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Globally Asymptotic Stability of a Stochastic Mutualism Model
with Saturated Response

Jingliang Lv**, Heng Liu?, Yifeng Zhang®

?Department of Mathematics, Harbin Institute of Technology at Weihai, Shandong, 264209, P.R.China

Abstract. A two-species stochastic mutualism model with saturated response is proposed and investigated
in this paper. We demonstrate that there exists a unique positive solution to the model for any positive
initial value. Under some conditions, we show that the stochastic model is globally asymptotically stable.
Finally, we work out some figures to illustrate our results.

1. Introduction

Generally speaking, competition, predator-prey and mutualism are three basic relationships between
species. There exist many successful results on competition and predator-prey interactions, but mutualism
models are not understood theoretically [1]. Classic theory on mutualisms, however, suggested that
mutualisms were highly destabilizing [2] and the population sizes of species increase infinitely causing
divergence [3]. Therefore it is necessary and important to introduce appropriate models to investigate
essential features of mutualisms.

Lattice gas models in mean-field theory may provide a way to consider mutualisms [3]. Recently Lattice
gas models have drawn growing attention, see [3-9], among others. Especially, Wang and Wu [4] studied
the following model

= - my —x =
dx rlx[ dy + (1 + 1 b1y)(1 X y)]dt, (@)
dy = r [ —dy + (1 + a2 )(1 -X - )]dt (2)

where x(t) and y(t) represent two species densities at time f respectively, 7!, i represent the saturation levels

of x(t) and y(t), d; = lr)—ll, dy = % are positive parameters that D1, D; stand for death rates of species x(t) and
y(t), r1, 1o are birth rates of x(f) and y(t). For biological representation of each coefficient in the population
dynamics, we refer the reader to [3-4].
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On the other hand, population dynamics is inevitably subjected to environmental noise (see e.g. [10-
11]), which is an important component in an ecosystem. R.M.May [12] pointed out the fact that due
to environmental noise, the birth rates, carrying capacity, competition coefficients and other parameters
involved in the system exhibit random fluctuation to a greater or lesser extent. Many authors considered
the corresponding stochastic models to reveal the effect of environmental variability on the dynamics
in mathematical ecology; see e.g. [13-22]. These important results reveal the significant effect of the
environmental noise to the population system. In this paper, taking into account the environmental noise,
the stochastic system has the following form:

dx = x[ —d (14 fgly)(l _x- y)][rldt + 0udBy(b)], 3)
dy = y[ Cdy+ (1 - f;;x)a Cxo y)][rzdt + 02dBs ()] @)

The model, consisting of (3)-(4), together with the initial conditions x(0) = xo > 0 and y(0) = yo > 0 will be
referred to as model (SMM).

A basic problem in the study of population dynamic is the coexistence of species. When time ¢ is
sufficiently large and the solutions of a stochastic model go to a positive equilibrium of the stochastic
system, we can equate the state with coexistence of species mathematically. However, generally speaking,
there is no positive equilibrium to a stochastic model. [23] and [24] make attempts to consider the positive
equilibria of stochastic models, and conclude the models are globally asymptotically stable. However, so
far as we know, there is no work has been done with the stability of stochastic mutualism model with
saturated response (SMM). Motivated by the above ideas, we consider the globally asymptotic stability of
its positive equilibrium of the stochastic system (SMM).

2. Main results

As x(t) and y(t) in model (SMM) are population size of the prey and the predator respectively, it should
be non-negative. So for further study, we must firstly consider the system (SMM) has a globally positive
solution.

Theorem 2.1. Consider model (SMM), for any given initial value (xo, yo) € R3, there is an unique solution (x(t),y(t))
on t > 0 and the solution will remain in R2 with probability 1, where R% = {x € R2|x; > 0,i = 1,2}.

Proof. Define a C?>-function V: R2 — R, by

Vix,y) = \/E—l—%lnx+ \/y—l—%lny.

The non-negativity of this function can be observed from u—1—1Inu > 0 on u > 0. If (x(t), y(t)) € R%, we
compute
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Since all coefficients of system (SMM) are positive constants, we deduce that the function LV (x, y) is
upper bounded, say by K. By the similar proof of Theorem 2.1 of [18], we can obtain the desired assertion. [

Theorem 2.1 shows that (SMM) has a globally positive solution which is essential for a population system.
This result provides us with a great opportunity to construct some Lyapunov functions to study the stability
of the positive equilibrium of model (SMM).

