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Abstract. In this note, some operator inequalities for operator means and positive linear maps are
investigated. The conclusion based on operator means is presented as follows: Let Φ : B(H) → B(K )
be a strictly positive unital linear map and h−1

1 IH ≤ A ≤ h1IH and h−1
2 IH ≤ B ≤ h2IH for positive real numbers

h1, h2 ≥ 1. Then for p > 0 and an arbitrary operator mean σ,

(Φ(A)σΦ(B))p
≤ αpΦ

p(Aσ∗B),

where αp = max
{(
α2(h1 ,h2)

4

)p
, 1

16α
2p(h1, h2)

}
, α(h1, h2) = (h1 + h−1

1 )σ(h2 + h−1
2 ). Likewise, a p-th (p ≥ 2) power of

the Diaz-Metcalf type inequality is also established.

1. Introduction

Throughout, let B(H) be the C∗-algebra of bounded linear operator on a complex Hilbert spaceH and
the identity operator is denoted by IH. For two self-adjoint operators A, B ∈ B(H), A ≤ (<)B means B − A
is a positive (invertible) operator. A linear map Φ : B(H)→ B(K ) is called positive (strictly positive, resp.)
if it maps positive (invertible, resp.) operators into positive (invertible, resp.) operators and is said to be
unital if it maps identity operator to identity operator.

The axiomatic theory for operator means for pairs of positive invertible operators have been developed
by Kubo and Ando [12]. A binary operation σ defined on the set of positive invertible operators is called
an operator mean provided that

1. IHσIH = IH;
2. C∗(AσB)C ≤ (C∗AC)σ(C∗BC);
3. An ↓ A and Bn ↓ B imply AnσBn ↓ AσB, where An ↓ A means A1 ≥ A2 ≥ · · · and An → A in the strong

operator topology;
4. A ≤ B and C ≤ D imply that AσC ≤ BσD.
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There exists an affine order isomorphism between the class of operator means and the class of positive
monotone functions f defined on (0,∞) with f (1) = 1 via f (t)IH = IHσ(tIH) (t > 0). Then f is called the
representing function. In addition, AσB = A

1
2 f (A−

1
2 BA−

1
2 )A

1
2 for all positive invertible operators A and B,

where f is the representing function of σ. A continuous real function f defined on an interval J is called an
operator monotone function if A ≥ B implies f (A) ≥ f (B) for all self-adjoint operators A and B with spectra
in J. For A, B ≥ 0, the Lowner-Heinz inequality states that, if A ≤ B, then Aα

≤ Bα, where 0 ≤ α ≤ 1. Thus, tα

(α ∈ [0, 1]) is an operator monotone function. Other examples are the functions ((1−α) +αt−1)−1, (1−α) +αt
(α ∈ [0, 1]).

The operator means corresponding to operator monotone functions ((1 − α) + αt−1)−1, (1 − α) + αt and
tα with 0 ≤ α ≤ 1 are called weighted harmonic, arithmetic and geometric means and denoted by !α, ∇α
and ]α, respectively. When α = 1

2 , ! 1
2
, ∇ 1

2
and ] 1

2
are called harmonic, arithmetic and geometric means and

simply written as !, ∇ and ], respectively. It is well known that A!αB ≤ A]αB ≤ A∇αB for positive invertible
operators A, B and 0 ≤ α ≤ 1.

Let σ be an operator mean with representing function f . Then for positive real numbers a and b,

(aIH)σ(bIH) = (aIH)
1
2 f ((aIH)−

1
2 (bIH)(aIH)−

1
2 )(aIH)

1
2

= (a
1
2 f (a−

1
2 ba−

1
2 )a

1
2 )IH

=: (aσb)IH.

Moreover, the operator mean with representing function f (t−1)−1 is called the adjoint of σ and denoted by
σ∗. It follows from the definition that

Aσ∗B = (A−1σB−1)−1,

for A, B > 0.

Let Φ(·) be a strictly positive unital linear map. Then for A > 0,

Φ−1(A) ≤ Φ(A−1). (1)

This is known as Choi’s inequality [3, Theorem 2.3.6].

