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Abstract. In this paper we propose a projective conformal semi-symmetric connection and study its
geometric and physical properties. The Schur’s theorem of this connection is obtained.

1. Introduction

The concept of a semi-symmetric connection in a Riemannian manifold was firstly introduced in [9].
K.Yano in [21] introduced firstly and investigated a semi-symmetric metric connection, and T. Imai in [15]
studied its properties. Afterwards some kinds of semi-symmetric connections were studied in [10, 20, 24].
A semi-symmetric connection that is projectively equivalent to the Levi-Civita connection was defined as a
projective semi-symmetric connection and some of its properties were investigated ([22, 23]). In [13, 14] a
projective conformal semi-symmetric connection was considered. In [7] a curvature copy problem of a non-
metric connection was considered. In [16] the Amari-Chentsov connection as a geometrical structure of a
statistical manifold was regarded and in [18] a conjugate symmetry condition of the statistical manifold was
regarded and in [18] a conjugate symmetry condition of the statistical manifold discovered. In[1,2,4, 5] and
[17] the properties of a semi-symmetric non- metric connection were investigated. In [6, 8], a physical model
of a semi-symmetric non-metric connection was studied. In [10] the Schur’s theorem of the Levi-Civita
connection was considered and in [11] the Schur’s theorem of the semi-symmetric non-metric connection
was studied. Recently, Han, Fu and Zhao [12] studied a projective connection and its properties on Sub-
Riemannian manifolds.

In this paper we will propose a new projective conformal semi-symmetric connection and study its
properties.

The paper is organized as follows. Section 1 introduces one type of semi-symmetric connection and
studied its properties. Section 2 studies the property of projective semi-symmetric connection and Section
3 studies conformal semi-symmetric connection. Finally in Section 4 a new projective conformal semi-
symmetric connection is defined and its properties and conjugate symmetry condition are studied. And
we study the Schur’s theorem of the projective conformal semi-symmetric connection.
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2. Semi-symmetric Connections

t
Definition 2.1. In a Riemannian manifold (M, g), a connection V is called a semi-symmetric connection if it satisfies
the relation

%zg(X, Y) 1-Hn(Z)g9(X,Y) - —H(X)!J(Y Z) - —ﬂ(Y)g(X Z), (2.1)
TX,Y) = n(Y)X-nX)Y (2.2)
forany X,Y,Z € T (M) and a 1-form m.

t
A semi-symmetric connection V is a non-metric connection and it is can be written as

t 0 1+t 1-t¢
VxY = VxY+ TT[(Y)X - TTC(X)Y, (23)

0
for any X, Y € 7 (M), where V is the Levi-Civita connection.
t
The coefficient of the semi-symmetric connection V is

ky 1 1-

0
where {i.‘].} is the coefficient of the Levi-Civita connection V and 7; is a component of the 1-form n(This is

f t
called a semi-symmetric component). Using expression (2.4), the curvature tensor R';j of V is

t
Rl = Kiy + 07T — 0tk = 6B, (2.5)

0
where ngk is the curvature tensor of the Levi-Civita connection and 7 = %(V O — —7'( i), Bij = 1T(Vﬁ'c i—
0
\% jﬂ,‘).
t t
The coefficient of dual connection V* of the connection V is

¢tk

. Ky 1—-t 4 1+t k
T ij = {1]} + Tn](sl — Tt gl]r

t
and the curvature tensor of V* is
y 1 I I 1, <l
Rij = Kiy +gutT; = gt + OB, (2.6)

tm t
The coefficient of mutual connection V of the connection V is

i:’liij _ {Z}+1+t

1-t .
k k
> nb 5 ——o;,

tm
and the curvature tensor of V is

tm

Rl = Kiy + 07k = 07T + 0B, 2.7)

0
where 7 = L(Vimy + i), Bij = B( V inj — Vim).
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Lemma 2.2. In the Riemannian manifold (M, g)(dimM > 3), the tensor

t t 1 t t
Wh = Rlij- m(éﬁR]’k - 5§-Rik) (2.8)
t—1
(m—=D[n+1t+n-3]

I t t I t t I t t
[5,-(Rjk = Rj) + 0;(Rix = Ryi) + (1 = 1) (R;i — Rij)]/

0 t
is an invariant under the connection transformation V.— V.

