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Abstract. In this article, the Legendre-Gould-Hopper polynomials are combined with Appell sequences to
introduce certain mixed type special polynomials by using operational method. The generating functions,
determinant definitions and certain other properties of Legendre-Gould-Hopper based Appell polynomials
are derived. Operational rules providing connections between these formulae and known special polyno-
mials are established. The 2-variable Hermite Kampé de Fériet based Bernoulli polynomials are considered
as an member of Legendre-Gould-Hopper based Appell family and certain results for this member are also
obtained.

1. Introduction and preliminaries

One of the important classes of polynomial sequences is the class of Appell polynomial sequences [1].
These polynomial sequences have been well studied from different aspect due to their remarkable appli-
cations in various fields (see for example [18, 19]). The Appell polynomial sequences arise in theoretical
physics, chemistry and numerous problems of pure and applied mathematics such as the study of polyno-
mial expansions of analytic functions, number theory and numerical analysis. The recent applications of
Appell polynomials in probability theory and statistics are considered in [2, 16]. The generalized Appell
polynomials as tools for approximating 3D-mappings were introduced for the first time in [14] in combina-
tion with Clifford analysis methods. The representation theoretic results like those of [3, 13] provide new
examples of applications of Appell polynomials and gave evidence to the central role of Appell polynomials
as orthogonal polynomials.

The Appell sets [1] may be defined by either of the following equivalent conditions [17, p.398]:
{An(x)}(n = 0, 1, 2, ...) is an Appell set (An(x) being of degree exactly n) if either

(i) d
dx An(x) = n An−1(x), n = 0, 1, 2, ..., or

(ii) there exists a formal power series

A(t) =

∞∑
n=0

An
tn

n!
, A0 , 0, (1.1)
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such that (again formally)

A(t) exp(xt) =

∞∑
n=0

An(x)
tn

n!
. (1.2)

The Appell polynomials have shown to be quasi-monomials [9] and characterized by the fact that the
relevant derivative operator is just the ordinary derivative.

Recently, the Legendre-Gould-Hopper polynomials (LeGHP) SH(s)
n (x, y, z) and RH(s)

n (x,y,z)
n! are introduced

in [21] which are defined by means of the generating functions

exp(yt + zts) C0(−xt2) =

∞∑
n=0

SH(s)
n (x, y, z)

tn

n!
(1.3)

and

exp(zts) C0(xt) C0(−yt) =

∞∑
n=0

RH(s)
n (x, y, z)

n!
tn

n!
, (1.4)

respectively, where C0(x) denotes the Tricomi function of order zero [7] which is given by the following
operational definition:

C0(αx) = exp(−αD−1
x ){1}, (1.5)

where D−1
x denotes the inverse of the derivative operator Dx := ∂

∂x and D−n
x {1} =

xn

n! .

The LeGHP SH(s)
n (x, y, z) and RH(s)

n (x,y,z)
n! are shown to be quasi-monomial [7, 20] under the action of the

following multiplicative and derivative operators [21]:

M̂SH := y + 2D−1
x
∂
∂y

+ sz
∂s−1

∂ys−1 , (1.6)

P̂SH :=
∂
∂y

(1.7)

and

M̂RH := −D−1
x + D−1

y + sz
∂s−1

∂ys−1 , (1.8)

P̂RH := −
∂
∂x

x
∂
∂x
, (1.9)

respectively.
Consequently, M̂SH, P̂SH and M̂RH, P̂SH satisfy the following recurrence relations:

M̂SH{SH(s)
n (x, y, z)} = SH(s)

n+1(x, y, z), (1.10)

P̂SH{SH(s)
n (x, y, z)} = n SH(s)

n−1(x, y, z) (1.11)

and

M̂RH

RH(s)
n (x, y, z)

n!

 =
RH(s)

n+1(x, y, z)

(n + 1)!
, (1.12)
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P̂RH

RH(s)
n (x, y, z)

n!

 = n
RH(s)

n−1(x, y, z)

(n − 1)!
, (1.13)

respectively, for all n ∈N.
In view of the monomiality principle equations

M̂SHP̂SH{SH(s)
n (x, y, z)} = n SH(s)

n (x, y, z), (1.14)

M̂RHP̂RH

RH(s)
n (x, y, z)

n!