In 1990, a reverse of inequality (1) was established by Marshall and Olkin [15]: Let Φ(·) be a strictly
positive unital linear map. and 0 < mIH ≤ A ≤MIH for positive real numbers 0 < m < M. Then

Φ(A−1) ≤
(M + m)2

4Mm
Φ−1(A). (2)

In 2013, Lin [10] proved that inequality (2) is order preserving under squaring:

Φ2(A−1) ≤
( (M + m)2

4Mm

)2
Φ−2(A), (3)

where A ∈ B(H) is a positive invertible operator with 0 < mIH ≤ A ≤MIH for positive real numbers m and M.

Inequality (3) was further generalized by Fu and He [5] as follows: Let Φ(·) be a strictly positive unital
linear map and 0 < mIH ≤ A ≤MIH for positive real numbers 0 < m < M. Then

Φp(A−1) ≤
(M + m)2p

16Mpmp Φ−p(A) (4)

holds for p ≥ 2.

Based on the similar above ideas, M. Khosravi, M. S. Moslehian and A. Sheikhhosseini got the following
result [13, Theorem 2.5].
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Theorem 1.1. Let 0 < mIH ≤ A,B ≤ MIH, σ be an arbitrary operator mean, Φ be a positive unital linear map and
p > 0. Then

Φp(AσB) ≤ αpΦp(Aσ∗B), (5)

where α = max{K, 41− 2
p K}, K =

(M+m)2

4Mm .

Next, we present the p-th power of the Diaz-Metcalf type inequality, Obtained by C. Yang and C. Yang [17,
Theorem 2.8].

Theorem 1.2. Let Φ : B(H) → B(K ) be a strictly positive unital linear map. If m2
1 ≤ A ≤ M2

1 and m2
2 ≤ B ≤ M2

2
for positive real numbers m1 ≤M1 and m2 ≤M2. Then for p ≥ 2

(M2m2

M1m1
Φ(A) + Φ(B)

)p
≤

1
16

{ (M1m1(M2
2 + m2

2) + M2m2(M2
1 + m2

1))2

2
√

M1M2m1m2M2
1m2

1M2m2

}p
Φp(A]B). (6)

The Diaz-Metcalf inequality [16, Theorem 2.1] is

M2m2

M1m1
Φ(A) + Φ(B) ≤

(M2

m1
+

m2

M1

)
Φ(A]B),

where Φ : B(H)→ B(K ) is a positive unital linear map and m2
1 ≤ A ≤M2

1 and m2
2 ≤ B ≤M2

2 for positive real
numbers m1 ≤M1 and m2 ≤M2.

It should be mentioned that many authors did the similar researches, see (e.g. [6], [8],[9], [11], [14], [17],
[18]).

In this note, we are also concerned with the similar topics above. We present some operator inequalities
for operator means and strictly positive unital linear maps. we give an operator inequality on operator
means, which is a refinement of inequality (5) for 0 < p ≤ 1, and also present a further generalization of the
Diaz-Metcalf type inequality.

2. Main results

We start this section with some lemmas. The Lemma 2.1 was obtained by Bhatia and Kittaneh [4,
Theorem 1].

Lemma 2.1. Let A, B ∈ B(H) with A, B ≥ 0. Then

‖AB‖∞ ≤
1
4

∥∥∥A + B
∥∥∥2

∞
,

where ‖·‖∞ is the operator norm.

The Lemma 2.2 was obtained by Ando and Zhan [2, Theorem 1].

Lemma 2.2. For each A, B > 0 and p > 1,

‖Ap + Bp
‖∞ ≤ ‖(A + B)p

‖∞.

The Lemma 2.3 can be found in [7].

Lemma 2.3. Let 0 < mIH ≤ A ≤MIH for positive real numbers 0 < m < M. Then

A + MmA−1
≤ (M + m)IH.
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In [1], Ando obtained the following inequality [1, Theorem 3]:

Φ(A]B) ≤ Φ(A)]Φ(B),

where Φ is a strictly positive linear map and A, B > 0. Actually, this inequality still holds for any operator
mean.

Lemma 2.4. Let Φ be a strictly positive linear map and A, B > 0. Then

Φ(AσB) ≤ Φ(A)σΦ(B)

holds for any operator mean σ.