Proof. By using contraction of the indices i and [ of (2.5), we find

*

Rjx =K —(n=1D)tjx + B, (29)

Alternating the indices j and k, using 7 — 7¢; = % Bjk, we find
Pik

Substituting (2.10) into (2.9), we have

t—1
nm+Dt+n-3

1-t t t
= m[(ka - Kij) = (Rjx = Riy)], (2.10)

t

Tk = {(Kjk - Rj) + [(Kjk - Kyj) - (ﬁjk - ﬁkj)]}, (2.11)

N
-1
Substituting (2.10) and (2.11) into (2.5), by a direct computation, we arrive at

t 0
W =W,

ije = WVijk (2.12)

0
where the tensor ijk is

0
1
— ! L
Whic = Kj ~ =1 Kk = 0K
t—1
(n=D[(n+1)t+n-3]

+

[d’(Kjk - Kyj) + 6;(Kik - Kii) + (n = 1)0,(Kji — Ki]')]

I
Kijk -

1
m(éi‘Kjk - 6§'Kik)-
This ends the proof of Lemma 2.2. [

0 0
Remark 2.3. The tensor Wf].k is a Weyl projective curvature tensor of the connection V.

Using Lemma 2.2, the following theorem is proved without difficulty.

t
Theorem 2.4. If a Riemannian metric admits the semi-symmetric connection V with vanishing curveture tensot,
then the Riemannian metric is projective flat.

Remark 2.5. In [21], it is proved that if a Riemannian metric admits the semi-symmetric metric connection with
vanishing curvature tensor, then the Riemannian metric is conformal flat.

For the Riemannian manifold, if Rg].k = jok, then the connection V is called a conjugate symmetry and if
* (s *(s)

Rjx = Rj, then the connection V is called a conjugate Ricci symmetry and if Rjx = Rj, then the connection

V is a conjugate semi-Ricci symmetry (see [20]).
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t t
Lemma 2.6. In the Riemannian manifold (M, g), the tensor V';j of the connection V

) g 1 gk t! t!
Vz'jk = Ri]'k_nj(éiRﬂ( 6Rk+g,kR g]kR)
20114 Lo ! L
) [<n+4)t+<n_4>][55<Rjk—ka> Bl(Rsc~ Ri) + 9a(R; = R ) = g(R; = R.)

+

nd! (Rl] ,-l-)] (2.13)

t t ¢ t
is an invariant under the connection transformation V.— V, where R' j = Ry;g".

Proof. From (2.5) and (2.6), we get

t* *
Rlijk = Rl,'jk + (35’[]']( - 5;’1’,']{ + gikT; - gjkTg + 255([3,']' (2.14)
Contracting the indices i and / of (2.14), then we find

t* *

Rjk = R]k + ntj — g]k’lfi - 2,B]k (215)

Alternating the indices j and k of (2.15) and using 7 — 74; = %ﬁ jt, we have

Bix = i 4[( k= Rk;) (]k_Rkj)] (2.16)

(n+ 4)t +n—
Substituting (2.16) into (2.15), we obtain

1 2(1

Tk = E{Rjk — Ry + guti + m[( jk = Rk]) (Rjx = Rk])]} (2.17)

Substituting (2.16) and (2.17) into (2.14), by a direct computation, we have

% I
Vi = Vi (2.18)
t*

where the tensor V! ijk s given as

t* tx l t*l

1 4t
1 ) )
\% ijk R ijk — T-1 (61Rjk 6 Rzk + g,kR g]kR )

2(1-1) tl el pl el
G- G7[01Ri = R = 0l(Ric = R + (R, ~ R ) = gk, - R,

+

nd! (R,] ,-,-)] (2.19)
This completes the proof of Lemma 2.6. [J

Using Lemma 2.6, it is not hard to show that the following theorem is tenable.

