution D⊥ is integrable

and the leaf of D⊥ is totally geodesic in M if and only if

1(h(X,Z), φW) + a(X)1(Z,W) + a(X)η(Z)η(W) = 0 (65)

for all X ∈ D and Z, W ∈ D⊥.

Definition 5.10 ([1], [24]). A CR-submanifold M of a (LCS)n-manifold M̃ with respect to ¯̃
∇ is called Lorentzian

contact CR-product if M is locally a Riemannain product of MT and M⊥, where MT and M⊥ denotes the leaves of the
distribution D and D⊥ respectively.

Theorem 5.11. Let M be a ξ-horizontal CR-submanifold of M̃ with respect to ¯̃
∇. Then M is a Lorentzian contact

CR-product if and only if

AφWX + αη(X)W + a(X)W = 0 (66)

for all X ∈ D and W ∈ D⊥.

Proof. As the leaves of D⊥ are totally geodesic, we have from (64) that

1(AφWX + αη(X)W + a(X)W,Z) = 0

for all X ∈ D and Z, W ∈ D⊥, which implies that

AφWX + αη(X)W + a(X)W ∈ D. (67)

Now for X, Y ∈ D and W ∈ D⊥, we have

1(AφWX + αη(X)W + a(X)W,Y) = 1(AφWX,Y) = 1(φ( ¯̃
∇XY − ∇̄XY),W)

= 1( ¯̃
∇XφY,W) = 1(∇̄XφY,W) = 0,

which means that

AφWX + αη(X)W + a(X)W ∈ D⊥. (68)

From (67) and (68), we get (66). Conversely, let (66) holds. Then, for Z ∈ D⊥, we get

1(h(X,Z), φW) + a(X)1(Z,W) + αη(X)1(Z,W) = 0,

which implies that the leaves of D⊥ are totally geodesic. Next for all X,Y ∈ D and W ∈ D⊥, we have

1(∇̄XY,W) = 1( ¯̃
∇XY,W) = 1(φ ¯̃

∇X, φW)

= 1( ¯̃
∇XφY, φW) = 1(h(X, φY), φW)

= 1(AφWX, φY)
= 1(−αη(Y)W − a(X)W, φY)
= 0.

Therefore, the leaves of D are totally geodesic in M. So, M is a Lorentzian contact CR-product.
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6. Totally umbilical CR-submanifolds

In this section, we study totally umbilical CR-submanifolds of (LCS)n-manifolds. Let M be a totally
umbilical CR-submanifolds of M̃ with respect to ∇̃.
Then for Z, W ∈ D⊥ we have from (7) that

∇̃ZφW − φ(∇̃ZW) = α[1(Z,W)ξ + 2η(Z)η(W)ξ + η(W)Z]. (69)

Using (9), (10) and (14) in (69), we get

−AφWZ + ∇⊥ZφW = φ(P∇ZW) + φ(Q∇ZW) + φh(Z,W) + α{1(Z,W)ξ + 2η(Z)η(W)ξ + η(W)Z}. (70)

Taking inner product of (70) with Z ∈ D⊥ and using (11), we get

−1(h(Z,Z), φW) = 1(φh(Z,W),Z) + α{1(Z,W)η(Z) + 2η2(Z) + η(W)1(Z,Z)}. (71)

In view of (12), (71) yields

1(H, φW) = −
1
‖Z‖2

[1(Z,W)1(φH,Z) + α{1(Z,W)η(Z) + 2η2(Z) + η(W)‖Z‖2}]. (72)

Interchanging Z and W in (72), we obtain

1(H, φZ) = −
1
‖W‖2

[
1(Z,W)1(φH,W) + α{1(Z,W)η(W) + 2η2(W) + η(Z)‖W‖2}

]
. (73)

Substituting (72) in (73), we get after simplification[
1 −

1(Z,W)2

‖Z‖2‖W‖2

]
1(H, φZ) − α

[
η(W)1(Z,W)
‖W‖2

− η(Z)
]
− 2α

η(Z)η(W)
‖W‖2

[
η(Z)1(Z,W)
‖Z‖2

− η(W)
]

(74)

−α
1(Z,W)
‖W‖2

[
η(Z)1(Z,W)
‖Z‖2

− η(W)
]

= 0.

