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Abstract. Two Z-eigenvalue inclusion theorems for tensors presented by Wang et al. (Discrete Cont.
Dyn.-B, 2017, 22(1): 187–198) are first generalized to E-eigenvalue inclusion theorems. And then a tighter
E-eigenvalue inclusion theorem for tensors is established. Based on the new set, a sharper upper bound for
the Z-spectral radius of weakly symmetric nonnegative tensors is obtained. Finally, numerical examples
are given to verify the theoretical results.

1. Introduction

For a positive integer n, n ≥ 2, N denotes the set {1, 2, · · · ,n}. C (R) denotes the set of all complex (real)
numbers. We callA = (ai1i2···im ) a real tensor of order m dimension n, denoted byA ∈ R[m,n], if

ai1i2···im ∈ R,

where i j ∈ N for j = 1, 2, · · · ,m. A is called nonnegative if ai1i2···im ≥ 0.A = (ai1···im ) ∈ R[m,n] is called symmetric
[1] if

ai1···im = aiπ(1)···iπ(m) , ∀π ∈ Πm,

where Πm is the permutation group of m indices. A = (ai1···im ) ∈ R[m,n] is called weakly symmetric [2] if the
associated homogeneous polynomial

Axm =
∑

i1,··· ,im∈N

ai1···im xi1 · · · xim

satisfies ∇Axm = mAxm−1, where x = (x1, x2 · · · , xn)T
∈ Rn, and Axm−1 is an n dimension vector whose ith

component is
(Axm−1)i =

∑
i2,··· ,im∈N

aii2···im xi2 · · · xim .
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It is shown in [2] that a symmetric tensor is necessarily weakly symmetric, but the converse is not true in
general.

Given a tensorA = (ai1···im ) ∈ R[m,n], if there are λ ∈ C and x = (x1, x2 · · · , xn)T
∈ Cn
\{0} such that

Axm−1 = λx and xTx = 1,

then λ is called an E-eigenvalue ofA and x an E-eigenvector ofA associated with λ. Particularly, if λ and
x are all real, then λ is called a Z-eigenvalue ofA and x a Z-eigenvector ofA associated with λ; for details,
see [1, 3]. Denote by σ(A) (respectively, E(A)) the set of all Z-eigenvalues (respectively, E-eigenvalues) of
A. Assume σ(A) , 0, then the Z-spectral radius [2] ofA, denoted %(A), is defined as

%(A) := max{|λ| : λ ∈ σ(A)}.

Note here that, Chang et al. in [2] demonstrated by an example that the Z-spectral radius %(A) of a
nonnegative tensor A may not be itself a positive Z-eigenvalue of A, and proved that if A is a weakly
symmetric nonnegative tensor, then %(A) is a Z-eigenvalue ofA; see [2], for details.

The Z-eigenvalue problem plays a fundamental role in best rank-one approximation, which has nu-
merous applications in engineering and higher order statistics [1, 4], and neural networks [5]. Recently,
much literature has focused on locating all Z-eigenvalues of tensors and bounding the Z-spectral radius of
nonnegative tensors in [6–20]. In 2017, Wang et al. [6] generalized Geršgorin eigenvalue inclusion theorem
from matrices to tensors and established the following Geršgorin-type Z-eigenvalue inclusion theorem.

Theorem 1.1. [6, Theorem 3.1] LetA = (ai1···im ) ∈ R[m,n]. Then

σ(A) ⊆ K (A) =
⋃
i∈N

Ki(A),

where
Ki(A) = {z ∈ C : |z| ≤ Ri(A)} and Ri(A) =

∑
i2,··· ,im∈N

|aii2···im |.

Based on the setK (A), the following upper bound for ρ(A) presented in [7] is obtained easily.

Theorem 1.2. [7, Corollary 4.5] LetA ∈ R[m,n] be nonnegative. Then

%(A) ≤ max
i∈N

Ri(A).

To get a tighter Z-eigenvalue inclusion set thanK (A), Wang et al. [6] obtained the following Brauer-type
Z-eigenvalue inclusion theorem for tensors.

