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Abstract. The boundedness and compactness of a product-type operator, recently introduced by S. Stevi¢,
A. Sharma and R. Krishan,

T2, 1@ = D@D (9) + 2@ "V (p(2), f € H(D),

from the logarithmic Bloch spaces to Zygmund-type spaces are characterized, where 11,1, € H(ID), ¢ is an
analytic self-map of ID and # a positive integer.

1. Introduction

Firstly, we introduce the notations used in this paper. Let ID = {z : |z| < 1} be the open unit disk of
the complex plane C and H(ID) the space of all analytic functions in ID. Let u be a weight, that is, u is a
positive continuous function on D.
The logarithmic Bloch space and Zygmund-type space is defined as follows, respectively:

Biog = {f € HD) : lIfll = sup (1 - |z|2) (log 1 _2|Z|)|f’(z)| < oo},

zeD

and

Zy= {f € HD) : sup u@@)|f"(z)l < oo}.
zeD
The quantity appearing in the definition of the logarithmic Bloch space appears in [1], in characterizing
multipliers of the Bloch functions. The space itself has been defined later. The space B, is a Banach
space under the norm ||fllg,, = |f(0) + [Ifll. With the norm [|fllz, = [f(0)l + |f"(0)| + sup u(2)|f”(z)|, the
zeD
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Zygmund-type space Z,, is also a Banach space. When pu(z) = 1 — |z[?, it is the Zygmund space Z, which
was essentially introduced in [22]. For the case of the unit ball see, e.g., [40]. Let

Biogo = { f € Biog : lim (1-1=P) (log - _2|Z|)| ()] = 0}.

Having studied composition operators (see, e.g., [5] and the references therein) and integral operators
on spaces of analytic functions on various domains, some experts started studying operator-theoretic
properties of their product-type operators (for the case of the unit disc see [3, 12, 13, 17, 19-21, 33, 53, 54],
while for the case of the unit ball see [10, 24, 26-28, 34-43, 49, 55-57]). After the publication of [7],
some experts started studying product-type operators involving the differentiation operator (see, e.g., [14—
16, 18, 44]). Some of these papers study the operators from or to Bloch-type and/or Zygmund-type spaces
([2,4,6,8,9,17,20, 29, 50]).

Motivated by the study of weighted differentiation composition operators (see [32,45-47]), quite recently,
S. Stevi¢, A. Sharma and R. Krishan in [48] introduced the operator

T}, o f@ = 01 (9@) + Y2(2) "D (@(2)), f € H(D),

where 1,9, € H(ID), ¢ is an analytic self-map of ID and n a positive integer. The boundedness and
compactness of the product-type operator Ty . : F(p,q,5) (or Fo(p, 4,5)) — B, have been studied by them.
Note that, for ¢, = 0, we obtain the weighted differentiation composition operator. For some later results
on the weighted differentiation composition operator on various spaces of analytic functions see, e.g.,
[11, 23, 31, 51, 58-60].

Inspired by the results [25, 30, 32, 45, 47], our aim is to consider the boundedness and compactness of

the operators T:}}l, o - Blog (01 Blogo) = Ly-

2. Auxiliary results

Here we quote three lemmas which will be used in the proofs of the main results in this paper.

Lemma 2.1 ([30]) Suppose f € Biog, there exists a constant C such that

Clifllz,,

f(@)I < - ,
(1 - I1zP)" log 125

for every z € D, and all positive integern =1,2,---.

The following lemma was essentially introduced in [52], we will sketch the details of the proof to
maintain completeness.

LEmMma 2.2 Let
(1~ Iz log 25

=———— t€]0,1], ze D,
(1 —1tz|) log 1_2‘&'

9:(z)

then for all t € [0,1],
|g9:(2)| < 2, foreveryz € D.

