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Abstract. The aim of our work is to give a well-posedness result for a boundary value problem of
transmission-type for the nonlinear, generalized Darcy-Forchheimer-Brinkman and Stokes systems in com-
plementary Lipschitz domains inR3. First, we introduce the Sobolev spaces in which we seek our solution,
then we define the trace operators and conormal derivative operators that are involved in the boundary
conditions of our treated problem. Next, we state a result that concerns the well-posedness of the transmis-
sion problem for the generalized Brinkman and Stokes system in complementary Lipschitz domains in R3.
Afterwards, we state and prove an important lemma. Finally, we obtain our desired result by employing
the well-posedness of the linearized version of our problem and Banach’s fixed point theorem.

1. Introduction

Transmission problems are becoming increasingly important problems not only due to their theoretical
value (see, e.g., [4],[22]) but also due to practical applications as well. Also, in the field of elliptic boundary
value problems, diverse systems of PDEs arise to model real-world problems (see, e.g., [21]).

In this particular research area, many researchers have obtained a great deal of results. Escauriaza and
Mitrea [3] have used a layer potential method in order to tackle transmission problems associated to the
Laplace operator on Lipschitz domains inRn, n ≥ 2. Girault and Sequeira [5] have obtained well-posedness
results for boundary value problems for the Stokes system in R2 and R3 and in their work they have used
weighted Sobolev spaces as introduced in [8]. Groşan et al. [6] have studied the Dirichlet problem for a
generalized version of the Darcy-Forchheimer-Brinkman system in Lipschitz domains inRn, n = 2, 3. Kohr
et al. [10] have studied boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-
Brinkman systems in Lipschitz domains in Rn, n = 2, 3, with small data in L2-based Sobolev spaces (see
also the work of Kohr et al. in [15]).

Mitrea and Wright [20] have studied transmission-type problems for the Stokes system in Sobolev and
Besov spaces. Medkova [18] has used the integral equations method in order to treat a transmission problem
for the Stokes system in a Lipschitz domain in R3. Medkova [17] has studied a transmission problem for
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the Brinkman system in Lipschitz domains in Rn, n > 2. Kohr et al. in [13] have studied the semilinear
Brinkman system with nonlinear Robin boundary condition. Kohr et al. in [11] have studied the nonlinear
Neumann-transmission problem for the Stokes and Brinkman operators on Euclidean Lipschitz domains in
which they considered nonlinear boundary conditions. Kohr et al. [14] have treated a transmission problem
for the Stokes system and the nonlinear Darcy-Forchheimer-Brinkman system in Lipschitz domains in R3.
Kohr et al. in [12] have studied nonlinear Robin-transmission boundary value problems for the nonlinear
Darcy-Forchheimer-Brinkman system and Navier-Stokes system, in which the nonlinearity is present in
the considered systems and also in the boundary conditions. Kohr et al. [16] have studied transmission
problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains in the
setting of compact Riemannian manifolds of dimension 2 and 3.

The goal of this paper is to give a well-posedness result in L2-based Sobolev spaces, for a Poission
problem of transmission type for the generalized Darcy-Forchheimer-Brinkman and Stokes system in two
complementary Lipschitz domains inR3, namely, a bounded Lipschitz domain Γ (with connected boundary
∂Γ) and the complementary set R3

\ Γ. The main idea behind this result is a combination between the well-
posedness result in the linear case and Banach’s fixed point theorem. In Section 2 we shall introduce the
L2-based (Bessel potential) Sobolev spaces and weighted Sobolev spaces in which we seek our unknown
velocity fields. In addition, we give a definition (see Definition 2.1) of what it means for a function to tend
to a constant at infinity in the sense of Leray, a very useful corollary (see Corollary 2.2). We conclude this
section with lemmas that allow us to introduce the trace and conormal derivative operators that appear
in the formulation of the boundary conditions of the problem that is the object of our study (see Lemma
2.3, Lemma 2.4, Lemma 2.5). In Section 3 we give an auxiliary well-posedness result for the transmission
problem for the generalized Brinkman and Stokes systems in complementary Lipschitz domains inR3 (see
Theorem 3.2). Using this result and the properties established at Lemma 3.1, we can prove the main result
of this paper (see Theorem 3.3) by rewriting our non-linear problem in terms of an non-linear operator that
is a contraction on some closed ball in a suitable chosen Hilbert space and then to use Banach’s fixed point
theorem.

2. Preliminary Results

In this section we recall the tools need for the formulation of the transmission-type problem that we will
study further on. We shall start with describing the systems that appear in our paper.

In the latter, Γ+ := Γ ⊂ R3 denotes a bounded Lipschitz domain (see, e.g., [7, Definition 2.1]) with
connected boundary denoted by ∂Γ and let Γ− := R3

\ Γ, the corresponding complementary set.