Theorem 1.3. [6, Theorem 3.3] LetA = (ai1···im ) ∈ R[m,n]. Then

σ(A) ⊆ M(A) =
⋃

i, j∈N,i, j

(
Mi, j(A) ∪Hi, j(A)

)
,

where
Mi, j(A) =

{
z ∈ C :

(
|z| − (Ri(A) − |ai j··· j|)

)
(|z| − Pi

j(A)) ≤ |ai j··· j|(R j(A) − Pi
j(A))

}
,

Hi, j(A) =
{
z ∈ C : |z| < Ri(A) − |ai j··· j|, |z| < Pi

j(A)
}
,

and
Pi

j(A) =
∑

i2 ,··· ,im∈N,
i<{i2 ,··· ,im }

|a ji2···im |.

Based on the setM(A), Wang et al. [6] obtained a better upper bound than that in Theorem 1.2.
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Theorem 1.4. [6, Theorem 4.6] LetA = (ai1i2···im ) ∈ R[m,n] be a weakly symmetric nonnegative tensor. Then

%(A) ≤ Ψ(A) = max
i, j∈N,i, j

{1
2

(
Ri(A) − ai j··· j + Pi

j(A) + Λ
1
2
i, j(A)

)
,Ri(A) − ai j··· j,Pi

j(A)
}
,

where
Λi, j(A) = (Ri(A) − ai j··· j − Pi

j(A))2 + 4ai j··· j(R j(A) − Pi
j(A)).

Due to various new and important applications of E-eigenvalue problem in numerical multilinear
algebra [21], image processing [22], higher order Markov chains [23], spectral hypergraph theory, the study
of quantum entanglement, and so on, some properties of E-eigenvalues have been studied systematically;
see [8] for details. However, characterizations of inclusion set for E-eigenvalue are still underdeveloped.
This stimulates us to establish some inclusion theorems to identify the distribution of E-eigenvalues.

In the sequel, we research on the E-eigenvalue localization problems for tensors and their applications.
First, Theorems 1.1 and 1.3 are extended to E-eigenvalue inclusion theorems. Second, a new E-eigenvalue
inclusion set for tensors is presented and proved to be tighter than those in Theorems 1.1 and 1.3. Finally, as
an application of the new set, a new upper bound for the Z-spectral radius of weakly symmetric nonnegative
tensors is given and proved to be sharper than those in Theorems 1.2 and 1.4.

2. E-eigenvalue inclusion sets for tensors

In this section, we first generalized those sets in Theorems 1.1 and 1.3 to E-eigenvalue inclusion sets.
And then we present a new E-eigenvalue inclusion set for tensors and establish the comparison among
these three sets. Firstly, similar to the proof of Theorems 3.1 and 3.3 of [6], the following theorem is obtained
easily.

Theorem 2.1. LetA = (ai1···im ) ∈ R[m,n]. Then

E(A) ⊆ K (A), and E(A) ⊆ M(A).

Next, a new E-eigenvalue inclusion theorem for tensors is presented.

Theorem 2.2. LetA = (ai1···im ) ∈ R[m,n]. Then

E(A) ⊆ Ω(A) =
⋃

i, j∈N, j,i

(
Ω̂i, j(A) ∪

(
Ω̃i, j(A) ∩Ki(A)

))
,

where
Ω̂i, j(A) =

{
z ∈ C : |z| < P j

i (A) and |z| < Pi
j(A)

}
and

Ω̃i, j(A) =
{
z ∈ C :

(
|z| − P j

i (A)
)(
|z| − Pi

j(A)
)
≤

(
Ri(A) − P j

i (A)
)(

R j(A) − Pi
j(A)

)}
.