 = n RH(s)
n (x, y, z)

n!
, (1.15)

the differential equations satisfied by SH(s)
n (x, y, z) and RH(s)

n (x,y,z)
n! are [21]:(

2
∂2

∂y2 + sz
∂s+1

∂x∂ys + y
∂2

∂x∂y
− n

∂
∂x

)
SH(s)

n (x, y, z) = 0 (1.16)

and (
−
∂
∂y

+ sz
∂s+1

∂x∂ys + (1 − n)
∂
∂x

)
RH(s)

n (x, y, z) = 0, (1.17)

respectively.

Also, SH(s)
n (x, y, z) and RH(s)

n (x,y,z)
n! can be explicitly constructed as:

SH(s)
n (x, y, z) = M̂n

SH{1}, SH(s)
0 (x, y, z) = 1 (1.18)

and

RH(s)
n (x, y, z)

n!
= M̂n

RH{1}, RH(s)
0 (x, y, z) = 1, (1.19)

respectively.

Identities (1.18) and (1.19) imply that the exponential functions of SH(s)
n (x, y, z) and RH(s)

n (x,y,z)
n! can be given

in the forms:

exp
(
tM̂SH

)
{1} =

∞∑
n=0

SH(s)
n (x, y, z)

tn

n!
, |t| < ∞ (1.20)

and

exp
(
tM̂RH

)
{1} =

∞∑
n=0

RH(s)
n (x, y, z)

n!
tn

n!
, |t| < ∞, (1.21)

respectively.

For suitable values of the indices and variables, the LeGHP SH(s)
n (x, y, z) and RH(s)

n (x,y,z)
n! give a number of

other known special polynomials as special cases (see [21, Table 2.1]).

Costabile et al. [4] has given a new approach to Bernoulli polynomials based on a determinant definition.
This approach is further extended to provide determinant definitions of the Appell and Sheffer polynomial
sequences by Costabile and Longo in [5] and [6], respectively. The determinant approach is equivalent to the
corresponding approach based on operational methods. However, the simplicity of this approach allows
non-specialists to use its applications and it is also suitable for computation. The above mentioned research
works of Costabile and Longo and the importance of operational methods in the theory of special functions
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motivated the authors to introduce and study the Legendre-Gould-Hopper based Appell polynomials by
using operational techniques and determinant approach.

In this paper, the composition of Legendre-Gould-Hopper and Appell polynomials is considered to
introduce a new family of special polynomials, namely the Legendre-Gould-Hopper based Appell family
by using the concepts and the methods associated with monomiality principle. The important properties of
this family are established. In Section 2, the generating function, series definition and determinant definition
for the Legendre-Gould-Hopper based Appell polynomials are established. Further, these polynomials are
framed within the context of the monomiality principle and their properties are derived. In Section 3, some
operational representations for these polynomials are also established. In Section 4, certain results for the
2-variable Hermite Kampé de Fériet based Bernoulli polynomials are also obtained. Surface plot of this
example is also considered.

2. Legendre-Gould-Hopper based Appell polynomials

The Legendre-Gould-Hopper based Appell polynomials (LeGHAP) denoted by
SH(s) An(x, y, z) and

RH(s) An(x, y, z)
are introduced in this section by means of generating functions and series definitions. Determinant defini-
tions of these polynomials are also established. In this connection, we first derive the generating functions
for the Legendre-Gould-Hopper based Appell polynomials by proving the following result:

Theorem 2.1. The following generating functions for the Legendre-Gould-Hopper based Appell polynomials (LeGHAP)
SH(s) An(x, y, z) and

RH(s) An(x, y, z) hold true:

A(t)exp(yt + zts) C0(−xt2) =

∞∑
n=0

SH(s) An(x, y, z)
tn

n!
, (2.1)

A(t)exp(zts) C0(xt) C0(−yt) =

∞∑
n=0

RH(s) An(x, y, z)
tn

n!
, (2.2)

respectively.