Proof. Let f(x) = (1 - x)log 1=, x € [0,1). By the Product Rule f'(x) = —log 1% + 1. Set xo = 1 — 2, clearly
f increases on [0, xp] and f decreases on [xp, 1). Noting that 0 < %xo = 43—;8 <1, we have

MIf1>¢t> ?1 and ;—‘xo <x<1,thenl>x>tx > xp,s0 f(x) < f(tx), thus |g:(z)| = }‘((tllzll)) <1,ift € (3/4,1]

and %xo <zl < 1.
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QIf1>t>3 and 0<x< xO, then 0 < tx < xo, so f(x) < f(xo) and f(tx) = mm{f(O f(4xo)} Since

4 _ 6e - 307 307 51 307
1-%x=5%> 5/8, 1_%% 2 > M and (3%)° > 28 thus f(3x) > 2log 3% > log 2, so

fle) _ f(xo) 2/e
f(tlzl) min{£(0), f(3x0)} ~ log2

|g:(z)] = <2,ifte€(3/4,1]and 0 < |z| < 4x0

B)Ifo<t< i, then for x € [0,1), f(x) < f(xo) = 2/e. Since tx € [0, 3/4], we have

f(tx) > min {f(O),f(Z)} = min {log 2, Z logZ} = zlogZ,

thus
flzh) _ 8

9:@)1 = " = 3elog2

<2,ifte[0,3/4]and z € D.

So the proof is complete.
The following compactness criterion follows from standard arguments, for example, those in [5, Propo-
sition 3.11].

LemMma 2.3 Let 1, € H(ID), ¢ be an analytic self-map of D, n a positive integer and p a weight. Then
Ty, vrp * Biog (07 Biog) — L is compact if and only if Ty, : Biog (07 Biogo) — Ly is bounded and for any
bounded sequence {fi} in Biog (0r Blog0) which converges to zero uniformly on compact subsets of ID as k — oo, we

have ||T¢ s (,)fk”Z# — 0ask — oo.

3. Boundedness and compactness of T:,Z o from Byog (01 Bieg o)
1,42,

to Z, spaces

In this section, we prove our main results.

Tueorem 3.1. Let Y1, Y» € H(ID), @ be an analytic self-map of ID, n a positive integer, and u a weight. Then the
following statements are equivalent.

(1) T” : Biog — Ly is bounded;

U1, 2,0
21 biap : Blogo — Ly is bounded;
3)
2| (z
sup i )Itl;l( ) oo, O

2
zeD (1 — |(p(z)| ) log %

M(Z)Il,bl(z) "(2) +21P1(Z)(P (2) + ¢, (Z)I

D , 2)
* (1 - )(P(Z)| ) 1Og1 0@
H@IP1(2) (@' (2))* + 295 (2)9’ (2) + %(Z)(P"(ZN
S ]]I)) n+2 4 (3)
=€ (1 - |(p(z ( ) log m
and
L@’ (2)1 )

2D > n+3 )
(1 - |(P(Z)| ) log e
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Proof. (3) = (1). Since

(T2 1n0f) @ =01@F (@)
+({11@9 @) + ¥5@) D (P@) + 1 @e @ F " (p(2),
and
(T2 0n0f) @ =0/ @f (@)
+ (11" @) + 201 @) + 5 @) "V (@ (2)
+ (1@ @) + 2059’ @) + Ya(2)¢" (2)) F 2 (p(2)
+22)(@ @)Y F P (2)),
thus for every z € D and f € Bjo, by Lemma 2.1 and the hypothesis we obtain that

(T4 f) @)
< U@ @I (eE)|
+UE@) P @)e" (2) + 29, (D)9’ (2) + Y5 @ | e (@)
+1(2) [P @) (@' ) + 295@)@ @) + P2(2)9” @) |[f" 2 (p2)|
+1(2) [L22)(@ @) | F" D p(2)|
< s, u(z)zlwnl @)l
(1 - )(p(z)| ) log m
L@ )" () + 29 (D)9’ (2) + 15 (2)]
n+1
(1 - |(P(Z ‘ ) IOg m
u@)l12)(@' (2))> + 2¢2<z>(p @) + Y2(2)9” (2)]
u@) @) lle’ )P
2 n+3 )
(1-le@[)  tog =2
< Cllfllg,,- ®)
On the other hand, we have
(T8 4o $) O = [E10)FPp(0)) + P20 f " (0))
|¢1<01| :+|11Pz(0)| fls.., ”
(1 - '(p(0)| ) log m

+Cllflls,

+Clfls,, -

+Cliflls,,

<C

and

( Y1, ‘P (0)|
1%(0 FP0) + @109 (0) + P3O f " ((0)) + $2(0)¢ (0) " (p(0))]
MO OO + 4301+ 9209 O @

(1 - e ) log Ty
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It follows from (5), (6) and (7) that T" Vi

(1) = (2). It is obvious.
(2) = (3). Assume that T"

o : Biog — Ly is bounded.