Proof. Let λ be an E-eigenvalue ofAwith corresponding E-eigenvector x = (x1, · · · , xn)T
∈ Cn
\{0}, i.e.,

Axm−1 = λx, and ‖x‖2 = 1. (1)

Let |xt| ≥ |xs| ≥ max
i∈N,i,t,s

|xi|. Obviously, 0 < |xt|
m−1
≤ |xt|

m−2
≤ |xt| ≤ 1. From (1), we have

λxt =
∑

i2 ,··· ,im∈N,
s∈{i2 ,··· ,im }

ati2···im xi2 · · · xim +
∑

i2 ,··· ,im∈N,
s<{i2 ,··· ,im }

ati2···im xi2 · · · xim .
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Taking modulus in the above equation and using the triangle inequality give

|λ||xt| ≤
∑

i2 ,··· ,im∈N,
s∈{i2 ,··· ,im}

|ati2···im ||xi2 | · · · |xim | +
∑

i2 ,··· ,im∈N,
s<{i2 ,··· ,im }

|ati2···im ||xi2 | · · · |xim |

≤

∑
i2 ,··· ,im∈N,
s∈{i2 ,··· ,im }

|ati2···im ||xs||xt|
m−2 +

∑
i2 ,··· ,im∈N,
s<{i2 ,··· ,im }

|ati2···im ||xt|
m−1

≤

∑
i2 ,··· ,im∈N,
s∈{i2 ,··· ,im }

|ati2···im ||xs| +
∑

i2 ,··· ,im∈N,
s<{i2 ,··· ,im }

|ati2···im ||xt|

= (Rt(A) − Ps
t(A))|xs| + Ps

t(A)|xt|,

i.e., (
|λ| − Ps

t(A)
)
|xt| ≤ (Rt(A) − Ps

t(A))|xs|. (2)

By (2), it is not difficult to see |λ| ≤ Rt(A), that is, λ ∈ Kt(A). If |xs| = 0, then |λ| −Ps
t(A) ≤ 0 as |xt| > 0. When

|λ| − Ps
t(A) = 0, obviously, λ ∈

(
Ω̃t,s(A) ∩Kt(A)

)
⊆ Ω(A). And when |λ| − Ps

t(A) < 0, if |λ| ≥ Pt
s(A), then we

have (
|λ| − Ps

t(A)
)(
|λ| − Pt

s(A)
)
≤ 0 ≤ (Rt(A) − Ps

t(A))
(
Rs(A) − Pt

s(A)
)
,

which implies λ ∈
(
Ω̃t,s(A) ∩Kt(A)

)
⊆ Ω(A); if |λ| < Pt

s(A), then we have λ ∈ Ω̂t,s(A) ⊆ Ω(A).
Otherwise, |xs| > 0. By (1), we can get

|λ||xs| ≤
∑

i2 ,··· ,im∈N,
t∈{i2 ,··· ,im }

|asi2···im ||xi2 | · · · |xim | +
∑

i2 ,··· ,im∈N,
t<{i2 ,··· ,im }

|asi2···im ||xi2 | · · · |xim |

≤

∑
i2 ,··· ,im∈N,
t∈{i2 ,··· ,im }

|asi2···im ||xt|
m−1 +

∑
i2 ,··· ,im∈N,
t<{i2 ,··· ,im}

|asi2···im ||xs|
m−1,

≤

∑
i2 ,··· ,im∈N,
t∈{i2 ,··· ,im }

|asi2···im ||xt| +
∑

i2 ,··· ,im∈N,
t<{i2 ,··· ,im }

|asi2···im ||xs|,

i.e., (
|λ| − Pt

s(A)
)
|xs| ≤ (Rs(A) − Pt

s(A))|xt|. (3)

When |λ| ≥ Ps
t(A) or |λ| ≥ Pt

s(A) holds, multiplying (2) with (3) and noting that |xt||xs| > 0, we have(
|λ| − Ps

t(A)
)(
|λ| − Pt

s(A)
)
≤

(
Rt(A) − Ps

t(A)
)(

Rs(A) − Pt
s(A)

)
,

which implies λ ∈
(
Ω̃t,s(A) ∩ Kt(A)

)
⊆ Ω(A). And when |λ| < Ps

t(A) and |λ| < Pt
s(A) hold, we have

λ ∈ Ω̂t,s(A) ⊆ Ω(A). Hence, the conclusion σ(A) ⊆ Ω(A) follows immediately from what we have
proved.