Proof. Replacing x in the l.h.s. and r.h.s. of equation (1.2) by the multiplicative operator M̂SH of the LeGHP

SH(s)
n (x, y, z), we have

A(t)exp
(
M̂SHt

)
=

∞∑
n=0

An

(
M̂SH

) tn

n!
. (2.3)

Using the expression of M̂SH given in equation (1.6) and then decoupling the exponential operator in
the l.h.s. of the resultant equation by using the Crofton-type identity [8, p.12]:

f
(
y + mλ

dm−1

dym−1

)
{1} = exp

(
λ

dm

dxm

)
{ f (y)}, (2.4)

we get

A(t)exp
(
z
∂s

∂ys

)
exp

((
y + 2D−1

x
∂
∂y

)
t
)

=

∞∑
n=0

An

(
y + 2D−1

x
∂
∂y

+ sz
∂s−1

∂ys−1

) tn

n!
, (2.5)

which on further use of identity (2.4) in the l.h.s. becomes

A(t)exp
(
z
∂s

∂ys

)
exp

(
D−1

x
∂2

∂y2

)
exp(yt) =

∞∑
n=0

An

(
y + 2D−1

x
∂
∂y

+ sz
∂s−1

∂ys−1

) tn

n!
. (2.6)
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Now, expanding the second exponential in the l.h.s. of equation (2.6) and using definition (1.5), we find

A(t)C0

(
− xt2

)
exp

(
z
∂s

∂ys

)
exp(yt) =

∞∑
n=0

An

(
y + 2D−1

x
∂
∂y

+ zs
∂s−1

∂ys−1

) tn

n!
. (2.7)

Again expanding the first exponential in the l.h.s. of equation (2.7) and denoting the resultant LeGHAP
in the r.h.s. by

SH(s) An(x, y, z), that is

SH(s) An(x, y, z) = An

(
M̂SH

)
= An

(
y + 2D−1

x
∂
∂y

+ zs
∂s−1

∂ys−1

)
, (2.8)

we get assertion (2.1). Moreover, making use of (1.8) and using a similar argument as in the above proof of
(2.1), we can obtain assertion (2.2).

Theorem 2.2. The Legendre-Gould-Hopper based Appell polynomials (LeGHAP)
SH(s) An(x, y, z) and

RH(s) An(x, y, z)
are defined by the series:

SH(s) An(x, y, z) =

n∑
k=0

(
n
k

)
Ak SH(s)

n−k(x, y, z) (2.9)

and

RH(s) An(x, y, z) =

n∑
k=0

(
n
k

)
Ak

RH(s)
n−k(x, y, z)

(n − k)!
, (2.10)

respectively, where Ak is given by equation (1.1).

Proof. In view of equations (1.20) and (2.8), equation (2.3) can be written as

A(t)
∞∑

n=0
SH(s)

n (x, y, z)
tn

n!
=

∞∑
n=0

SH(s) An(x, y, z)
tn

n!
. (2.11)

Now, using expansion (1.1) of A(t) in the l.h.s. of equation (2.11), simplifying and then equating the
coefficients of like powers of t on both sides of the resultant equation, we get assertion (2.9). Similarly, we
can get assertion (2.10).

By using a similar approach given in [22] and in view of equations (1.18) and (2.8), the following
determinant form for

SH(s) An(x, y, z) is obtained:

Definition 2.3. The Legendre-Gould-Hopper based Appell polynomials
SH(s) An(x, y, z) of degree n are defined by

SH(s) A0(x, y, z) =
1
β0
, β0 =

1
A0
, (2.12)

SH(s) An(x, y, z) =
(−1)n

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 SH(s)
1 (x, y, z) SH(s)

2 (x, y, z) ... SH(s)
n−1(x, y, z) SH(s)

n (x, y, z)

β0 β1 β2 ... βn−1 βn

0 β0 ( 2
1 )β1 ... ( n−1

1 )βn−2 ( n
1 )βn−1

0 0 β0 ... ( n−1
2 )βn−3 ( n

2 )βn−2
...

...
...

. . .
...