t
Theorem 2.7. A manifold associated with a semi-symmetric connection V is conjugate symmetric if and only if it is
conjugate Ricci symmetric.
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Lemma 2.8. In the Riemannian manifold (M, g)(dimM > 3), the tensor

f g Lok I
Wik = Rig— m(éiR]'k - 6]-R,«k)
t— 1 1 t t 1 t t I t t
(n—1)(n - 3) [61‘(Rﬂ< = Rj) + 03(Rix = Ri) + (11 = 1)0(Ri; — Rjz’)] (2.20)

t tm
is an invariant under the transformation of the connection V. V.

Proof. Let ajx = T4Ti and 1 = Bix + Pix- From the expressions (2.5) and (2.6), we find

tm t

Rlijk = Rli]'k + (350(]']( - 6?0@;{ + 5;(71,']' (2.21)
Contracting the indices i and [ of (2.21), then there holds the following

tm t

Rl]'k = lek + (1’1 - 1)(5]]( — Tljk (222)
Alternating the indices j and k of this expression, using & — ax; = 7jx, we then obtain
1 tm tm t t
mij= s 3[(Ri]’ - Rji) — (Rij - R/i)] (2.23)
From (2.23) and (2.22), we find
1 tm t 1 tm tm t t
aij = —— {Rij - Rij) + n__B[(Rij - Rji) — (Rij - Rji)]} (2.24)

Substituting (2.23) and (2.24) into (2.21), by a direct computation, we have
t tm
Wi = Whi,

tm
where the tensor Wlijk is written as

fm tm 1 tm tm
Wik = Rie= ——(0[Rje ~ 9;Ri)
t—1 I tm tm I tm tm / tm tm
(1 —1)(n—3) [6i(Rfk = Ryj) + 03(Rix = Rig) + (n = 1)0(Ryj — Rji)] (2.25)

This completes the proof of Lemma 2.8. [J

t
Remark 2.9. The tensor W' is independent of the parameter t. This tensor is called a generalized Weyl projective

t
curvature tensor with respect to connection V.

Lemma 2.8 implies that the following theoremark is true.

t tm t tm
Theorem 2.10. In order that Rlijk = Rlijk, it is necessary and sufficient that Rjx = R .

t tx
Theorem 2.11. In a Riemannian manifold (M, g), the Weyl conformal curvature tensors cl; ks Clijk w. r. t. connec-

t ot 0 t 0 t*
tions V, V are invariants under the transformations of V.— V and V. — V. Furthermore, there holds

t t*

0
Clijk + Cl,']'k = chijk (2-26)
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0 0
where C'yj. is the Weyl conformal curvature tensor with respect to Levi-Civita connection V, namely,

0
1 K

Clijk = Kll-]'k - m(éiK;k - 6;Kik + g]kKll - gszé) - m(éiglk - (ng]k) (2.27)
Proof. Adding (2.5) and (2.6), we have

t tx

Rlijk + R],']'k = 2Kli]'k + 5;’1’,']{ - 55"(]'1( - gjkTg + gikT; (2.28)
Contracting the indices i and [ for (2.28), then we find

t b .

R]‘k + R]‘k = 2K]‘k - (n - Z)T]‘k - gjkT; (2.29)

Multiplying both sides of the expression (2.29) by g/, we obtain

boob ,

R+R=2K-2(n-1)T;

From this expression we find
1

= STOEY [21< - (fz + fi)] (2.30)

Using this expression and from the expression (2.29), we find

1 b 1 t b
Tik = m{ZKz’k — (Rix + Rix) — m[ZK — (R + R)lgx} (2.31)

Substituting this expression into the expression (2.28), by a direct computation and using (2.27), we have
the formula (2.26). O

t tm
Theorem 2.12. In a Riemannian manifold (M, g), the Weyl projective curvature tensors W'y, W'y w. 1. t.