2.1. Sobolev spaces

We aim to introduce, in this subsection, the Sobolev spaces in which we seek our solutions of our
transmission problem for the generalized Darcy-Forchheimer-Brinkman system and Stokes system. To this
end, we will use the standard Sobolev spaces and the weighted Sobolev spaces (more suitable when dealing
with the Stokes system in the unbounded domain Γ−).

Let p = 1, 2. Let Lp(R)3 be the space of (equivalence classes of) measurable functions, p-th power
integrable, defined on R3. Denote the Fourier transform by F , and its inverse by F −1, which both act on
L1(R3) functions and consider their generalizations to the space of the tempered distributions.

Next, we denote by Γ0 either Γ+, Γ− or R3.
Let s ∈ R. The scalar L2-based Sobolev (Bessel potential) spaces are given by (see, e.g., [1, Chapter 1]):

Hs(R3) := {F −1(1 + |ξ|2)−
s
2F v : v ∈ L2(R3)},

Hs(Γ0) := {v ∈ D′(Γ0) : ∃V ∈ Hs(R3) such that V|Γ0 = v},

H̃s(Γ0) := D(Γ0)
||·||Hs (R3) (i.e., the closure ofD(Γ0) in Hs(R3) ),
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where D(Γ0) is the space of compactly supported smooth functions C∞0 (Γ0), endowed with the inductive
limit topology and byD′(Γ0) we denote its dual, the space of distributions on Γ0, endowed with the weak-
star topology. The vector-valued spaces are introduced component-wise. Note that ′ refers here and in the
sequel to the topological dual.

For s ∈ (0, 1) we introduce the boundary Sobolev spaces Hs(∂Γ) as follows (see also [9, Page 169]):

Hs(∂Γ) := { f ∈ L2(∂Γ) :|| f ||Hs(∂Γ) = || f ||L2(∂Γ) +

∫
∂Γ

∫
∂Γ

| f (x) − f (y)|
|x − y|2+2s dσxdσy < ∞}.

Introduce also the negative order spaces by the following dualities:

H−s(∂Γ) = (Hs(∂Γ))′,

for s ∈ (0, 1). The vector-valued spaces are introduced component-wise.
Next, we introduce the weighted Sobolev spaces. The motivation behind this introduction is that of the

need to compensate the behavior at infinity of the fundamental solution of the Stokes system. We proceed
to introduce the weighted spaces as in [8].

We introduce the following weight function ρ(x) := (1 + |x|2)
1
2 , for all x ∈ R3.

We define the weighted space L2(ρ−1; Γ−) by the following relation

v ∈ L2(ρ−1; Γ−)⇔ ρ−1v ∈ L2(Γ−).

Using the above introduced space, we define the weighted Sobolev spaces as follows:

H
1(Γ−) := {v ∈ D′(Γ−) : ρ−1v ∈ L2(Γ−),∇v ∈ L2(Γ−)3

},

H̃
1(Γ−) := D(Γ−)

||·||
H1(Γ− ) (i.e. the closure ofD(Γ−) inH1(Γ−)),

while their vector-valued counterparts are defined component-wise. We also indicate here, the choice of
norm onH1(Γ−), as follows:

||v||H1(Γ−) := [||ρ−1v||2L2(Γ−) + ||∇v||2L2(Γ−)]
1
2 .

We also define the negative order weighted Sobolev spaces by the following dualities:

H
−1(Γ−) = (H̃1(Γ−))′, H̃−1(Γ−) = (H1(Γ−))′.

We conclude the section on Sobolev space by describing the condition satisfied by the velocity w− in the
set Γ− (see transmission conditions in (34)), i.e., we shall give the definition of what it means for a function
to tend to a constant at infinity in the sense of Leray (see, e.g., [14, Definition 2.3])

Definition 2.1. A function v tends to a constant v∞ at∞ in the sense of Leray if:

lim
r→∞

∫
S2
|v(ry) − v∞|dσy = 0,

where S2 denotes the unit sphere in R3.

The next result mentions the behavior at infinity of functions that belong to H1(Γ−) (see, e.g., [14,
Corollary 2.4]).

Corollary 2.2. If v ∈ H1(Γ−), the v tends to 0 at∞ in the sense of Leray.
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2.2. The generalized Darcy-Forchheimer-Brinkman system
We introduce the generalized version of the Brinkman system, namely (see also, [13, Section 2.2]):

∆w − Pw − ∇p = f in Γ+, div w = 0 in Γ+, (1)

where P ∈ L∞(Γ+)3×3 satisfies the condition:

〈Pv,v〉Γ+
≥ cP||v||2L2(Γ+)3 , ∀ v ∈ L2(Γ+)3, (2)

where cP > 0 is a constant. The Brinkman system can be used to describe flows through swarms of fixed
particles at very low concentration and under precise conditions (we refer the reader to the study provided
at [21, Pages 17-18]).

Note that, if P ≡ 0 in (1), we recover the well-known Stokes system.
We introduce now the generalized Darcy-Forchheimer-Brinkman system, which is given by (see, also

[6]):

∆w − Pw − k|w|w − β(w · ∇)w − ∇p = f in Γ+, div w = 0 in Γ+, (3)

where P ∈ L∞(Γ+)3×3 such that condition (2) holds and k, β : Γ+ → R+ are functions such that k, β ∈ L∞(Γ+),
i.e., essentially bounded, non-negative functions defined on Γ+.