Proof. Consider the map Ψ defined by

Ψ(X) = Φ−
1
2 (A)Φ(A

1
2 XA

1
2 )Φ−

1
2 (A),

where X ∈ B(H). Then Ψ is a strictly positive linear map as Φ and is unital.
Let f be the representing function of the operator mean σ. Then f is an operator monotone function. By
[1,Theorem 4], we have

Ψ( f (X)) ≤ f (Ψ(X)),

where X ∈ B(H) is a positive invertible operator.
Hence,

Φ(AσB) = Φ(A
1
2 f (A−

1
2 BA−

1
2 )A

1
2 )

= Φ
1
2 (A)Ψ( f (A−

1
2 BA−

1
2 ))Φ

1
2 (A)

≤ Φ
1
2 (A) f (Ψ(A−

1
2 BA−

1
2 ))Φ

1
2 (A)

= Φ
1
2 (A) f (Φ−

1
2 (A)Φ(B)Φ−

1
2 (A))Φ

1
2 (A)

= Φ(A)σΦ(B).

This completes the proof.

Lemma 2.5. Let Φ : B(H)→ B(K ) be a strictly positive unital linear map and h−1
1 IH ≤ A ≤ h1IH and h−1

2 IH ≤ B ≤
h2IH for positive real numbers h1, h2 ≥ 1. Then

Φ−1(Aσ∗B) + Φ(A)σΦ(B) ≤ α(h1, h2)IK

holds for an arbitrary operator mean σ, where α(h1, h2) = (h1 + h−1
1 )σ(h2 + h−1

2 ).

Proof. By Lemma 2.3, we have

A−1 + A ≤ (h1 + h−1
1 )IH,

which implies

Φ(A−1) + Φ(A) ≤ (h1 + h−1
1 )IK.

Similarly,

Φ(B−1) + Φ(B) ≤ (h2 + h−1
2 )IK.
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Then, by the subadditivity and the monotonicity of the operator mean σ, we have

Φ(A)σΦ(B) + Φ(A−1)σΦ(B−1) ≤ (Φ(A) + Φ(A−1))σ(Φ(B) + Φ(B−1))

≤ ((h1 + h−1
1 )IK)σ((h2 + h−1

2 )IK)
= α(h1, h2)IK. (7)

On the other hand, by Lemma 2.4 and Choi’s inequality (1), we have

Φ(A−1)σΦ(B−1) ≥ Φ(A−1σB−1) = Φ((Aσ∗B)−1) ≥ Φ−1(Aσ∗B). (8)

Thus, the desired result follows from inequalities (7) and (8).
This completes the proof.

Based on the same method as in [13], we obtain the following result.

Theorem 2.6. Let Φ : B(H) → B(K ) be a strictly positive unital linear map and h−1
1 IH ≤ A ≤ h1IH and h−1

2 IH ≤

B ≤ h2IH for positive real numbers h1, h2 ≥ 1. Then for p > 0 and an arbitrary operator mean σ,

(Φ(A)σΦ(B))p
≤ αpΦ

p(Aσ∗B), (9)

where αp = max
{(
α2(h1,h2)

4

)p
, 1

16α
2p(h1, h2)

}
, α(h1, h2) = (h1 + h−1

1 )σ(h2 + h−1
2 ).

Proof. If 0 < p ≤ 2, applying Lemmas 2.1 and 2.5, we get∥∥∥∥Φ−1(Aσ∗B)(Φ(A)σΦ(B))
∥∥∥∥
∞

≤
1
4

∥∥∥∥Φ−1(Aσ∗B) + Φ(A)σΦ(B)
∥∥∥∥2

∞

≤
1
4

∥∥∥∥α(h1, h2)IK

∥∥∥∥2

∞

=
1
4
α2(h1, h2),

which is equivalent to

(Φ(A)σΦ(B))2
≤

1
16
α4(h1, h2)Φ2(Aσ∗B).

Since 0 < p
2 ≤ 1, by the Lowner-Heinz inequality, we have

(Φ(A)σΦ(B))p
≤

(1
4
α2(h1, h2)

)p
Φp(Aσ∗B). (10)

If p > 2, by Lemmas 2.1 and 2.2 and 2.5, we obtain∥∥∥∥Φ− p
2 (Aσ∗B)(Φ(A)σΦ(B))

p
2

∥∥∥∥
∞

≤
1
4

∥∥∥∥Φ− p
2 (Aσ∗B) + (Φ(A)σΦ(B))

p
2

∥∥∥∥2

∞

≤
1
4

∥∥∥∥(Φ−1(Aσ∗B) + Φ(A)σΦ(B)
) p

2
∥∥∥∥2

∞

≤
1
4

∥∥∥∥(α(h1, h2)IK

) p
2
∥∥∥∥2

∞

=
1
4
αp(h1, h2),

which gives

(Φ(A)σΦ(B))p
≤

1
16
α2p(h1, h2)Φp(Aσ∗B). (11)