Hence we get the following theorems:

Theorem 6.1. Let M be a ξ-horizontal totally umbilical CR-submanifold of M̃ with respect to ∇̃. Then one of the
following holds:
(i) M is minimal in M̃,
(ii) dim D⊥ = 1,
(iii) H ∈ Γ(µ).

Theorem 6.2. Let M be a ξ-vertical totally umbilical CR-submanifold of M̃ with respect to ∇̃. Then dimD⊥ = 1.

Remark 4. The Theorem 6.1 and Theorem 6.2 also holds good in case of considering M̃ with respect to ¯̃
∇.

7. Cohomology

In this section we have studied cohomology of CR-submanifold of M̃ with respect to ¯̃
∇ and obtain the

following:

Lemma 7.1. Let M be a ξ-vertical CR-submanifold of M̃ with respect to ¯̃
∇. Then the invariant distribution D is

minimal if

1(AφZX, φX) = −αη(Z)1(X, φX) (75)

for every X ∈ D and Z ∈ D⊥.
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Proof. For X ∈ D and Z ∈ D⊥, we have from (16) that

1(Z, ∇̄XX) = 1(Z, ¯̃
∇XX) = 1(Z, ∇̃XX) (76)

By virtue of (2), (4) and (7), (76) yields

1(Z, ∇̄XX) = −1(∇̃XφZ, φX) + αη(Z)1(X, φX). (77)

Using (10) in (77), we find

1(Z, ∇̄XX) = 1(AφZX, φX) + αη(Z)1(X, φX). (78)

Replacing X by φX in (78), we obtain

1(Z, ∇̄φXφX) = 1(AφZX, φX) + αη(Z)1(X, φX). (79)

From (78) and (79), we get

1(Z, ∇̄XX) + 1(Z, ∇̄φXφX) = 21(AφZX, φX) + 2αη(Z)1(X, φX). (80)

Thus the result follows from (80).

Let {e1, · · · , eq, eq+1 = φe1, · · · , e2q = φeq, e2q+1, · · · , em−1 = e2q+p−1, em = e2q+p = ξ} is a local pseudo orthonormal
basis of χ(M) such that {e1, · · · , e2q} is a local basis of D and {e2q+1, · · · , e2q+p} is a local basis of D⊥. We take
{ω1, · · · , ω2q

} as dual basis of {e1, · · · , e2q} and {θ2q+1, · · · , θ2q+p−1, η} as the dual basis of {e2q+1, · · · , e2q+p−1, ξ}.
Let ν = ω1

∧ ω2
· · · ∧ ω2q is the transversal volume form of a foliation F ⊥ defined by D⊥ on M. Then

dν = (−1) jω1
∧ ω2

· · · ∧ dω j
∧ · · · ∧ ω2q.

Thus dν = 0 if

dν(W1,W2,X1, · · · ,X2q−1) = 0 (81)

and

dν(W1,X1, · · · ,X2q) = 0 (82)

for any X1, X2, · · · ,X2q ∈ D and W1 ,W2 ∈ D⊥.
By straightforward we can say that (81) holds if D⊥ is integrable and (82) holds if D is minimal. Consequently
ν is closed if (54) and (75) holds simultaneously.
Again we take the p-form ν⊥ = θ2q+1

∧ · · · ∧ θ2q+p−1
∧ η so that

θi(e j) = δi
j, θ

i
/D = 0, i, j = 2q + 1, 2q + p − 1. Then by similar argument ν is closed if D⊥ is minimal and D is

integrable i.e. D⊥ is minimal and h(X, φY) = h(Y, φX) for X, Y ∈ D. Thus we get the following theorem:

Theorem 7.2. Let M be a compact CR-submanifold of M̃ with respect to ¯̃
∇. Then the transversal volume form ν

defines a cohomology class c(ν) := [ν] ∈ H2q(M;R), 2q = dimD if (54) and (75) holds simultaneously.
Furthermore if D⊥ is minimal and h(X, φY) = h(Y, φX) for X, Y ∈ D holds then H2i(M,R) , 0 for any i ∈ {1, · · · , q}.