...
0 0 0 ... β0 ( n

n−1 )β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.13)

βn = −
1

A0

( n∑
k=1

( n
k )Akβn−k

)
, n = 1, 2, 3, ...,
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where β0, β1, ..., βn ∈ R, β0 , 0 and SH(s)
n (x, y, z)(n = 0, 1, 2, ..., ) are the Legendre-Gould-Hopper polynomials defined

by equation (1.3).

Similarly, the determinant form for
RH(s) An(x, y, z) can be obtained:

Definition 2.4. The Legendre-Gould-Hopper based Appell polynomials
RH(s) An(x, y, z) of degree n are defined by

RH(s) A0(x, y, z) =
1
β0
, β0 =

1
A0
, (2.14)

RH(s) An(x, y, z) =
(−1)n

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 RH(s)
1 (x, y, z) RH(s)

2 (x,y,z)
2! ... RH(s)

n−1(x,y,z)
(n−1)!

RH(s)
n (x,y,z)

n!

β0 β1 β2 ... βn−1 βn

0 β0 ( 2
1 )β1 ... ( n−1

1 )βn−2 ( n
1 )βn−1

0 0 β0 ... ( n−1
2 )βn−3 ( n

2 )βn−2
...

...
...

. . .
...

...
0 0 0 ... β0 ( n

n−1 )β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (2.15)

βn = −
1

A0

( n∑
k=1

( n
k )Akβn−k

)
, n = 1, 2, 3, ...,

where β0, β1, ..., βn ∈ R, β0 , 0 and RH(s)
n (x,y,z)

n! (n = 0, 1, 2, ..., ) are the Legendre-Gould-Hopper polynomials defined by
equation (1.4).

The Appell and Legendre-Gould-Hopper polynomials are quasi-monomial. In order to show that the
LeGHAP

SH(s) An(x, y, z) and
RH(s) An(x, y, z) are quasi-monomial, we prove the following results:

Theorem 2.5. The Legendre-Gould-Hopper based Appell polynomials
SH(s) An(x, y, z) and

RH(s) An(x, y, z) are quasi-
monomial with respect to the following multiplicative and derivative operators:

M̂SHA := y + 2D−1
x Dy + szDs−1

y +
A′

(Dy)
A(Dy)

, (2.16)

P̂SHA := Dy (2.17)

and

M̂RHA := −D−1
x + D−1

y + szDs−1
y +

A′

(DyyDy)
A(DyyDy)

, (2.18)

P̂RHA := DyyDy, (2.19)

respectively.

Proof. Consider the following identity:

Dy

{
exp

(
yt + zts

)}
= t exp

(
yt + zts

)
. (2.20)

Differentiating equation (2.3) partially with respect to t and in view of relation (2.8), we find(
M̂SH +

A′

(t)
A(t)

)
A(t)exp(M̂SHt) =

∞∑
n=0

SH(s) An+1(x, y, z)
tn

n!
, (2.21)
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which on using equations (1.3) and (1.20) gives(
M̂SH +

A′

(t)
A(t)

)
A(t)C0(−xt2)exp

(
yt + zts

)
=

∞∑
n=0

SH(s) An+1(x, y, z)
tn

n!
. (2.22)

Now, in view of relation (2.20) and generating function (2.1), the above equation becomes(
M̂SH +

A′

(Dy)
A(Dy)

)  ∞∑
n=0

SH(s) An(x, y, z)
tn

n!

 =

∞∑
n=0

SH(s) An+1(x, y, z)
tn

n!
. (2.23)

Adjusting the summation in the l.h.s. of equation (2.23) and then equating the coefficients of like powers
of t, we find(

M̂SH +
A′

(Dy)
A(Dy)

) {
SH(s) An(x, y, z)

}
=

SH(s) An+1(x, y, z), (2.24)

which, in view of equation (1.10) shows that the corresponding multiplicative operator for
SH(s) An(x, y, z) is

given as:

M̂SHA = M̂SH +
A′

(Dy)
A(Dy)

. (2.25)

Finally, using equation (1.6) in the r.h.s. of above equation, we get assertion (2.16).