Next, a comparison theorem is given for Theorems 2.1 and 2.2.

Theorem 2.3. LetA = (ai1···im ) ∈ R[m,n]. Then

Ω(A) ⊆ M(A) ⊆ K (A).
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Proof. By Corollary 3.2 in [6],M(A) ⊆ K (A) holds. Hence, we only prove Ω(A) ⊆ M(A). Let z ∈ Ω(A).
Then there are t, s ∈ N and t , s such that z ∈ Ω̂t,s(A) or z ∈

(
Ω̃t,s(A)∩Kt(A)

)
. We divide the proof into two

parts.
Case I: If z ∈ Ω̂t,s(A), that is, |z| < Ps

t(A) and |z| < Pt
s(A). Then, it is easily to see that

|z| < Ps
t(A) ≤ Rt(A) − |ats···s|,

which implies that z ∈ Ht,s(A) ⊆ M(A), consequently, Ω(A) ⊆ M(A).
Case II: If z < Ω̂t,s(A), that is,

|z| ≥ Pt
s(A) (4)

or

|z| ≥ Ps
t(A), (5)

then z ∈
(
Ω̃t,s(A) ∩Kt(A)

)
, i.e.,

|z| ≤ Rt(A) (6)

and (
|z| − Ps

t(A)
)(
|z| − Pt

s(A)
)
≤

(
Rt(A) − Ps

t(A)
)(

Rs(A) − Pt
s(A)

)
. (7)

(i) Assume
(
Rt(A) − Ps

t(A)
)(

Rs(A) − Pt
s(A)

)
= 0. When (4) holds, by (7), we have(

|z| − (Rt(A) − |ats···s|)
)(
|z| − Pt

s(A)
)
≤

(
|z| − Ps

t(A)
)(
|z| − Pt

s(A)
)

≤

(
Rt(A) − Ps

t(A)
)(

Rs(A) − Pt
s(A)

)
= 0
≤ |ats···s|

(
Rs(A) − Pt

s(A)
)
,

which implies that z ∈ Mt,s(A) ⊆ M(A).On the other hand, when (5) holds, we only prove z ∈ M(A) under
the case that |z| < Pt

s(A). When

Ps
t(A) ≤ |z| < Rt(A) − |ats···s|, (8)

we have z ∈ Ht,s(A) ⊆ M(A). And when

Rt(A) − |ats···s| ≤ |z| ≤ Rt(A), (9)

from (
|z| − (Rt(A) − |ats···s|)

)(
|z| − Pt

s(A)
)
≤ 0 ≤ |ats···s|

(
Rs(A) − Pt

s(A)
)
, (10)

we have z ∈ Mt,s(A) ⊆ M(A).
(ii) Assume

(
Rt(A) − Ps

t(A)
)(

Rs(A) − Pt
s(A)

)
> 0. Then dividing both sides by

(
Rt(A) − Ps

t(A)
)(

Rs(A) −

Pt
s(A)

)
in (7), we have

|z| − Ps
t(A)

Rt(A) − Ps
t(A)

|z| − Pt
s(A)

Rs(A) − Pt
s(A)

≤ 1. (11)

If |ats···s| > 0, let a = |z|, b = Ps
t(A), c = Rt(A) − |ats···s| − Ps

t(A) and d = |ats···s|, by (6) and Lemma 2.2 in [24],
we have

|z| − (Rt(A) − |ats···s|)
|ats···s|

=
a − (b + c)

d
≤

a − b
c + d

=
|z| − Ps

t(A)
Rt(A) − Ps

t(A)
. (12)



C. L. Sang, J. X. Zhao / Filomat 33:12 (2019), 3883–3891 3888

When (4) holds, by (11) and (12), we have

|z| − (Rt(A) − |ats···s|)
|ats···s|

|z| − Pt
s(A)

Rs(A) − Pt
s(A)