8. Example

In this section we construct an example of a (LCS)5-manifold as similar in [20], then we verify Proposition
4.1 and the relation (20).
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Example 8.1. Let us consider the manifold M̃ = {(x, y, z,u, v) ∈ R5 : (x, y, z,u, v) , (0, 0, 0, 0, 0)}. We take the
linearly independent vector fields at each point of M̃ as
e1 = e−kz(x ∂

∂x + y ∂
∂y ), e2 = e−kz ∂

∂y , e3 = e−2kz ∂
∂z , e4 = e−kz(u ∂

∂u + v ∂
∂v ), e5 = e−kz ∂

∂v for some scalar k.

Let 1̃ be the metric defined by

1̃(ei, e j) =


1, f or i = j , 3,
0, f or i , j,
−1, f or i = j = 3.

Here i, j ∈ {1, 2, · · · , 5}.
Let η be the 1-form defined by η(Z) = 1̃(Z, e3), for any vector field Z ∈ χ(M̃). Let φ be the (1,1) tensor field defined
by φe1 = e1, φe2 = e2, φe3 = 0, φe4 = e4, φe5 = e5. Then using the linearity property of φ and 1̃ we
have η(e3) = −1, φ2U = U + η(U)ξ and 1̃(φU, φV) = 1̃(U,V) + η(U)η(V), for every U, V ∈ χ(M̃).Thus for
e3 = ξ, (φ, ξ, η, 1̃) defines a Lorentzian paracontact structure on M̃. Let ∇̃ be the Levi-Civita connection on M̃ with
respect to the metric 1̃. Then we have [e1, e2] = −e−kze2, [e1, e3] = ke−2kze1, [e1, e4] = 0, [e1, e5] = 0, [e2, e3] = ke−2kze2,
[e2, e4] = 0, [e2, e5] = 0, [e4, e3] = ke−2kze4, [e5, e3] = ke−2kze5 , [e4, e5] = 0.
Now, using Koszul’s formula for 1̃, it can be calculated that ∇̃e1 e1 = ke−2kze3, ∇̃e1 e3 = ke−2kze1, ∇̃e2 e1 = e−kze2,
∇̃e2 e2 = −e−kze1 +ke−2kze3, ∇̃e2 e3 = ke−2kze2, ∇̃e4 e3 = ke−2kze4, ∇̃e4 e4 = ke−2kze3, ∇̃e5 e3 = ke−2kze5, ∇̃e5 e4 = e−kze5,
and ∇̃e5 e5 = −e−kze4 + ke−2kze3.
and rest of the terms are zero.
Since {e1, e2, e3, e4, e5} is a frame field, then any vector field X,Y ∈ TM̃ can be written as

X = x1e1 + x2e2 + x3e3 + x4e4 + x5e5,

Y = y1e1 + y2e2 + y3e3 + y4e4 + y5e5,

where xi, yi ∈ R, i = 1, 2, 3, 4, 5 such that

x1y1 + x2y2 − x3y3 + x4y4 + x5y5 , 0

and hence

1̃(X,Y) =
(
x1y1 + x2y2 − x3y3 + x4y4 + x5y5

)
. (83)

Therefore,

∇̃XY = ke−2kz[x1y3e1 + x2y3e2 + (x1y1 + x2y2 + x4y4 + x5y5)e3 (84)

+x4y3e4 + x5y3e5] + e−kz[−x2y1e1 + x2y1e2 − x5y5e4 + x5y4e5].

From the above it can be easily seen that (φ, ξ, η, 1̃) is a (LCS)5 structure on M̃ with α = ke−2kz , 0 such that
X(α) = ρη(X), where ρ = 2k2e−4kz.
We set A = e1. Then a(X) = 1(X,A) = x1. Hence from (16), we get

¯̃
∇XY = ke−2kz[x1y3e1 + x2y3e2 + (x1y1 + x2y2 + x4y4 + x5y5)e3 (85)

+x4y3e4 + x5y3e5] + e−kz (
−x2y2e1 + x2y1e2 − x5y5e4 + x5y4e5

)
−y3 (x1e1 + x2e2 + x4e4 + x5e5) + x1

(
y1e1 + y2e2 + y4e4 + y5e5

)
.