If P ≡ αI, where α > 0 is a constant and k, β > 0 are also constants in (3), one obtains the classical
Darcy-Forchheimer-Brinkman system which is used to describe flows through porous media saturated
with viscous incompressible fluids, where the inertia of the fluid is not negligible (for additional details, we
refer to [21]).

If P ≡ 0, k = 0 and β > 0 is a constant in (3), we recover the Navier-Stokes system.

2.3. Trace and Conormal Derivative Operators
In this section, we will introduce the important operators that appear in the transmission condition in

our main result.
First, we will introduce the trace operator by the following lemma (see, e.g., [19, Theorem 2.3]).

Lemma 2.3. (Gagliardo Trace Lemma) Let Γ+ := Γ ⊂ R3 be a bounded Lipschitz domain with connected boundary
∂Γ and denote by Γ− := R3

\ Γ the complementary Lipschitz set. Then, there exist linear, continuous trace operators
Tr± : H1(Γ±)→ H

1
2 (∂Γ), such that

Tr±v = v|∂Γ, ∀v ∈ C∞(Γ±). (4)

Moreover, these operators are surjective, having (non-unique) linear and continuous right inverse operators Z± :
H

1
2 (∂Γ)→ H1(Γ±).

Note that, one introduces similarly the trace operator Tr− : H1(Γ−)→ H
1
2 (∂Γ) and this lemma holds due

to the continuous embedding H1(Γ−) ↪→ H1(Γ−). We omit the statement of the lemma, but we shall refer
the reader to work of Kohr et al. [14, Lemma 2.2].

Note that, whenever we use 〈·, ·〉A we indicate the duality pairing of two dual Sobolev spaces defined
on A, where A is either an open set or a surface inR3. Moreover, for a given field w, we denote by E(w) the
symmetric part of ∇w which is given by

E(w) :=
1
2

(∇w + ∇wt),

where by the superscript t we refer to the transpose.
Now, we give the lemma that allows us to introduce the conormal derivative operator for the generalized

Brinkman system (see, e.g., [13, Lemma 2.3]).
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Lemma 2.4. Let Γ+ := Γ ⊂ R3, be a bounded Lipschitz domain with connected boundary ∂Γ. Let P ∈ L∞(Γ+)3×3.
Consider the following space:

H(Γ+,BP) :={(w, p, f) ∈ H1(Γ+)3
× L2(Γ+) × H̃−1(Γ+)3 : BP(w, p) := ∆w − Pw − ∇p = f|Γ+

and div w = 0 in Γ+}.

Define the conormal derivative operator for the generalized Brinkman system,

t+
P,ν : H(Γ+,BP)→ H−

1
2 (∂Γ)3, (5)

by the following relation:

〈t+
P,ν(w, p, f),φ〉∂Γ :=2〈E(w),E(Z+φ)〉Γ+

+ 〈Pw,Z+φ〉Γ+
− 〈p,div (Z+φ)〉Γ+

+ 〈f,Z+φ〉Γ+
, ∀φ ∈ H−

1
2 (∂Γ)3,

(6)

where Z+ is a right inverse of the trace operator Tr+ : H1(Γ+)3
→ H

1
2 (∂Γ)3. The operator t+

P,ν is linear, bounded and
does not depend on the choice of the right inverse Z+ of the trace operator Tr+.

Moreover, the following Green formula holds:

〈t+
P,ν(w, p, f),Tr+ψ〉∂Γ =2〈E(w),E(ψ)〉Γ+

+ 〈Pw,ψ〉Γ+
− 〈p, div ψ〉Γ+

+ 〈f,ψ〉Γ+
, (7)

for all (w, p, f) ∈ H(Γ+,BP) and for any ψ ∈ H1(Γ+)3.

Similarly, we introduce the lemma that allows us to define the conormal derivative operator when we
consider the Stokes system in the exterior domain in the setting of weighted Sobolev spaces (see, e.g., [14,
Lemma 2.9]).

Lemma 2.5. Let Γ+ := Γ ⊂ R3, be a bounded Lipschitz domain with connected boundary ∂Γ. Consider the following
space:

H (Γ−,B0) :={(w, p, f) ∈ H1(Γ−)3
× L2(Γ−) × H̃−1(Γ−)3 : B0(w, p) := ∆w − ∇p = f|Γ−

and div w = 0 in Γ−}.