≤
|z| − Ps

t(A)
Rt(A) − Ps

t(A)
|z| − Pt

s(A)
Rs(A) − Pt

s(A)
≤ 1,

equivalently, (
|z| − (Rt(A) − |ats···s|)

)(
|z| − Pt

s(A)
)
≤ |ats···s|

(
Rs(A) − Pt

s(A)
)
,

which implies that z ∈ Mt,s(A) ⊆ M(A). On the other hand, when (5) holds, we only prove z ∈ M(A)
under the case that |z| < Pt

s(A). If (8) holds, then z ∈ Ht,s(A) ⊆ M(A). And if (9) holds, by (10), we have
z ∈ Mt,s(A) ⊆ M(A).

If |ats···s| = 0, by |z| ≤ Rt(A), we have |z| − (Rt(A) − |ats···s|) ≤ 0 = |ats···s|. When (4) holds, we can obtain(
|z| − (Rt(A) − |ats···s|)

)(
|z| − Pt

s(A)
)
≤ 0 = |ats···s|

(
Rs(A) − Pt

s(A)
)
, (13)

which implies that z ∈ Mt,s(A) ⊆ M(A). On the other hand, when (5) holds, we only prove z ∈ M(A)
under the case that |z| < Pt

s(A). If (8) holds, then z ∈ Ht,s(A) ⊆ M(A). And if (9) holds, by (13), we have
z ∈ Mt,s(A) ⊆ M(A). The conclusion follows from Case I and Case II.

Remark 2.4. Theorem 2.3 shows that the set Ω(A) in Theorem 2.2 is tighter thanK (A) andM(A) in Theorem 2.1,
that is, Ω(A) can capture all E-eigenvalues ofA more precisely thanK (A) andM(A).

In the following, an example is given to verify Remark 2.4.

Example 2.5. LetA = (ai jk) ∈ R[3,3] with entries defined as follows:

A(:, :, 1) =

 0 3 3
2 1 1
3 1 0

 ,A(:, :, 2) =

 2 0.5 1
0 2 0
1 0 0

 ,A(:, :, 3) =

 3 1 1
1 1 0
2 0 1

 .
We now locate all E-eigenvalues ofA. By Theorem 2.1, we have

K (A) = {z ∈ C : |z| ≤ 14.5000} andM(A) = {z ∈ C : |z| ≤ 14.2228}.

By Theorem 2.2, we have
Ω(A) = {z ∈ C : |z| ≤ 11.5000}.

The E-eigenvalue inclusion sets K (A), M(A), Ω(A) and all E-eigenvalues −6.3796,−3.2536,−1.8154,−0.8351,
−0.7011− 0.8430i,−0.7011 + 0.8430i,−0.4608, 0.4608, 0.7011− 0.8430i, 0.7011 + 0.8430i, 0.8351, 1.8154, 3.2536,
6.3796 are drawn in Figure 1, whereK (A),M(A), Ω(A) and the exact E-eigenvalues are represented by black solid
boundary, blue dashed boundary, red solid boundary and black “+”, respectively. It is easy to see that

σ(A) ⊆ Ω(A) ⊂ M(A) ⊂ K (A),

that is, Ω(A) can capture all E-eigenvalues ofA more precisely thanM(A) andK (A).

3. A sharper upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors

As an application of the set Ω(A) in Theorem 2.2, a new upper bound for the Z-spectral radius of weakly
symmetric nonnegative tensors is given.

Theorem 3.1. LetA = (ai1···im ) ∈ R[m,n] be a weakly symmetric nonnegative tensor. Then

%(A) ≤ Ωmax = max
{
Ω̂max, Ω̃max

}
,
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Figure 1: Comparisons ofK (A),M(A) and Ω(A).

where
Ω̂max = max

i, j∈N, j,i
min{P j

i (A),Pi
j(A)},

Ω̃max = max
i, j∈N, j,i

min
{
Ri(A),∆i, j(A)

}
,

and

∆i, j(A) =
1
2

P j
i (A) + Pi

j(A) +

√(
P j

i (A) − Pi
j(A)