Hence, inequality (9) follows from inequalities (10) and (11).
This completes the proof.
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Corollary 2.7. Let 0 < mIH ≤ A,B ≤ MIH for positive real numbers 0 < m ≤ M, σ be an arbitrary operator mean,
Φ : B(H)→ B(K ) be a strictly positive unital linear map and p > 0. Then

(Φ(A)σΦ(B))p
≤ αpΦp(Aσ∗B), (12)

where α = max
{
K, 41− 2

p K
}
, K =

(M+m)2

4Mm .

Proof. The condition 0 < mIH ≤ A,B ≤MIH implies 0 <
√ m

M IH ≤
A
√

Mm
, B
√

Mm
≤

√
M
m IH. Replacing A and B by

A
√

Mm
and B

√
Mm

, respectively and putting h1 = h2 =
√

M
m , then by Theorem 2.6, we can obtain the following

inequality(
Φ
( A
√

Mm

)
σΦ

( B
√

Mm

))p
≤ αpΦp

( A
√

Mm
σ∗

B
√

Mm

)
,

where αp = max
{(
α2(h1,h2)

4

)p
, 1

16α
2p(h1, h2)

}
, α(h1, h2) = (h1 + h−1

1 )σ(h2 + h−1
2 ).

On the other hand, we have

Φ
( A
√

Mm

)
σΦ

( B
√

Mm

)
=

1
√

Mm
Φ(A)σΦ(B),

Φ
( A
√

Mm
σ∗

B
√

Mm

)
=

1
√

Mm
Φ(Aσ∗B)

and

α(h1, h2) =
M + m
√

Mm
.

Hence, inequality (12) follows from the above relations.
This completes the proof.

Remark 2.8. Since Φ(A)σΦ(B) ≥ Φ(AσB) for any operator mean σ, then by the Lowner-Heinz inequality, we have
(Φ(A)σΦ(B))p

≥ (Φ(AσB))p for 0 < p ≤ 1. Thus, inequality (12) is a refinement of inequality (5) for 0 < p ≤ 1.

Remark 2.9. Putting σ = ]α for α ∈ [0, 1], then σ∗ = ]α. The conditions 0 < m1IH ≤ B ≤ M1IH and 0 < m2IH ≤

B ≤M2IH implies 0 <
√

m1
M1

IH ≤
A

√
M1m1

≤

√
M1
m1

IH and 0 <
√

m2
M2

IH ≤
B

√
M2m2

≤

√
M2
m2

IH, respectively. Replacing A

and B by A
√

M1m1
and B

√
M2m2

, respectively and putting h1 =
√

M1
m1

and h2 =
√

M2
m2

. Noting that

α(h1, h2) = (h1 + h−1
1 )]α(h2 + h−1

2 ) =
(M1 + m1
√

M1m1

)1−α(M2 + m2
√

M2m2

)α
,

Φ
( A
√

M1m1

)
]αΦ

( B
√

M2m2

)
=

1
(
√

M1m1)1−α

1
(
√

M2m2)α
Φ(A)]αΦ(B),

and

Φ
( A
√

M1m1
]α

B
√

M2m2

)
=

1
(
√

M1m1)1−α

1
(
√

M2m2)α
Φ(A]αB),

then, inequality (9) gives

(Φ(A)]αΦ(B))p
≤

1
16

{ (M1 + m1)2((M1 + m1)−1(M2 + m2))2α

(m2M2)α(m1M1)1−α

}p
Φp(A]αB)

for p ≥ 2. This is just the C. Yang and C. Yang’s [17, Theorem 2.5] result.
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In the following, we give a further generalization related to the Diaz-Metcalf type inequality.

Theorem 2.10. Let Φ : B(H) → B(K ) be a strictly positive unital linear map and σ and τ be two operator means
with σ ≤ τ. If h−1

1 IH ≤ A ≤ h1IH and h−1
2 IH ≤ B ≤ h2IH for positive real numbers h1, h2 ≥ 1, then for p ≥ 2, the

following inequality holds

(Φ(A)σ∗Φ(B))p
≤

1
16
β2p(h1, h2)Φp(AτB), (13)

where β(h1, h2) = (h1 + h−1
1 )σ∗(h2 + h−1

2 ).