Yrpap
IT}, 4. fllz, < Clflls, for every f € Buogp.

For f(z) = i—': € Blogo in (8), we have that
Ky = sup u@W ()] < oo.
zeD

n+1

Taking f(2) = Gy
Su]g ‘u(z)w) (Z)(P(Z " l)Dl(Z)QON(Z) + 211)1(2,' 0] (Z) + Eb (Z)| < 0.

€ Biogo in (8), we obtain that

From (9) and (10), and since the function ¢ is bounded on DD, it follows that,
Ky = sup H@IP1(2)9" (2) + 291 ()¢ (2) + Y5 (2)] < eo.

+2
Zn

(n+2)‘

Taking f(z) = € Biogo in (8), we have that

sup y(Z)I k! '@)(P@)* + Y1 (2)9" (@) + 291 ()¢’ (@) + 5 (2)P(2)

zeD
+ (1)@ () + 20529’ (@) + Pa(2)9” (2))] < co.
By (9), (11), (12) and the boundedness of ¢, we have that

K3 1= sup p(@) [1 (@)@’ (2)* + 2¢5(2)¢’ (2) + P2(2)9” (2)| < o0

zeD
n+3

Taking f(2) = g3y

€ Biogo in (8), we also get
s%mm;www@f+ﬂw®¢vw4%@¢w+%@ﬂwmz
(Y1 @ + 205600 () + 129" (2) () + Y22’ )] < .
By (9), (11), (13), (14), and the boundedness of ¢, we have that
Ky:= sup L@@l @) < o
For a fixed w € D and constants 4, b, ¢, set
_ 2 _ 2\2
f0) =a— 1P S 1 lp@)t)
(1 - Z(P(“))) log oy (1- Z(P(w)) log
(1 = lp()P) (1 = lp(@)P)*
—— ; + — A
(1 - zqo(a))) log o) (1 - Z(p(a))) log o)

+cC

It is easy to check that
(1= lp(@)P) (p@))”

: Biogo — Ly is bounded, that is, there exists a constant C such that

(1= lp@)P)? (p(@))’

£() +b(n + 1)

n+1 n+2
(1-2p(@) " log =2y (1-2p(@) " log =2

L (@R (0@) g3y (A-lp@P) ()

2 6

—\n+3 >
(1 - Z(p(w)) log @)

—\n+4 5 4
(1 - ZQD(‘”)) 10g @)

3643

(8)

©)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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1= lp@P) (p@)""

@) =am+ )

n+2
- Z(P(w)) log T2

(1 - lp@)P? (p(@) "

+ b(n + 2)!

, (n+a! <1—|<p(w>|2>4(<p(w)) "

(3 (= lp@P)’ (o)™

2 —\n+4
(1 - Z(P(‘”)) log 1—\<5<w>|

(1 - lp@) (p@) "™

) = an +2)!

Ly (A= lp@P’ (pl@)"”

—\n+3 5
1-2pW))  log gy

6

(1 - lp@)P? (p(@) "

(1-2p(@)"" log =25

( _Z(P(“))) log Ty |<p<m>|,

+b(n + 3)!

, (1+5) 1 - lp@)P)* (<P(w)) "

2

6

(1-2p(@)"" log =5

—\n+5 2
(1 - Z(P(“))) log @

(1 - lp@) (p@) "™ 1 - lp@)P? (p(@) "~

ey =—am+ 3)'

+b(n + 4)!