)2
+ 4

(
Ri(A) − P j

i (A)
)(

R j(A) − Pi
j(A)

) .
Proof. As stated in Section 1, ifA is weakly symmetric and nonnegative, then %(A) is the largest Z-eigenvalue
ofA. Hence, by Theorem 2.2, we have

%(A) ∈
⋃

i, j∈N, j,i

(
Ω̂i, j(A) ∪

(
Ω̃i, j(A) ∩Ki(A)

))
,

that is, there are t, s ∈ N, t , s such that %(A) ∈ Ω̂t,s(A) or %(A) ∈
(
Ω̃t,s(A) ∩ Kt(A)

)
. If %(A) ∈ Ω̂t,s(A), i.e.,

%(A) < Ps
t(A) and %(A) < Pt

s(A), we have %(A) < min{Ps
t(A),Pt

s(A)}. Furthermore, we have

%(A) ≤ max
i, j∈N, j,i

min{P j
i (A),Pi

j(A)}. (14)

If %(A) ∈
(
Ψ̃t,s(A) ∩Kt(A)

)
, i.e., %(A) ≤ Rt(A) and(

%(A) − Ps
t(A)

)(
%(A) − Pt

s(A)
)
≤

(
Rt(A) − Ps

t(A)
)(

Rs(A) − Pt
s(A)

)
, (15)
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then solving %(A) in (15) gives

%(A) ≤
1
2

Ps
t(A) + Pt

s(A) +

√(
Ps

t(A) − Pt
s(A)

)2
+ 4

(
Rt(A) − Ps

t(A)
)(

Rs(A) − Pt
s(A)

) = ∆t,s(A),

and furthermore

%(A) ≤ min
{
Rt(A),∆t,s(A)

}
≤ max

i, j∈N, j,i
min

{
Ri(A),∆i, j(A)

}
. (16)

The conclusion follows from (14) and (16).

By Theorem 2.3 and Corollary 4.2 in [6], the following comparison theorem can be derived easily.

Theorem 3.2. Let A = (ai1···im ) ∈ R[m,n] be a weakly symmetric nonnegative tensor. Then the upper bound in
Theorem 3.1 is sharper than those in Theorems 1.2 and 1.4, that is,

%(A) ≤ Ωmax ≤ Ψ(A) ≤ max
i∈N

Ri(A).

Finally, we show that in some cases the upper bound in Theorem 3.1 is sharper than those in [6, 7, 9–15]
by an example.

Example 3.3. LetA = (ai jkl) ∈ R[4,2] be a symmetric tensor defined by

a1111 =
1
2
, a2222 = 3, ai jkl =

1
3

elsewhere.

By computation, we obtain (ρ(A), x) = (3.1092, (0.1632, 0.9866)). By Corollary 4.5 of [7], we have

%(A) ≤ 5.3333.

By Theorem 2.7 of [15], we have
%(A) ≤ 5.2846.

By Theorem 3.3 of [11], we have
%(A) ≤ 5.1935.

By Theorem 4.5, Theorem 4.6 and Theorem 4.7 of [6], we all have

%(A) ≤ 5.1822.

By Theorem 3.5 of [12] and Theorem 6 of [13], we both have

%(A) ≤ 5.1667.

By Theorem 7 of [9], we have
%(A) ≤ 5.0437.

By Theorem 2.9 of [14], we have
%(A) ≤ 4.5147.

By Theorem 5 of [10], we have
%(A) ≤ 4.4768.

By Theorem 3.1, we obtain
%(A) ≤ 4.3971,

which shows that this upper bound is better.
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4. Conclusion

In this paper, we first generalize two Z-eigenvalue inclusion sets K (A) andM(A) presented by Wang
et al. in [6] to E-eigenvalue localization sets. And then we establish a new E-eigenvalue localization set
Ω(A) and prove that it is tighter than K (A) and M(A). Based on the set Ω(A), we obtain a new upper
bound Ωmax for the Z-spectral radius of weakly symmetric nonnegative tensors and show that it is better
than those in [6, 7, 9–15] in some cases by a numerical example.
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