Define the conormal derivative operator t−0,ν associated to the Stokes system in the Lipschitz set Γ−,

t−0,ν :H (Γ−,B0)→ H−
1
2 (∂Γ)3, (8)

by the following relation:

〈t−0,ν(w, p, f),φ〉∂Γ := − 2〈E(w),E(Z−φ)〉Γ− + 〈p,div (Z−φ)〉Γ− + 〈f,Z−φ〉Γ− , ∀φ ∈ H−
1
2 (∂Γ)3, (9)

where Z− is a right inverse of the trace operator Tr− : H1(Γ−)3
→ H

1
2 (∂Γ)3. The operator t−0,ν is linear, bounded and

does not depend on the choice of the right inverse Z− of the trace operator Tr−.
Moreover, the following Green formula holds:

〈t−0,ν(w, p, f),Tr−ψ〉∂Γ = − 2〈E(w),E(ψ)〉Γ− + 〈p, div ψ〉Γ− − 〈f,ψ〉Γ− , (10)

for all (w, p, f) ∈H (Γ−,B0) and for any ψ ∈ H1(Γ−)3.
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3. Transmission problems involving the generalized Darcy-Forchheimer-Brinkman system

In this section, we present the main result of the paper, namely the theorem that gives the well-posedness
property of the transmission type problem for the generalized Darcy-Forchheimer-Brinkman and Stokes
systems in Lipschitz domains in R3.

To simplify the notations, we will introduce the following spaces:

H1
div(Γ+)3 := {w ∈ H1(Γ+)3 : div w = 0 in Γ+},

H
1
div(Γ−)3 := {w ∈ H1(Γ−)3 : div w = 0 in Γ−},

X := H1
div(Γ+)3

× L2(Γ+) ×H1
div(Γ−)3

× L2(Γ−),

Y := H̃−1(Γ+)3
× H̃

−1(Γ−)3
×H

1
2 (∂Γ)3

×H−
1
2 (∂Γ)3,

Y∞ := Y ×R3.

In the latter, let E̊ denote the extension by zero operator outside Γ+.
In order to get our desired result, we will state and prove a useful lemma that will intervene in the proof

of our main result.
To this end, we have the following lemma (see also, [14, Lemma 5.1]).

Lemma 3.1. Let Γ+ := Γ ⊂ R3 be a bounded Lipschitz domain with connected boundary. Let k, β : Γ+ → R+ such
that k, β ∈ L∞(Γ+) and let

Jk,β,Γ+
(v) := E̊(k|v|v + β(v · ∇)v). (11)

Then, the nonlinear operator Jk,β,Γ+
: H1

div(Γ+)3
→ H̃−1(Γ+)3 is continuous, positively homogeneous of order 2, and

bounded, in the sense that there is a constant c0 = c0(Γ+, k, β) > 0 such that

||Jk,β,Γ+
(v)||H̃−1(Γ+)3 ≤ c0||v||2H1(Γ+)3 . (12)

Moreover, the following Lipschitz-like relation holds:

||Jk,β,Γ+
(v) −Jk,β,Γ+

(w)|| ≤ c0(||v||H1(Γ+)3 + ||w||H1(Γ+)3 )||v −w||H1(Γ+)3 , (13)

with c0 = c0(Γ+, k, β) > 0, the same constant as in the relation (12).

Proof. We follow similar ideas to those in the proof of [14, Lemma 5.1] and we outline the main ideas.
Now, since Γ+ is a bounded Lipschitz domain, we have that:

H1(Γ+)3 ↪→ Lq(Γ+)3, (14)

continuously, for all q such that 2 ≤ q ≤ 6. Note that the embedding (14) has dense range and hence

Lq′ (Γ+)3 ↪→ H̃−1(Γ+)3, (15)

continuously, in the sense that E̊u ∈ H̃−1(Γ+)3 for all u ∈ Lq′ (Γ+)3 where 6
5 ≤ q′ ≤ 2 and there is a constant

cq > 0 such that

||E̊u||H̃−1(Γ+)3 ≤ cq||u||Lq′ (Γ+)3 . (16)

Letting q = 4 in relation (14) and applying Hölder’s inequality, one may show that |v|w ∈ L2(Γ+)3, for all
v,w ∈ H1(Γ+)3. We introduce now, the operator b : H1(Γ+)3

×H1(Γ+)3
→ H̃−1(Γ+)3 as follows:

b(v,w) := E̊(k|v|w). (17)

This operator is well-defined (see relation (16) when q = 2).
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We can show, using relation (16) with q = 2 and Hölder’s inequality, that there is a constant c∗ =
c∗(Γ+, k) > 0 such that

||b(v,w)||H̃−1(Γ+)3 ≤ c∗||v||H1(Γ+)3 ||w||H1(Γ+)3 . (18)

Thus, the nonlinear operator b : H1(Γ+)3
×H1(Γ+)3

→ H̃−1(Γ+)3 is bounded.
Consider again relation (14) with q = 6 and apply again Hölder’s inequality, then one may deduce that

(v · ∇)w ∈ L
3
2 (Γ+)3, for all v,w ∈ H1(Γ+)3 and the following inequality holds:

||(v · ∇)w||
L

3
2 (Γ+)3

≤ c′||v||H1(Γ+)3 ||w||H1(Γ+)3 , (19)

for some constant c′ = c′(Γ+) > 0.
We can introduce the following operator t : H1(Γ+)3

×H1(Γ+)3
→ H̃−1(Γ+)3 by the following relation:

t(v,w) := E̊(β(v · ∇)w). (20)

This operator is well-defined (see relation (16) with q = 3
2 ).