t tm 0 t 0 tm
connections V, V are invariants under the transformations of V.— V and V. — V. Furthermore, there holds

t tm 0
Wlijk + Wl,']'k = ZWli]'k (2.32)
0 0

where W'y is the Weyl projective curvature tensor with respect to Levi-Civita connection V,

Proof. Adding the expressions (2.5) and (2.7), since 7 is a closed form we find

t tm
Rlijk + Rlijk = ZKli]'k - 6;)/,‘;( + (35]/]'}( (2.33)

where yj = Tjx — Tjr.
Contracting the indices i and / of (2.33), then we find

t

tm
R]'k + R]'k = 2K]'k + (7’1 - 1)7/jk (2.34)
From the expression (2.34), we have
1 t tm
Vik = m(Rjk + R]'k - ZKjk) (2.35)

Substituting (2.35) into (2.33), by a direct computation, then we have the expression (2.32). O
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3. Projective Semi-symmetric Connections

p 4 t
Definition 3.1. A connection V is called a projective semi-symmetric connection if V is projective equivalent to V in
a Riemannian manifold.

4
The coefficient of the projective semi-symmetric connection V is

4 k

rkij = {1']

1+t t

} + (Y + Tn]’)éi‘( + (i - %ﬂi)éj, (3.1)

4
where 1; is a projective component. The curvature tensor of V is

P
Rlije = Kjj + 80t = Ot + 6,3, (3.2)

where 7j = V W+ ) — @+ ) + Bm), Bij = V i — Snj) - V (i — I5m;). The coefficient of
p:(-
the dual projective connection V with respect to the connection V is written as

px— k

rkijZ{ 1+t

} + (W - %Tii)ék gz](lp + _nk)

*

and the curvature tensor of V is

p*
Rll]k Kz]k + gsz g]kT 65(,811 (33)
pm

The coefficient of the mutual projective connection V with respect to the connection V is

ek 1 +t

k k k
ruﬁgﬂw— Lok + (s + ot ),
pm

and the curvature tensor of V is

pm

Rlije = Kjj + 80T — 57 i + 6By, (3.4)

where Ty = Vi(gx — 517 — (@i — SLr) (e — Stm), B = Vil + i) — Vi + ),

Lemma 3.2. In a Riemannian manifold (M, g)(dimM > 2), the tensor

- g 1 i P 1 b P ;P P
Wik = Rix-— p— (OiRjk = ORix) = GID0=2) [6i(Rjk = Ryj) = 0;(Rix = Ryi)
P P 1 p(s)
— (}’l - 1)6k(R’] - Rﬂ)] - m[ 6 R ik + (7’1 + 1)6 R ],:I (35)

)
is an invariant under the tmnsformatzon of the connection V — V and R j is the corresponding projective semi-Ricci

curvature tensor ofV defined by R k= R]-khlg M (see [20]).

Proof. Contracting the indices i and / of the expression (3.2), then we find

p
Rj =K —(n—1D)tjx — Bk, (3.6)
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Alternating the indices j and k of this expression, we get

p p
Rjx = Rij = Kjg = Kyj — (n = 1)(Tjp — Tk)),
On the hand, one can contract the indices k and [ of (3.2) and arrive at

(s) 0(s)
R]'k = R]'k + Tjk — Tkj + ﬂﬁ]’k,

From the expressions (3.7) and (3.8), we have

1 p 4 () 0(s)

Bk = m[(R;‘k — Ryj) — (Kjx = Kj) + (n — (R — R jk)],

Substituting (3.9) into (3.8), we obtain

1 4 1

- Kyp—-Ryjp— —

ik (K= R (n—1)n—2)

() 0(s)

n—-1
+ (m-DRg-R ]’k)]},

[(ﬁjk - lgkj) — (Kjx = Kj)

3908

(3.7)

(3.8)

(3.9)

(3.10)

Substituting (3.9) and (3.8) into (3.2), by a direct computation, then from the expression (3.5), we have

p 0
I I
Wik = Wik,

0 0
where W/ ijk is the Weyl projective curvature tensor of V, namely,

0
1
W = K- (5 Kk — 5;Rik) - m[éﬁ(&'k - Kyj) — 6;(Kik - Kx)
1 0(5) 0(s) 0(s)
Liw. el — I'R 'R N8l R
- (n-Do(K; - K;)] TS [6! R je = 6, R + (n = 1)5, R j]
— ) 1 1
= KUk I —(6;Kjx — 6].K,-k)
This ends the proof of Lemma 3.2. [
0(s) 0
Remark 3.3. R = l]klg is a semi-Ricci curvature tensor of the Levi-Civita connection V.