Also, for Z = z1e1 + z2e2 + z3e3 + z4e4 + z5e5, zi ∈ R, i = 1 to 5, we have

( ¯̃
∇X1̃)(Y,Z) = z3(x1y1 + x2y2 + x4y4 + x5y5) − 2x1(y1z1 + y2z2 + y4z4 + y5z5)

, 0.

Thus in an (LCS)5-manifold the quarter symmetric non-metric connection is given by (85). Let f be an isometric
immersion from M to M̃ defined by f (x, y, z) = (x, y, z, 0, 0). Let M = {(x, y, z) ∈ R3 : (x, y, z) , (0, 0, 0)}, where
(x, y, z) are the standard coordinates in R3. The vector fields
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e1 = e−kz(x ∂
∂x + y ∂

∂y ), e2 = e−kz ∂
∂y , e3 = e−2kz ∂

∂z are linearly independent at each point of M.
Let 1 be the induced metric defined by

1(ei, e j) =


1, f or i = j , 3,
0, f or i , j,
−1, f or i = j = 3.

Here i and j runs over 1 to 3.
Let ∇ be the Levi-Civita connection on M with respect to the metric 1. Then we have [e1, e2] = −e−kze2, [e1, e3] =
ke−2kze1, [e2, e3] = ke−2kze2. Clearly {e4, e5} is the frame field for the normal bundle T⊥M. If we take Z ∈ TM then
φZ ∈ TM and therefore M is an invariant submanifold of M̃. If we take X, Y ∈ TM then we can express them as

X = x1e1 + x2e2 + x3e3,

Y = y1e1 + y2e2 + y3e3.

Therefore

∇XY = ke−2kz[x1y3e1 + x2y3e2 + (x1y1 + x2y2 + x4y4 + x5y5)e3] + e−kz[−x2y2e1 + x2y1e2].

Now from (85), the tangential part of ¯̃
∇XY is given by

∇̄XY = ke−2kz[x1y3e1 + x2y3e2 + (x1y1 + x2y2)e3] + e−kz (
−x2y2e1 + x2y1e2

)
−y3 (x1e1 + x2e2) + x1

(
y1e1 + y2e2

)
= ∇XY + η(Y)φX + a(X)φY.

And

(∇̄X1)(Y,Z) = z3(x1y1 + x2y2) − 2x1(y1z1 + y2z2),
, 0.

which means M admits quarter symmetric non-metric connection. Also, it is easy to see that

h̄(X,Y) = h(X,Y) = ke−2kz(x4y3e4 + x5y3e5) + e−kz(−x5y5e4 + x5y4e5).

Thus the Proposition 4.1 is verified.
Now, if R and R̄ be the curvature tensors of M with respect to ∇ and ∇̄ respectively then we can easily calculate

R(e1, e2)e2 = k2e−4kze1 − e−2kze1

R(e1, e3)e3 = k2e−4kze1

R(e2, e1)e1 = k2e−4kze2 − e−2kze2

R(e2, e3)e3 = k2e−4kze2 (86)
R(e3, e1)e1 = −k2e−4kze3

R(e3, e2)e2 = −k2e−4kze3

R(e1, e2)e3 = 0.

Again from (16), we have
∇̄e1 e1 = ke−2kze3 + e1, ∇̄e1 e2 = e2, ∇̄e1 e3 = (ke−2kz

− 1)e1, ∇̄e2 e1 = e−kze2, ∇̄e2 e2 = −e−kze1 + ke−2kze3,
∇̄e2 e3 = (ke−2kz

− 1)e2 and rest of the terms are zero. Therefore

R̄(e1, e2)e2 = k2e−4kze1 − e−2kze1 − ke−2kze1 − ke−2kze3

R̄(e1, e3)e3 = k2e−4kze1 + ke−2kze1

R̄(e2, e1)e1 = k2e−4kze2 − e−2kze2 − ke−2kze2

R̄(e2, e3)e3 = k2e−4kze2 + ke−2kze2 (87)
R̄(e3, e1)e1 = −k2e−4kze3 − ke−2kze3

R̄(e3, e2)e2 = −k2e−4kze3

R̄(e1, e2)e3 = (ke−2kz
− 1)e2.
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Now from (86), (87) and using the relation da(X,Y) = 1
2 {Xa(Y) − Ya(X)} − a[X,Y], we can easily verify (20).
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