Once again, using relation (16) with q = 3
2 and relation (19). we may show that there is a constant

c∗ = c∗(Γ+, β) > 0 such that

||t(v,w)||H̃−1(Γ+)3 ≤ c∗||v||H1(Γ+)3 ||w||H1(Γ+)3 . (21)

Thus, the nonlinear operator t : H1(Γ+)3
×H1(Γ+)3

→ H̃−1(Γ+)3 is bounded.
Let us note that the operator Jk,β,Γ+

admits the following decomposition:

Jk,β,Γ+
(v) = b(v,v) + t(v,v). (22)

Then, by using inequalities (18) and (21), we deduce that our operatorJk,β,Γ+
satisfies relation (12) with the

constant c0 := c∗ + c∗ and hence it is a bounded operator and positively homogeneous of order 2.
By using again relations (18) and (21) one may show that the Lipschitz-like inequality (13) for the

operator Jk,β,Γ+
holds (using similar arguments as in the proof of [14, Lemma 5.1]).

We have omitted the full argument for the sake of brevity, but we refer the reader to the proof of [14,
Lemma 5.1]. Thus, our proof is complete.

In the latter, we recall a result for the transmission problem related to the generalized Brinkman and
Stokes systems. Such a result is very useful to obtain the existence and uniqueness for our nonlinear problem
concerning the generalized Darcy-Forchheimer-Brinkman and Stokes system in R3. Also, let L ∈ L∞(∂Γ)3×3

be a symmetric matrix-valued function, which satisfies the following positivity condition:

〈Lv,v〉∂Γ ≥ 0, ∀v ∈ L2(∂Γ)3. (23)

We have the following theorem (cf. [2, Theorem 4.3], see also [14, Lemma 4.1, Theorem 4.2]).

Theorem 3.2. Let Γ+ := Γ ⊂ R3 be a bounded Lipschitz domain with connected boundary and let Γ− := R3
\ Γ the

complementary Lipschitz set. Let P ∈ L∞(Γ+)3×3, such that condition (2) holds. Let L ∈ L∞(∂Γ)3×3 be a symmetric
matrix-valued function that satisfied condition (23). Then, for (f+, f−, g0, h0) ∈ Y given, the Poisson problem of
transmission-type for the Stokes and the generalized Brinkman systems:

∆w+ − Pw+ − ∇p+ = f|Γ+
in Γ+,

∆w− − ∇p− = f|Γ− in Γ−,

Tr+w+ − Tr−w− = g0 on ∂Γ,
t+
P,ν(w+, p+, f+) − t−0,ν(w−, p−, f−) + LTr+w+ = h0 on ∂Γ,

(24)
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has a unique solution (w+, p+,w−, p−) ∈ X and there is a linear and continuous ’solution’ operator,

T : Y→ X, (25)

that maps the given data (f+, f−, g0, h0) ∈ Y to the solution (w+, p+,w−, p−) ∈ X of the transmission problem (24).
Moreover, there is a constant C ≡ C(Γ+,Γ−,P,L) > 0 such that:

||(w+, p+,w−, p−)||X ≤ C||(f+, f−, g0, h0)||Y, (26)

and w− vanishes at infinity in the sense of Leray.

Proof. In order to show the statement of our theorem, we use the following arguments (see also, [2, Theorem
4.5]).

First, we note that, the Poisson problem of transmission-type for the Stokes system in the bounded
Lipschitz domain Γ+ and the Stokes system in the complementary Lipschitz set Γ− in R3:

∆w+ − ∇p+ = f|Γ+
in Γ+,

∆w− − ∇p− = f|Γ− in Γ−,

Tr+w+ − Tr−w− = g0 on ∂Γ,
t+
P,ν(w+, p+, f+) − t−0,ν(w−, p−, f−) + LTr+w+ = h0 on ∂Γ,

(27)

is well-posed (see [18, Proposition 5.1, Theorem 5.1] and [2, Lemma 4.1, Theorem 4.3]). It follows that there
exists a ”solution” operator

S : Y→ X, (28)

that maps the given data given data (f+, f−, g0, h0) ∈ Y to the corresponding solution (w+, p+,w−, p−) ∈ X of
the problem (27). The operator S is well-defined, linear and continuous.

Secondly, for the uniqueness argument, one must consider the homogeneous version of our problem (24).
Then one must apply Green’s formulas (7), (10), the transmission conditions of the homogeneous version of
(24), the positivity conditions satisfied by P and L and the well-posedness of the exterior Dirichlet problem
for the Stokes system with homogeneous Dirichlet boundary condition in order to deduce that, indeed,
problem (24) has at most one solution.