Proof. By the proof of Lemma 2.5, we have

Φ(A−1) + Φ(A) ≤ (h1 + h−1
1 )IK

and

Φ(B−1) + Φ(B) ≤ (h2 + h−1
2 )IK.

According to Choi’s inequality (1), Lemma 2.4 and the subadditivity and the monotonicity of the operator
mean, we have

Φ−1(AτB) + Φ(Aσ∗B) ≤ Φ((AτB)−1) + Φ(Aσ∗B)

= Φ(A−1τ∗B−1) + Φ(Aσ∗B)

≤ Φ(A−1σ∗B−1) + Φ(Aσ∗B)

≤ Φ(A−1)σ∗Φ(B−1) + Φ(A)σ∗Φ(B)

≤ (Φ(A−1) + Φ(A))σ∗(Φ(B−1) + Φ(B))

≤ ((h1 + h−1
1 )IK)σ∗((h2 + h−1

2 )IK)
= β(h1, h2)IK.

Therefore, by Lemmas 2.1 and 2.2 and the above inequality, we obtain∥∥∥∥Φ− p
2 (AτB)Φ

p
2 (Aσ∗B)

∥∥∥∥
∞

≤
1
4

∥∥∥∥Φ− p
2 (AτB) + Φ

p
2 (Aσ∗B)

∥∥∥∥2

∞

≤
1
4

∥∥∥∥(Φ−1(AτB) + Φ(Aσ∗B)
) p

2
∥∥∥∥2

∞

≤
1
4

∥∥∥∥(β(h1, h2)IK

) p
2
∥∥∥∥2

∞

=
1
4
βp(h1, h2),

which gives

(Φ(A)σ∗Φ(B))p
≤

1
16
β2p(h1, h2)Φp(AτB). (14)

This completes the proof.

Based on Theorem 2.10, we can get the result of Theorem 1.2.

Corollary 2.11. Let Φ : B(H) → B(K ) be a strictly positive unital linear map. If m2
1IH ≤ A ≤ M2

1IH and
m2

2IH ≤ B ≤M2
2IH for positive real numbers 0 < m1 ≤M1 and 0 < m2 ≤M2. Then for p ≥ 2

(M2m2

M1m1
Φ(A) + Φ(B)

)p
≤

1
16

{ (M1m1(M2
2 + m2

2) + M2m2(M2
1 + m2

1))2

2
√

M1M2m1m2M2
1m2

1M2m2

}p
Φp(A]B). (15)
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Proof. The conditions 0 < m2
1IH ≤ A ≤ M2

1IH and 0 < m2
2IH ≤ B ≤ M2

2IH imply 0 < m1
M1

IH ≤
A

M1m1
≤

M1
m1

IH and
0 < m2

M2
IH ≤

B
M2m2

≤
M2
m2

IH. Replacing A and B by A
M1m1

and B
M2m2

, respectively and putting h1 = M1
m1

, h2 = M2
m2

and τ = ], σ =!. Then,

Φ
( A
M1m1

)
σ∗Φ

( B
M2m2

)
=

1
2

(
Φ
( A
M1m1

)
+ Φ

( B
M2m2

))
=

1
2M2m2

(M2m2

M1m1
Φ(A) + Φ(B)

)
,

Φ
( A
M1m1

τ
B

M2m2

)
= Φ

( A
M1m1

]
B

M2m2

)
=

1
√

M1M2m1m2
Φ(A]B)

and

β(h1, h2) =
h1 + h−1

1 + h2 + h−1
2

2
=

M2m2(M2
1 + m2

1) + M1m1(M2
2 + m2

2)

2M1M2m1m2
.

Therefore, by Theorem 2.10, we can obtain this corollary.
This completes the proof.

Remark 2.12. Putting p = 2, then inequality (15) (or (6)) gives

(M2m2

M1m1
Φ(A) + Φ(B)

)2
≤

{ (M1m1(M2
2 + m2

2) + M2m2(M2
1 + m2

1))2

8
√

M1M2m1m2M2
1m2

1M2m2

}2
Φ2(A]B).

This inequality is just the result of Theorem 2.14 obtained by Moslehian and Fu [14, Theorem 2.14].
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