( ‘Z‘P(“))) 10g @ |(p<w)|/

—\n+4
- Z(P(w)) 10g T2

L 5! (1 - lp(@)P) (p@)"™ L 1+ 6) <1—|<p<w>|2>4(<p(w)) °

? (1- ZM)n+6 log 1,‘(,3(“,” ° (1- Z(P(w)) log
By Lemma 2.2 we have
su]g(l — |z[%) (log T )I fo ()
2 (1 = lp(@)I)
<C 1- !
b ( lZD( 1= |Z|) (1-lp@)]) (1 - |zp(@)]) log 1=
2 - lp()])*
+Csup(l - |z]) |log
b ( 1- Izl) |(P(w)| 1 - (z(p(a))|)log o
2 - lp(w)))?
+Csup(1 - |z]) (log
zeD ( 1- |) |<p(w)| 1- 1Z<P(w)|)1°g T-Tp@)|
- lp(w))*

2
+Csup(l — |z (lo )
gt SToE g

|(P(w)| 1 - |z9()]) log =

(1-1lzl)1o
< Csup S Tk Izl
zeD (1 - |Z(p(a))|)log1 ]
<2C,

hence f, € By, and sup || fw”_fglog <2C.
weD
On the other hand, for each fix w € D, by (21) we obtain that

2\ (1 - [2l)log 25
(1~ =) (log =) 1£2@) = “T-lp@Nlog2

it follows that f,, € Byog0 for each fix w € D.

— 0 (aslz| = 1),

(1-2p(@) " log 2

3644

(18)

(19)

(20)

(21)

(22)
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For a system of linear equations
a+m+2)b+n+2)(n+3)c/2=-m+2)(n+3)(n+4)/6,
a+m+3)b+m+3)(n+4)c/2=-m+3)n+4)(n+5)/6, (23)
a+mn+4b+n+4d)n+5)c/2=-m+4)(n+5)n+6)/6,

since
1 n+2 (n+2)(n+3)/2
1 n+3 (m+3)n+4)/2 |=1=+0,
1 n+4 (n+4)(n+5)/2

the system (23) by Cramer’s Rule has non-zero solution. From (17), (18), (19) and (20), there are constants
a,b,c, such that £V (p()) = " (p(@)) = £V (p(w)) = 0 and

—\1

(@)

(()n)( (CL))) =C ({1, b,c, n) ’
o (9 ! 1 - lp(@)P)" log 25

where Ci1(a,b,c,n) = an! + b(n + 1)! + @ + @ # 0. Hence for the test functions f,, where v € D and
@(w) # 0, we get
C 2T . fllz,
> (@) |9 @) (@)
@y @)l fp@)]

(1 - |q0(a))|2) log m

= |C1 (ﬂ, b/ ¢, 7/1)| (24)

By (24), we obtain that
(@)} ()]
1 sup Y
L<ip(@i<1 (1 ) ) 10g T2
(@)Y} (@)l [p@)|
J<lp(@)<1 (1 - |(p(a))|2) 10g T2
< ot gy O] (@) lp(@)|

< R
b (1 - |‘P(w)| ) log 1—|g§(a))|
<C<oo. (25)

<2"

And from (9), we have
@)y (w)]
sup ) N\
lp(@)I<3 (1 — |go(w)| ) log —1_|;(w)|
p)lg! (W)l
up i\
pisk (1 ~ o) ) log 2

4\" 1
<(3) o s H@WI@)
3 logzw(w)i%y i

4\" K;
= (5) Tog2 < (26)
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Thus from (26) with (25) we see that (1) holds.
Since

1 n+1 (n+1)(n+2)/2
1 n+3 (n+3)n+4)/2 |=3+#0,
1 n+4 n+4)(n+5)/2
from (17), (18), (19) and (20), there are constants a,b,c in (16) such that g(a'f)((p(a))) gg,”z)((p(a))) =
g8 (p(w)) = 0 and
((p(a)))n+1

(1~ lp@)P)"* log =2

g (@) = Cala, b, ¢, n)

where Cy(a,b,c,n) = a(n + 1)! + b(n + 2)! + C("+3) + @ # 0 and g, denotes the corresponding function.