Finally, for the existence part, we use the extension by zero operator E̊ in order to rewrite the problem
(24) in the form:

∆w+ − ∇p+ = f|Γ+
+ E̊(Pw+) in Γ+,

∆w− − ∇p− = f|Γ− in Γ−,

Tr+w+ − Tr−w− = g0 on ∂Γ,
t+
P,ν(w+, p+, f+) − t−0,ν(w−, p−, f−) + LTr+w+ = h0 on ∂Γ.

(29)

The problem (29) can be written equivalently in terms of the solution operator S as:

(w+, p+,w−, p−) = S(f+ + E̊(Pw+), f−, g0, h0). (30)

Using the linearity of the operator S, we rewrite (30) in the following form:

SB(w+, p+,w−, p−) = S(f+, f−, g0, h0), (31)

where SB : X→ X is a Fredholm operator of index 0 given by:

SB(w+, p+,w−, p−) = I(w+, p+,w−, p−) − Sc(w+, p+,w−, p−), (32)
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where Sc : X→ X is given by

Sc(w+, p+,w−, p−) := S(E̊(Pw+), 0, 0, 0) (33)

is a compact operator.
Moreover, the equivalence between equation (31) and our transmission problem (29) implies that the

operator SB is also injective and hence an isomorphism.
Then, the existence part of our proof is finished and the continuity of the operators S and SB implies

that there is a constant C ≡ C(Γ+,Γ−,P,L) > 0 such that the estimate (26) holds and w− ∈ H1(Γ−)3 vanishes
at infinity in the sense of Leray due to Corollary 2.2.

This concludes the proof.

The main problem in this paper, as previously announced, is the transmission problem for the general-
ized Darcy-Forchheimer-Brinkman and Stokes systems in Lipschitz domains inR3. It requires to determine
the unknown fields (w+, p+,w−, p−) ∈ X satisfying:

∆w+ − Pw+ − k|w+|w+ − β(w+ · ∇)w+

−∇p+ = f|Γ+
in Γ+,

∆w− − ∇p− = f|Γ− in Γ−,

Tr+w+ − Tr−w− = g0 on ∂Γ,
t+
P,ν(w+, p+, f+ + E̊(k|w+|w+ + β(w+ · ∇)w+))
−t−0,ν(w−, p−, f−) + LTr+w+ = h0 on ∂Γ,

(34)

The following result regarding the well-posedness of the transmission problem (34) was obtained (see
also [14, Theorem 5.2] in the case k, β > 0, P ≡ αIwhere α > 0 is a constant).

Theorem 3.3. Let Γ+ := Γ ⊂ R3 be a bounded Lipschitz domain with connected boundary and let Γ− := R3
\ Γ the

complementary Lipschitz set. Let P ∈ L∞(Γ+)3×3, such that condition (2) holds. Let L ∈ L∞(∂Γ)3×3 be a symmetric
matrix-valued function that satisfied condition (23). Let w∞ ∈ R3 be a constant vector. Then, there exist two constants
ξ = ξ(Γ+,Γ−,P, k, β,L) > 0 and λ = λ(Γ+,Γ−,P, k, β,L) > 0, such that for all given (f+, f−, g0, h0,w∞) ∈ Y∞ that
satisfy

||(f+, f−, g0, h0,w∞)||Y∞ ≤ ξ, (35)

the transmission problem (34) has a unique solution (w+, p+,w−, p−) ∈ X and

||(w+, p+,w− −w∞, p−)||X ≤ λ. (36)

In addition, the solution depends continuously on the given data and satisfies the following estimate:

||(w+, p+,w− −w∞, p−)||X ≤ C0||(f+, f−, g0, h0,w∞)||Y∞ , (37)

where C0 = C0(Γ+,Γ−,P,L) > 0 is a constant and w− −w∞ vanishes at infinity in the sense of Leray.

Proof. We follow similar ideas as those in the proof of [14, Theorem 5.2].
First, we shall concern ourselves with the existence part.
To this end, consider the new variables

u+ := w+, u− := w− −w∞, (38)

which reduce the problem (34) to the following one:

∆u+ − Pu+ − ∇p+ = f|Γ+
+Jk,β,Γ+

(u+)|Γ+
in Γ+,

∆u− − ∇p− = f|Γ− in Γ−,

Tr+u+ − Tr−u− = g0 + w∞ on ∂Γ,
t+
P,ν(u+, p+, f+ +Jk,β,Γ+

(u+)) − t−0,ν(u−, p−, f−)
+LTr+u+ = h0 on ∂Γ.

(39)
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Further on, we will construct a nonlinear operatorU+ that maps a closed ball of the space H1
div(Γ+)3 to

itself and that is a contraction on that ball. Hence, a solution of the problem (39) will be determined with
the unique fixed point of the operatorU+.