Let (x*, ") be a positive equilibrium point of system (SMM) which is the solution of the following
algebraic equations:

—d1+(1+1”1y )(1—x—y)=0, 5)
—d2+(1+lizx )(1—x y) = (6)

Then system (SMM) can be rewritten as :

_ . o~ mX 20y + ab () .
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Now, we are in the position to analyze the globally asymptotic stability of the stochastic model (SMM).
Theorem 2.2. If
Ay <0 and 4A;B,—C3>0 and 4A;B,-C3>0. 9)

Then the equilibrium position (x*, y*) of model (SMM) is stochastically asymptotically stable in the large, i.e., for any
initial data (xo, yo), the solution of model (SMM) has the property that

lim x(t) = ', lim y(t) = ', (10)
almost surely.
Proof. From the theory of stability of stochastic differential equations, we only need to find a Lyapunov

function V(z) satisfying LV (z) < 0 and the identity holds if and only if z = z* (see e.g. [25]), where z = z(t) is
the solution of the n-dimensional stochastic differential equation

dz(t) = f(z(t), Hdt + g(z(t), dB(H). (11)

and
LV(z) = Vi(z) + V.(2)f(t, 2) + %tmce[gT(t, 2)V(2)g(t, 2)].
Now define Lyapunov functions

X
Vi@ =x-x =X InE), Vay)=y-y -y 1n(%>.
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The non-negativity of this function can be observed from u — 1 —Inu > 0 on u > 0. If (x(t), y(t)) € R,
applying [t6’s formula leads to
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Define V(x,y) = Vi(x, y) + Va(x, y), we compute
LV(x,y)

LVi(x,y) + LVa(x, y)
Ai(x = x)? +Bi(y — y')? + Cix = X )y — v).

Whenx—x">0andy—y* >0 or x—x" <0and y— y* <0, we can easily get LV(x,y) <0
When x —x* > 0and y — y* < 0, we know that

LV(x, y) < Aa(x = X' + Ba(y — y')* + Colx = X)(y = ¥
Let (Z—-Z")=(x—-x",y—y*)". Then

LV(x,y) < (z z )( 2‘422 2CB22 )(Z—Z*). (12)

Therefore LV (x,y) < 0.

When x —x* < 0and y — y* > 0, we can also get LV(x, y) < 0. Obviously LV (x, y) < 0 along all trajectories
in R? except (x*, y*). Then we can get the desired assertion immediately. [

3. Numerical simulations

In this section we will use the Milstein method mentioned in Higham [26] to substantiate the analytical
findings. Consider the discretization equations:

a1 Yk
1+ bl Yk

Xiet1 Xy + rlxk[ —dp + (1 + )(1 - X — yk)]At

+ alxk[ —d + (1 + 1 _:gk )(1 Xk — yk)] Vaté;

% wye Vo
; xk[ d1+(1+1+b1yk)(l % yk)] (& - 1)at,
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Ao Xk
1+ bzxk
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where & and n, k = 1,2, ..., n, are the Gaussian random variables that follow N(0, 1).

As pointed out in Theorem 2.2, if A, < 0,4A4,B,— C% > 0and 4A,B, — C% > 0, then the positive equilibrium
position (x*, y*) is stochastically asymptotically stable in the large. In all figures, we choose a; = 0.4, a, = 0.6,
by = 05, b, = 07and xo = 0.1, yo = 02, 01y = 02 = 0.15, 1, = 0513, r, = 0.601, di = 5%5 = 0.78,
dy = 3%~ = 0.832, then x* = 0.1736, y* = 0.0653, A> = —0.509 < 0, B, = —0.597 < 0, C; = 0.789, C3 = 0.72. So
we have A; = —0.509 < 0, 4A;B, — C3 = 0.593 > 0, 4A;B, — C% = 0.697 > 0, i.e. the conditions of Theorem 2.2
are satisfied, thus the stochastic model is stochastically asymptotically stable in the large. Figure 1, Figure
2 and Figure 3 can confirm the conclusion.

Figure 1: Its globally asymptotic stability in three dimensional space.

0.5) | | | | | | | ;x(f) 1

L L L L L
0 20 40 60 80 100 120 140 160 180

Figure 2: The horizontal axis represents the time ¢, it reflects the sample path is globally asymptotically stable.
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Figure 3: The joint distribution of the system in the three dimensional space.
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