Therefore, for g, where w € ID and ¢(w) # 0, we get

C 2T}, 9lz,
> p(@) [P1(@)p” (@) + 24 D ()|
ww) |1 (@) (@) + 2¢1<w><p @) + v} @) [p@)]"

(1 = |p(@) )" log @ |(p(w)|

= |C2(ﬂ, b/ c,n ) (27)

From (27), we obtain
(@)1 (@) (@) + 241 ()¢ (@) + P ()]
L<p(@)<1 (1 ) )M 10g T2
I )" @) + 2@ @) + 47@) o)
Llp@)<1 (1 ~ ()| ) log 1=
I ") + 209’ @) + () o)

(1 - )(P(w)‘ ) log @ \<p(m)|
<C<oo. (28)

< 2n+1

< 2n+1
wE]D

By (11), we see that
pw)lPr(w)p” (w) + 2'#1((0)@ (@) + 5 ()|

Ip(@< (1 - |p(@)| ) log =5y
< p(@)lr ()" (w) + 24’1(60)@ (w) + 95 ()|
< sup

(w

lp(@)<3 (1—|(p(a))| ) log?2

4 n+1 1
: (5) log2 |¢?3E % @)1 (@) (@) + 21 (@)" (@) + ¢35 (@)l

4 n+1 K
S(g) log2 < oo (29)

Thus combining (28) with (29) we get the condition (2).
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Next, we prove that (3). Since

1 n+1 (n+1)(n+2)/2
1 n+2 (n+2)n+3)/2 |=3+#0,
1 n+4 (n+4)(n+5)/2

from (17), (18), (19) and (20), there are constants a,b,c in (16) such that hg')((p(w)) = hg“)((p(w)) =
S (@) = 0 and
n+2
(p(@))

(1 - lp(@)P)**21og =2

h* (p(w)) = Cs(a, b, ¢, n)

where Cs(a,b,c,n) = a(n + 2)! + b(n + 3)! + w + @ # 0 and h, denotes the corresponding function.
Hence for h,, where w € D and ¢(w) # 0, we get
c 2> ||T”1,¢2,¢,hm||zy
> (@) |1 (@)@ (@) + 204(@)¢’ (@) + Pa(w)g” (@)] |12 (p(w))|

(@) [ (@)(@ (@) + 294 (@)@’ (@) + Pa(@)p” ()| [plw)

2 n+2 )
(1 B |(P(w)‘ ) l0g @

‘n+2

=1Cs(a, b, ¢, n)

(30)

From (30) it follows that
H(@) [11(@)(@ (@) + 205 (@)¢' (@) + P2(w)p” (@)
L<ip(@)i<1 (1 _ |(p(w)|2)n+2 log 1=
(@) [ (@) (@) + 204(@)g" (@) + ()’ @) [p@)|
L<lp(@)i<1 (1 - |<p(w))2)n+2 I ]
< 2142 g MV [91(@)(@’ @) + 204@)! (@) + (@) (@) [p@)|

welD 2 2 2
(1 = |p(@) ) log =5y
< C < co. (31)

< 2n+2

Using (13), we have
@191 @) (@) + 204’ (@) + P2(@)p” (@)
p(@l<} (1 - |¢(w)|2)n+2 e
H@)P1(0) (@' (@))* + 295 (@)@’ (@) + Pa(w)p” ()|

1

< sup RVE
lp(@)<? (1 ~ () ) log 2

4 n+2 1
<(3)
3 log 2

(4 )n+2 K3
<|= <
—\3 log2

From (31) and (32), condition (3) follows, as desired.

sup p(w) |4J1(w)(<P’(w))2 + 2y ()’ (w) + ¢z(w)¢"(w)|
lp(@)<i

co. (32)
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Finally, we prove that (4). Since

1 n+1 (n+1)(n+2)/2
1 n+2 (m+2)n+3)/2 |=1=+0,
1 n+3 (n+3)(n+4)/2
from (17), (18), (19) and (20), there are constants a,b,c in (16) such that kg)((p(w)) = kg'ﬂ)((p(a))) =
kS (p(w)) = 0 and
n+3
(p(@))