In order to construct the operatorU+, we fix u+ ∈ H1
div(Γ+)3 and we consider the (linear) Poisson problem

of transmission type for the generalized Brinkman and Stokes systems with the unknowns (u0
+, p

0
+,u

0
−
, p0
−

)

∆u0
+ − Pu0

+ − ∇p0
+ = f|Γ+

+Jk,β,Γ+
(u+)|Γ+

in Γ+,

∆u0
−
− ∇p0

−
= f|Γ− in Γ−,

Tr+u0
+ − Tr−u0

−
= g0 + w∞ on ∂Γ,

t+
P,ν(u

0
+, p

0
+, f+ +Jk,β,Γ+

(u+)) − t−0,ν(u
0
−
, p0
−
, f−)

+LTr+u0
+ = h0 on ∂Γ,

(40)

where g0 + w∞ ∈ H
1
2 (∂Γ)3 and Jk,β,Γ+

(u+) ∈ H̃−1(Γ+)3 due to Lemma 3.1.
Then, by applying Theorem 3.2, we deduce that the linear transmission problem (40) has a unique

solution given by

(u0
+, p

0
+,u

0
−, p

0
−) = (U+(u+),R+(u+),U−(u+),R−(u+))

:= T (f|Γ+
+Jk,β,Γ+

(u+)|Γ+
, f|Γ− , g0 + w∞, h0) ∈ X.

(41)

On the other hand, for fixed given data f±, g0, h0,w∞, the nonlinear operator

(U+,R+,U−,R−) : H1
div(Γ+)3

→ X, (42)

is continuous and bounded, in the sense that there exists a constant denoted by d∗, d∗ = d∗(Γ+,Γ−,P,L) > 0
such that

||(U+(u+),R+(u+),U−(u+),R−(u+))||X
≤ d∗||(f|Γ+

+Jk,β,Γ+
(u+)|Γ+

, f|Γ− , g0, h0,w∞)||Y∞
≤ d∗||(f|Γ+

, f|Γ− , g0, h0,w∞)||Y∞ + d∗c0||u+||
2
H1(Γ+)3 ,

(43)

for all u+ ∈ H1
div(Γ+)3 where the constant c0 = c0(Γ+, k, β) > 0 is the same constant as in the Lemma 3.1.

Moreover, we can rewrite the problem (39) using the operators (U+,R+,U−,R−) as follows

∆U+(u+) − PU+(u+) − ∇R+(u+) = f|Γ+
+Jk,β,Γ+

(u+)|Γ+
in Γ+,

∆U−(u+) − ∇R−(u+) = f|Γ− in Γ−,

Tr+
U+(u+) − Tr−U−(u+) = g0 + w∞ on ∂Γ,

t+
P,ν(U+(u+),R+(u+), f+ +Jk,β,Γ+

(u+)) − t−0,ν(U−(u+),R−(u+), f−)
+LTr+

U+(u+) = h0 on ∂Γ.

(44)

The next step in our argument is to show that the operatorU+ has a fixed point u+ ∈ H1
div(Γ+)3 . Indeed,

such a fixed point together with u− = U−(u+), p± = R±(u+) will determine a solution of our nonlinear
problem (39).

Similar to the proof of Theorem 5.2 in [14], to prove that U+ has a fixed point, we will show that U+

maps a closed ball Bλ in H1
div(Γ+)3 to itself and thatU+ is a contraction on Bλ.

We introduce the constants

ξ :=
3

16c0d2
∗

> 0, λ :=
1

4c0d∗
> 0 (45)

and the closed ball

Bλ := {u+ ∈ H1
div(Γ+)3 : ||u+||H1(Γ+)3 ≤ λ}, (46)
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and assume that the given data satisfies the following condition

||(f|Γ+
, f|Γ− , g0, h0,w∞)||Y∞ ≤ ξ. (47)

Then, by using relations (43), (45), (46), (47), we deduce that

||(U+(u+),R+(u+),U−(u+),R−(u+))||X ≤
1

4c0d∗
= λ, (48)

for all u+ ∈ Bλ.
Relation (48) shows us that ||U+(u+)||H1(Γ+)3 ≤ λ for all u+inBλ, i.e.,U+ maps the ball Bλ to itself.
Next, we shall prove that U+ is Lipschitz continuous on the ball Bλ. To do this, we fix the data

(f|Γ+
, f|Γ− , g0, h0,w∞), two arbitrary functions u+,v+ ∈ Bλ and use expression (41) in order to deduce that

||U+(u+) −U+(v+)||H1(Γ+)3

≤ d∗||Jk,β,Γ(u+) −Jk,β,Γ(v+)||H̃−1(Γ+)3

≤ d∗c0(||u+||H1(Γ+)3 + ||v+||H1(Γ+)3 )||u+ − v+||H1(Γ+)3

≤ 2d∗c0||u+ − v+||H1(Γ+)3 =
1
2
||u+ − v+||H1(Γ+)3 ,

(49)

for all u+,v+ ∈ Bλ, where the first inequality holds due to the continuity of the ”solution” operatorT , while
the second inequality holds due to inequality (13) from Lemma 3.1 and the constants d∗, c0 are the same
constants as in (43). In view of this argument, we conclude thatU+ : Bλ → Bλ is a 1