Next, consider the following identity

(DyyDy)C0(−yt) = t C0(−yt) (2.26)

and use a similar argument as in the above proof, with the help of equation (1.8) we obtain assertion (2.18).
Again, in view of identity (2.20), we have

Dy{A(t)C0(−xt2)exp
(
yt + zts

)
} = t A(t)C0(−xt2)exp

(
yt + zts

)
, (2.27)

which on using generating function (2.1) becomes

Dy

 ∞∑
n=0

SH(s) An(x, y, z)
tn

n!

 = t
∞∑

n=0
SH(s) An−1(x, y, z)

tn

(n − 1)!
. (2.28)

Adjusting the summation in the l.h.s. of the above equation and then equating the coefficients of like
powers of t, we get

Dy

{
SH(s) An(x, y, z)

}
= n

SH(s) An−1(x, y, z), n ≥ 1, (2.29)

which in view of equation (1.11) yields assertion (2.17). Similarly, we can obtain the assertion (2.19).

Theorem 2.6. The Legendre-Gould-Hopper based Appell polynomials
SH(s) An(x, y, z) and

RH(s) An(x, y, z) are the so-
lutions of the following differential equations:(

yDy + 2D−1
x D2

y + szDs
y +

A′

(Dy)
A(Dy)

Dy − n
)

SH(s) An(x, y, z) = 0 (2.30)

and (
−D−1

x
∂

∂D−1
y

+ D−1
y

∂

∂D−1
y

+ sz
∂s

∂ys−1∂D−1
y

+
A′

(DyyDy)
A(DyyDy)

∂

∂D−1
y
− n

)
RH(s) An(x, y, z) = 0, (2.31)

respectively.
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Proof. Using equations (2.16) and (2.17) in the corresponding equation (1.14) for the LeGHAP
SH(s) An(x, y, z),

we get assertion (2.30). Also, using equations (2.18) and (2.19) in the corresponding equation (1.15) for the
LeGHAP

RH(s) An(x, y, z) , we get assertion (2.31).

The special cases of the LeGHP SH(s)
n (x, y, z) and RH(s)

n (x,y,z)
n! are given in [21, Table 2.1]. Now, for the same

choice of the variables and indices the LeGHAP
SH(s) An(x, y, z) and

RH(s) An(x, y, z) reduce to the corresponding
special cases. We mention these known and new special polynomials related to the Appell sequences in
Table 1.

Table 1: Special cases of LeGHAP
SH(s) An(x, y, z) and

RH(s) An(x, y, z)

S. Values of the indices Relation between LeGHAP
SH(s) An(x, y, z), Name of the

No. and variables
RH(s) An(x, y, z) and their special cases special polynomials

I. x = 0
SH(s) An(0, y, z) = H(s) An(y, z) Gould-Hopper based

Appell polynomials (GHAP) [11]
II. z = 0

SH(s) An(x, y, 0) = 2LAn(x, y) 2-Variable Legendre based
Appell polynomials (2VLeAP)

III. i. s = m; x = 0,
SH(m) An(0,−D−1

x , y) = [m]LAn(x, y) 2-Variable Generalized
y→ −D−1

x , z→ y Laguerre type based Appell
ii. s = m; y = 0, z→ y

RH(m) An(x, 0, y) = [m]LAn(x, y) polynomials (2VGLTAP) [12]
IV. s = m − 1; x = 0,

SH(m−1) An(0, x, y) = U(m) An(x, y) Generalized Chebyshev based
y→ x, z→ y Appell polynomials (GCAP) [12]

V. i. s = 1; x = 0,z→ −D−1
x SH(1) An(0, y,−D−1

x ) = LAn(x, y) 2-Variable Laguerre based
ii. s = 1; y = 0, z→ y

RH(1) An(x, o, y) = LAn(x, y) Appell polynomials (2VLAP) [10]
VI. z = 0

RH(s) An(x, y, 0) = RAn(x, y) 2-Variable Legendre based
Appell polynomials (2VLeAP)