Lemma 3.2 implies that the following theorem is tenable.

(3.11)

(3.12)

p
Theorem 3.4. If a Riemannian metric admits the projective semi-symmetric connection V with vanishing curvature

tensor, then the Riemannian metric is projective flat (dimM > 2).

Lemma 3.5. In a Riemannian manifold the tensor

pl p Pl 1 ] 14 14 ! 14 4
Vig = Rliy- —(5 R]k - Rzk + gsz - gxR) - W0 = 1) [5,-(Rjk = Ryj) = 8;(Rix = Ryi)
p
+ gik(le R ))- !J]k(R - R i) = nd( ]1)]
1 P(S) PO S) (S) PO)
— (0l R = 8 Ri + gk~ g R's + n3 R ;)

p* p(s) P
is an invariant under the connection transformation V —> V, where R k= ,]klg

(3.13)
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Proof. From (3.2) and (3.3), we have

pr 4
Rl = Rl — 5qu-k + Ol + g,«kf; — gt — 26, (3.14)
By using contracting of the indices i and / of the expression (3.14), we find
peop |
R]'k = R]‘k + NTj — GikT; — Zﬁjkr (3.15)
Alternating the indices j and k of this expression, we get
peooprp 4
Rj = Rij = Rj = Rij + n(Tje — 1)) — 4B
On the other hand, by contracting the indices k and I of the expression (3.14), we have
ps)  p(s)
R jj = Rij = 2(tij — tji) — 2npij,
From these expressions we find
1 p(s) px(s) p(s) p(s) px(s) p(s)
Bix = m[z( R = Ry)—2(Rj— Ryj)—n(R j— R]’k)]/ (3.16)
Substituting the expression (3.16) into the expression (3.15), we find
1746 pGe) i 1 pe) ) pe) PG
Tk = E{ R jk = Rje+ gt; = m[z( R jk— Rj) —2(R ju — Ryj)
(3.17)

- n(p}({)jk - pl(s)jk)]}/

Substituting (3.16) and (3.17) into (3.14), by a direct computation and the expression (3.13), we have

P P
Vi = Vi (3.18)
p*
where the tensor V' ijk is
p*l P*l 1 lpaf lpx- p*l p*l 1 l p* p* ] p* p*
Vik = Rip-— E(él‘Rjk — O;Rix + gikR'j = gk R'i) = m[éi(Rjk = Ryj) = 0,(Rix = Ryi)
P oo e
+ (R =R j) = gjx(Ri = R'j) — nd(Rij — Rjz‘)]
1 lp*(s) lpx»(s) P*(i) P*(i) i p*(s)
— m(éjRjk_éjRik-'-gikRj_.qiji+n6kRji> (319)

This completes the proof of Lemma 3.5. [
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4. Projective Conformal Semi-symmetric Connections

Definition 4.1. A connection V is called a projective conformal semi-symmetric connection, if V is projective

c c t
equivalent to V in a Riemannian manifold, where V is conformal equivalent to V.