2 -contraction.
It remains to apply the Banach Fixed Point Theorem to conclude that there exists a unique fixed point

u+ ∈ Bλ of the operator U+. Then, the fixed point u+ together with the function u− := U−(u+) and
p± := R±(u+) given by (41), determine a solution of the nonlinear problem (39) in the space X. Moreover, u−
vanishes at infinity in the sense of Leray due to the membership of u− ∈ H1

div(Γ−)3.
The original fields (w+, p+,w−, p−). where w+ and w− are determined by (38) represent a solution of

our nonlinear Poisson problem of transmission-type (34) satisfying (w+, p+,w− −w∞, p−) ∈ X. Taking into
account relation (48) and the expressions of u− and p± in terms of u+, we get that our constructed solution
satisfies the estimate (36). Also, the quantity w− −w∞ vanishes at infinity in the sense of Leray.

Moreover, in view of the fact that the field u+ ∈ Bλ, we deduce that

d∗c0||u+||H1(Γ+)3 ≤
1
4

and using inequality (43), we get

||u+||H1(Γ+)3 + ||p+||L2(Γ+) + ||u−||H̃1(Γ−)3 + ||p−||L2(Γ−)

≤ d∗||(f|Γ+
, f|Γ− , g0, h0,w∞)||Y∞ +

1
4
||u+||H1(Γ+)3 ,

(50)

which in turn gives (cf. [14, Theorem 5.2]),

||u+||H1(Γ+)3 ≤
4
3

d∗||(f|Γ+
, f|Γ− , g0, h0,w∞)||Y∞ . (51)

Now, we substitute relation (51) into relation (50) and using (38), we obtain the desired estimate (37) with
C0 = 4

3 d∗.
With the last arguments, we have established the existence part.
We shall move to the uniqueness part of our proof.
We choose two solutions of the transmission problem (34) and we denote them by (w1

+, p1
+,w1

−
, p1
−

) and
(w2

+, p2
+,w2

−
, p2
−

). Note that (w1
+, p1

+,w1
−
− w∞, p1

−
) ∈ X and (w2

+, p2
+,w2

−
− w∞, p2

−
) ∈ X are both solutions

satisfying inequality (36).
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Now, for (u2
+,u2

−
) = (w2

+,w2
−
−w∞), we obtain u2

+ ∈ Bλ. Since u2
+ ∈ Bλ, we obtain thatU+(u2

+) ∈ Bλ, where
(U+(u2

+),R+(u2
+),U−(u2

+),R−(u2
+)) are given by relation (41) and satisfy the problem (44) with u+ substituted

with u2
+.

Then, we consider the problem (44), as well as the problem (39) written in the variables (u2
+, p2

+,u2
−
−

w∞, p2
−

) and based on these problems we obtain the following linear problem

∆(U+(u2
+) − u2

+) − P(U+(u2
+) − u2

+) − ∇(R+(u2
+) − p2

+) = 0 in Γ+,

∆(U−(u2
+) − u2

−
) − ∇(R−(u2

+) − p2
−

) = 0 in Γ−,

Tr+(U+(u2
+) − u2

+) − Tr−(U−(u2
+) − u2

−
) = 0 on ∂Γ,

t+
P,ν((U+(u2

+) − u2
+), (R+(u2

+) − p2
+), 0)

−t−0,ν((U−(u2
+) − u2

−
), (R−(u2

+) − p2
−

), 0)
+LTr+(U+(u2

+) − u2
+) = 0 on ∂Γ.

(52)

In view of Theorem 3.2, we deduce that the linear problem (52) has only the trivial solution in X. Hence,
U+(u2

+) − u2
+ = 0, i.e., u2

+ is a fixed point of the operator U+. Recall that U+ : Bλ → Bλ is a contraction,
and thus, there is only a unique fixed point u1

+ in Bλ. Therefore u2
+ = u1

+, u2
−

= u1
−

and also p2
±

= p1
±

. This
establishes the uniqueness part.

Finally, due to the continuity of the contractionU+ with respect to the given data and the continuity of
the operator T , we deduce that the solution (w+, p+,w−, p−) ∈ X depends continuously on the given data
and hence inequality (50) is satisfied with the constant C0 = 4

3 d∗.
This concludes the proof.

Remark 3.4. In the case k = 0 and β : Γ+ → R+ such that β ∈ L∞(Γ+), we obtain a well-posedness result for the
nonlinear transmission problem for the generalized Navier-Stokes and Stokes systems.

Remark 3.5. In the case k : Γ+ → R+ such that k ∈ L∞(Γ+) and β = 0, we obtain a well-posedness result for
a semilinear transmission problem for a generalized semilinear Darcy-Forchheimer-Brinkman system and Stokes
system.

Acknowledgement

The author acknowledges the support of the Grant PN-III-P4-ID-PCE-2016-0036 of the Romanian Na-
tional Authority for Scientific Research, CNCS-UEFISCDI.

References

[1] M.S. Agranovich, Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains, Springer
International Publishing, Cham, 2015.
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