VII. x = 0, y→ x, z→ yDyy 2-Variable truncated
SH(s) An(0, x, yDyy) = e(s) An(x, y) based Appell polynomials of

order s (2VTAP)
VIII. 2-Variable Hermite-Kamp

s = 2; x = 0
SH(2) An(0, y, z) = HAn(y, z) de Fériet é based Appell

polynomials (2VHKFAP) [12]
IX. i. s = 2; x = 0,

SH(2) An(0,D−1
x , y) = GAn(x, y)

y→ D−1
x ,z→ y Hermite type based Appell

ii. s = 2; x = 0,
RH(2) An(0, x, y) = GAn(x, y) polynomials (HTAP) [12]

y→ x, z→ y
X. i. x→ ( x2

−1
4 ),

y→ x, z = 0
SH(s) An( x2

−1
4 , x, 0) = PAn(x) Legendre based Appell

ii. s = 1; x→ ( 1−x
2 ),

RH(1) An( 1−x
2 ,

1+x
2 , 0) = PAn(x) polynomials (LeAP) [12]

y→ ( 1+x
2 ), z = 0

XI. s = 3; x→ zDz z,
SH(3) An(zDzz, x, y) = H(3,2) An(x, y, z) Bell-type based Appell

y→ x, z→ y polynomials (BTAP) [12]

Remark: In view of the special cases mentioned in Table 1, the results for the special polynomials related
to the Appell sequences can be obtained.

Next, we derive certain operational representations for the LeGHAP
SH(s) An(x, y, z) and

RH(s) An(x, y, z).

3. Operational representations

To establish the operational representation for the LeGHAP
SH(s) An(x, y, z) and

RH(s) An(x, y, z), we prove
the following results:
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Theorem 3.1. The following operational representation between the LeGHAP
SH(s) An(x, y, z),

RH(s) An(x, y, z) and the
Appell polynomials An(x) hold true:

SH(s) An(x, y, z) = exp
(
D−1

x
∂2

∂y2 + z
∂s

∂ys

)
An(y) (3.1)

and

RH(s) An(x, y, z) = exp
(
z
∂s

∂ys

)
An

(
−D−1

x + D−1
y

)
, (3.2)

respectively.

Proof. In view of equation (2.8), the proof is direct use of identity (2.4).

Theorem 3.2. The following operational representation between the LeGHAP
RH(s) An(x, y, z) and the 2VLeAP

RAn(x, y) holds true:

RH(s) An(x, y, z) = exp
(
z
∂s

∂D−s
y

)
RAn(x, y), (3.3)

or, equivalently

RH(s) An(x, y, z) = exp
(
(−1)sz

∂s

∂D−s
x

)
RAn(x, y). (3.4)

Proof. From equation (2.2), we have

∂s

∂D−s
y

RH(s) An(x, y, z) =
∂
∂z RH(s) An(x, y, z). (3.5)

Also, from Table 1(VI), we have

RH(s) An(x, y, 0) = RAn(x, y). (3.6)

Now, solving equation (3.5) subject to initial condition (3.6), we get assertion (3.3). Again using a similar
argument as in the above proof of (3.3), we establish the assertion (3.4).

Theorem 3.3. The following operational representation between the LeGHAP
SH(s) An(x, y, z) and the 2VLeTAP

2LAn(x, y) holds true:

SH(s) An(x, y, z) = exp
(
z
∂s

∂ys

)
2LAn(x, y). (3.7)

Proof. Using a similar argument as in the above proof of Theorem 3.2, we establish the assertion (3.7) of the
Theorem 3.3.

Theorem 3.4. The following operational representation between the LeGHAP
SH(s) An(x, y, z) and the GHAP H(s) An(y, z)

hold true:

SH(s) An(x, y, z) = exp
(
D−1

x
∂2

∂y2

)
H(s) An(y, z). (3.8)

Proof. From equations (1.5) and (2.1), we have

∂2

∂y2 SH(s) An(x, y, z) =
∂

∂D−1
x

SH(s) An(x, y, z). (3.9)

Also, from Table 1(I), we have

SH(s) An(0, y, z) = H(s) An(y, z). (3.10)

Solving equation (3.9) subject to initial condition (3.10), we get assertion (3.8).