C
It is not hard to write down the coefficient of the conformal semi-symmetric connection V is as

' = {Z} +(6i —

1-t 1+t
—711)6’](- + (6j + TT(]‘)(S? - gijék,
where 6; is a conformal component w.r.t. the conformal transformation of metric g jis namely, g i — gji =

¢®g;i. Furthermore, the projective conformal semi-symmetric connection V satisfies relations

1-t 1+t 1+t
Vigii = 2k + ok — Tﬂk)gij - (i + Tﬂi)g]‘k -(j+oj+ Tnj)gik
T, = o) - o) @.1)
and its connection coefficient is
I ij = {ij} + (Iljz +0;— Tni)éj + (l/)] +o0j+ Tnj)éi - gijo", (4.2)
and the curvature tensor of is
R = Klije + Sicik = Olcji + g, = gixb; + 8B, (4.3)
where
0
b]',' = V]'(Sf - (5]'(51',
0 1+t 1+t 1+t
ci = Vilpi+oi+ ——m)=j+0j+——m){i+0i+ ——m)

1+t
+ 9]'1'(1#1 + o0+ TT[[)CTI.

The coefficient of dual connection V with respect to the connection V is

%

=

1-t 1+t
1.].} +(Yi+oi - Tﬂi)élf- — gij(* + " + Tﬂk) + 00},
and the curvature tensor of the connection is

*

Rije = Kij' + 5§-bik — Slbj + gikcé — gjxct — &4 Bij, (4.4)

m
The coefficient of the mutual connection V with respect to the connection V is
o k 1+t 1-t
% = {ij} + (i +oi+ Tm)é’; +(j+o0j— Tnj)éf - gijo",
m

and the curvature tensor of the connection V is given as

m

Rl =Ky + 5;Eik - Sicj + gz‘kb; — gikbl + 01 Bij, (4.5)
where
0 1-t 1-t 1-t
Gi = Vjlpi+oi———m) = (@j+0; - ——m)(¥i + 0i = —— )

1-t
gji(r+ 01— Tﬂl)al- (4.6)

+
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Theorem 4.2. (Schur’s Theorem) Suppose (M", g)(n > 3) is a connected Riemannian manifold associated with a
projective conformal semi-symmetric connection V that is isotropic. If it satisfies the relation

1+t
th + 20y, + Tﬂh =0. (4.7)
Then (M", g) is a constant curvature manifold.

Proof. In a Riemannian manifold the second Bianchi identify of the curvature tensor of the projective
conformal semi-symmetric connection V is

ViRij' + ViRj' + ViRui' = 2(unRiz’ + iRy’ + 7R, (4.8)
From the fact that (M", g) is of isotropic, this implies that the curvature is
Ry = k(P)(éi‘!]ik - 8ig5), 4.9)
Substituting the expression (4.9) into the expression (4.8), then we obtain
th(éz‘!]ik —8lgjk) + Vik(sh g — 6;ghk) + Vik(Slgne — 6, gix)
+k(6évhgik - 6£'thjk + 62Vigjk - 5;Vighk + 6§nghk - 6]l1ngik)
= Z[Hh(éé'gik = 8igjk) + TS, g5 — 6§ghk) + 7Ol — O, gix)]-
Using the expression (4.1) we have
1+t 1+t
[Vik = (p + 265, + Tnh)k](éigij = &lgi) + [Vik — Py + 20, + Tﬂh)k](éigjk - 5?-!71&:)
1+¢ ! !
+[Vik = (Y5 + 20, + Tﬂh)k](é,-gkh — Ogni) = 0.
Contracting the indices i and ! of this expression, then we find
1+t 1+t
(7’1 - 2){[V]‘k - (l,l}] + 2(7]‘ + T“j)klghk - [V;,k - (¢)1 + 20y, + Tnh)k]gjk} =0,
multiplying both sides of this expression by g, then we obtain
1+t
(1~ 1)1~ 2)[Vik = (Y + 204 + %nh)k] = 0.

Consequently, from dimM > 2, it is known that k = const if and only if
1+t
¢h + 20, + %ﬂh =0.
This completes the proof of Theorem 4.2. [J

k
Remark 4.3. Ifo; = 0, we see from Theorem 4.2 that l"ijk = {7.].}—711‘5};, this connection is studied in [6]. If {; = 0; = 0,

t
then the projective conformal semi-symmetric connection V is exactly the semi-symmetric connection V. By virtue of

t t
the expressions in [4, 71, the semi-symmetric connection V with constant curvature is just that the connection V with
t=-1.
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