(1 - lp(@)P)** log =2

(n+6)!
6

K9 (p(w)) = Cala, b, ¢, n)

where Cy(a,b,c,n) = a(n + 3)! + b(n + 4)! + @ +
Hence for k,, where w € D and ¢(w) # 0, we get

# 0 and k,, denotes the corresponding function.

c 2 “T:Ll/lpz/q;kw”Z#

> p(@)2(0)lg’ (@) 15 (p(w))|
—n+3

w@)2(0)llp’ (@) [p(w)|

= |C4(a/ b/ c, Tl)| (33)

2\1+3 ) :
By (33), we obtain that
H@)la(@)llg’ (@)
sup

L <p(@)<1 2\ o
5< )<
2P (1 - |q0(a))| ) IOg 1-|p(w)l

@)@l @ [p@)|
X > n+3
72 <lp(w)l<1 (1 _ |(P(w)) ) logm
—1+3
ST%WPMwwwwmuwPWwﬂ

oD 5 n+3 )
(1 = |p(@) ) log oy
<C<oo. (34)

< 2}’l+3

On the other hand, by using (15), we have

H@)l2(@)llg’ (@)
. 2\1+3
o (1= fof') 0B
o M@l @)F

- L 5 n+3
vt (1 o)) log2

lp(@)l<i

4 n+3
S@)1%2<w (35)

Hence, (34) and (35) imply (4), completing the proof of the theorem. Note that we have used the fact that
the functions g, h, ko € Biogo for each fix w € D.

4 n+3 1
S(é) log2 b H@)lpa(@)le’ @)F
Ky
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TueorEM 3.2. Let Y1, ¢, € H(ID), @ be an analytic self-map of ID, n a positive integer, and u a weight. Then the
following statements are equivalent.
(1) T”Ww : Biog — L, is compact;
2) T;n : Blogo — L is compact;
(3) T&ll Gop - Blog — Ly is bounded and
p@IYy @)

POt 2\"
Y (1 - ‘(P(Z)| ) log 1—|(2p(z)|

=0, (36)

H@I1R)9" (@) + 291 (@)¢"(@) + 5 @

| glgl 2\ 0 57)
v (1 - |(p(z)| ) log %
L@@ (2))* +205(2)¢" (2) + P2(2)9” (2)]
Pt 2\1+2 R =0, (38)
(1 - |(p(z)| ) log @)
and
’ 2

| E)ﬂ% y(Z)ItPj(ZIBI(p @) o, (39)
¢ (1 - (qo(z)| ) log %

Proof. (3) = (1). Assume that Tl’z1 o - Biog — Ly is bounded, and that conditions (36), (37) and (38)

hold. For any bounded sequence {f;} in Bjoz with fy — 0 uniformly on compact subsets of ID. By Lemma
2.3 we have to show that
Ty, pfllz, = 0, if k — oo

We may assume that ||fills,, <1 for every k € N. Let us fix ¢ > 0. From (36), (37), (38) and (39) there exists
p € (0,1) such that

p@Y @)
(1 - |(p(z)|2) log m

<e, (40)

p@)1(2)p" (2) + 291 (2)¢’(2) + 5 (2)] -
n+1
(1 - |g0(z))2) log m
(@) [P1(2) (@' @) + 205@)¢' (@) + Pa(2)9” )| -

2 n+2 )
(1 - lp() ) log

g, (41)

, (42)

and
u@M2 2’ (2)

3 <eg, (43)
2\" 5
(1 ~ ()| ) log tmy

if p < |p(2)| < 1. Since T$ : Blog — L, is bounded, thus (9), (11), (13) and (15) hold by Theorem 3.1.