In the next section, we introduce 2-variable Hermite Kampé de Fériet based Bernoulli polynomials
(2VHKdFBP) HBn(y, z) as an example of the Legendre-Gould-Hopper based Appell family.
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4. Appendix

Since, for A(t) = t
et−1 , the AP An(x) reduce to the Bernoulli polynomials (BP) Bn(x) [15] and for s = 2, x = 0,

the LeGHP SH(s)
n (x, y, z) reduces to the 2VHKdFP Hn(y, z) [21, Table 2.1(VIII)]. Therefore, for the same choices,

the LeGHAP
SH(s) An(x, y, z) reduce to the 2-variable Hermite Kampé de Fériet based Bernoulli polynomials

(2VHKdFBP) HBn(y, z). Thus, by using these substitutions in equations (2.1), (2.16), (2.17), (2.30), (3.1) and
(3.8), we can obtain the following results for 2VHKdFBP HBn(y, z):

Table 2: Results for the 2VHKdFBP HBn(y, z)

I. Generating functions t
et−1

exp(yt + zts) =
∞∑

n=0
HBn(y, z) tn

n!

II. Multiplicative and M̂SHB := y + 2zDy +
eDy (1−eDy )−1

Dy (eDy
−1)

, P̂SHB := Dy

derivative operators

III. Differential equations
(
yDy + 2zD2

y +
eDy (1−eDy )−1

(eDy
−1)

− n
)

HBn(y, z) = 0

IV. Operational representations HBn(y, z) = exp
(
z ∂2

∂y2

)
Bn(y)

The series definition for the 2VHKdFBP HBn(y, z) can be given as:

HBn(y, z) = n!
[ n

2 ]∑
k=0

zk Bn−2k(y)
k! (n − 2k)!

. (4.1)

Further, it has been shown in [5] that for β0 = 1 and βi = 1
i+1 , (i = 1, 2, 3, ...,n) the determinant definition

of the Appell polynomials An(x) reduces to the determinant form of Bernoulli polynomials Bn(x) (see [4, 5]).
Therefore, in view of equations (2.12) and (2.13), the determinant definition of the 2VHKdFBP HBn(y, z) can
be given as:

Definition 4.1. The 2VHKdFBP HBn(y, z) of degree n are defined by

HB0(y, z) = 1, (4.2)

HBn(y, z) =
(−1)n

(β0)n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1(y, z) H2(y, z) ... Hn−1(y, z) Hn(y, z)

1 1
2

1
3 ... 1

n
1

n+1

0 1 ( 2
1 ) 1

2 ... ( n−1
1 ) 1

n−1 ( n
1 ) 1

n

0 0 1 ... ( n−1
2 ) 1

n−2 ( n
2 ) 1

n−1
...

...
...

. . .
...

...
0 0 0 ... 1 ( n

n−1 ) 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, n = 1, 2, 3, ..., (4.3)

where Hn(y, z)(n = 0, 1, 2, ..., ) are the 2-variable Hermite Kampé de Fériet polynomials of degree n.

Now, we draw the surface plot of the 2VHKdFBP HBn(y, z). To draw the surface plot of 2VHKdFBP
HBn(y, z), we consider the values of the first six Bernoulli polynomials Bn(x) given in Table 3.

Table 3: First six expressions of Bernoulli polynomials
n 0 1 2 3 4 5

Bn(x) 1 x − 1
2 x2

− x + 1
6 x3

−
3
2 x2 + x

2 x4
− 2x3 + x2

−
1

30 x5
−

5
2 x4 + 5

3 x3
−

x
6

Set n = 5 in the series definition of the 2VHKdFBP HBn(y, z) (4.1), we have

HB5(y, z) = B5(y) + 20zB3(y) + 60z2B1(y) (4.4)
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Using the particular values of Bn(y) from Table 3 in equation (4.4), we find

HB5(y, z) = y5
−

5
2

y4 +
5
3

y3
−

1
6

y + 20zy3
− 30zy2 + 10zy + 60z2y − 30z2. (4.5)

In view of equation (4.5) and with the help of Matlab, we get the following surface plot of HB5(y, z):

−5

0

5

−5

0

5
−3

−2

−1

0

1

2

x 10
4

Figure 1: Surface plot of HB5(y, z)

Also, by giving suitable values to the variables and indices, we can find many important results for the
members belonging to Legendre-Gould-Hopper based Appell family.
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