]fn+1)/ Ifn+2) and fk(n+3)

12,9
Since fx — 0 uniformly on compact subsets of ID, Cauchy’s estimate implies that f, ),
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converges to 0 uniformly on compact subsets of D, there exists a Ko € IN such that
(T e O]+ [T O+ sup ) (T3, 0,0 2)

L @O)] + 920001 (@) + 11 O£ (@ (0)]

+10)¢" O @ O)] + [¢20000 O £ (@(0)

+ sup u@IYY @A (@)

lp(z)I<p
+ sup L@IP1(2)e” @) + 20, (D)9 @) + Py @) |7 (p@)]
p(2)l<p
+ sup 1@ [P12)(@ @)% + 295@)¢’ @) + 22" @) | (9(2)|
p(z)|l<p
+ sup u@2@)le’ @R [ (@@)|
lp@z)I<p
< Ce+Ky sup [f(p@)|+Ke sup [f"(p@)
lp@)<p lp@@)I<p
+K; sup [P (p@)] + Ky sup [f" V(@)
lp@@)I<p lp2)I<p
< Ce, (44)

whenever k > Ky. From (40), (41), (42), (43), (44) and Lemma 2.1 we have

T, 0 fillz,
= (T f) O (T, ) O 500 0|77, 8) @)

<[(T5, ) O+ [ T;; sroft) O)

0 1T ph) @+ s 4T f) )

<Ce+C sup H(Z)2|1/J”1 @l
p<lp@I<1 (1 e ) log 12
p@P1(z)e” (z) + 21P1(Z)(P (2) + 97 (@)l
p<lp@)<1 (1 B )(p(Z)| ) log%
1@)P1(2)(@(2))* + 205(2)¢" (2) + P2(2)9” ()
n+2
P (1 - |(P(Z)'2) log 135y
+C sup p@P22)lle’ (2)1

Pt (1 _ o " e 2
plz 08 T
< 4Ce, (45)

1flls,,

+C

1£lls,,

+C

1flls,,

1flls,,

whenever k > Ky. Hence T:lu g : Blog — Ly is compact.

(1) = (2). It is obvious.
(2) = (3). Assume that T” : Blogo — Ly is compact. Then it is clear that T7

YL Blog,O - -Zy is
bounded. By Theorem 3.1 we get that 1 : Blog — L, is bounded. Let {z} be a sequence in ID such

P12
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that |p(z¢)] = 1 as k — oo. Set
1- 2 1- 2\2
YR . U
(1 - ZfP(Zk)) log TGl (1 - zqo(zk)) log m
(1 - lp@)lP) . (1 - lp@)lP)*

N1 —\4 :
(1 - Z(P(Zk)) log Tr2cy (1 - Z(P(Zk)) log Ty

+C

Note that

(1= lp)P)
(1 - Zq’(zk)) log 1—|<p2<zk>|

(1 - lp(z)l*)?
[N 5

(1 - Z(p(Zk)) log oGl
(1 - lp@)l?) . (1 - lpz))*

(1 - ZM)?) log =y (1 - Z@f log 1

_ i+ lp@ID( ~ lp@oD) | I+ ) - lp(z))?
T (-lp@log gy (1= le(z0)? log iy,

i) <|a + b

1A+ lpEIDA ~lpEI)® | (4 +lpED A - e
1 -lpEI)log ey (1= le@)log oz,
C
< — 0 (k > ),
log ey

for |z| < 1. From which, (21) and (22), we see that f; is a bounded sequence in B,z 0 which converges to 0
uniformly on compact subsets of ID. By Lemma 2.3, we have

. " _
L [Ty, pfellz, = 0.

Note that . , X
R @) = £ 0@) = £ 0@) =0,
£ @) = Glabon(pe)
¢ (1= lp(z0)P)" log T2y
From (24) and using the compactness of Tz)ll o Blogo — L, we obtain
z)|V! (zi)l |o(z "
(Cata by, L5 PEL ol —0ask oo (46)
(1-lp0l") 1og =P
From (46) and |p(z)| — 1, it follows that
pzOlpy (zl

I}im oV =
(1-[p@of") 108 e

and consequently (36) holds. The idea and the process of the proof of (37), (38) and (39) is quite similar to
that of (36) by using test functions gi(z) = g, (2), hk(z) = h;,(z) and ki(z) = k,(z), hence it will be omitted due
to the space limitation. The details are left to interested readers.
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