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Abstract. In this paper, we consider the following linear process

Xn =

∞∑
i=−∞

ciξn−i, n ∈ Z,

and establish the central limit theorem of the randomly indexed partial sums Sνn := X1 + · · · + Xνn , where
{ci; i ∈ Z} is a sequence of real numbers, {ξn; n ∈ Z} is a stationary m-dependent sequence and {νn; n ≥ 1}
is a sequence of positive integer valued random variables. In addition, in order to show the main result,
we prove the central limit theorems for randomly indexed m-dependent random variables, which improve
some known results.

1. Introduction and main results

Consider the linear process

Xn =
∑
i∈Z

ciξn−i, n ∈ Z, (1.1)

where {ci; i ∈ Z} is a sequence of real numbers and {ξn; n ∈ Z} is a stationary sequence of real random
variables defined on a probability space (Ω,F ,P) with Eξ1 = 0 and Eξ2

1 ∈ (0,∞). For any square summable
sequence {cn; n ∈ Z}, the processes {Xn; n ∈ Z} can be defined if and only if the stationary sequence
{ξn; n ∈ Z} has a bounded spectral density. Define Sn = X1 + · · ·+ Xn. If (ξn)n∈Z is a sequence of independent
identically distributed random variables with mean zero and finite variance and assume that

∑
j∈Z |c j| < ∞,

then Anderson [1] proved that n−1/2Sn converges in distribution to the normal random variable. Hannan
[11] proved the asymptotic normality by assuming only that the spectral density

f (λ) = Eξ2
1(2π)−1

∑
j∈Z

c jeiλ j


2

(1.2)
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Research supported by NSFC (11971154)
Email addresses: yumiao728@gmail.com (Yu Miao), qinghuigaocb@163.com (Qinghui Gao), zhangshuilicong@126.com (Shuili

Zhang)



Y. Miao et al. / Filomat 33:12 (2019), 3925–3935 3926

is uniformly bounded and is continuous atλ = 0 with f (0) > 0, which weakened the conditions of Anderson.
Hall and Heyde [10] observed that the result in fact continues to hold without the uniform boundedness
of spectral density. Recently, Peligrad and Utev [25, 26] studied the central limit theorems of moving
average processes generated by dependent sequences {ξn; n ∈ Z}, which are weakened by Miao et al. [20]
without the assumption of finite second moment for the sequences {ξn; n ∈ Z}. In addition, Miao [17, 19]
studied some central limit theorems for moving average processes. Other fluctuation results for the moving
average processes have been proved by various authors. For example, Yokoyama [35, 36], Li and Zhang [14]
considered the law of iterated logarithm; Lin and Li [15], Tyran-Kamińska [33] gave the functional central
limit theorems; the large and moderate deviations principle were obtained in [5–7, 12, 16, 18, 21–23, 34].

Let {Xn; n ≥ 1} denote a sequence of independent and identically distributed random variables with
mean value zero and variance one and let {νn; n ≥ 1} be a sequence of positive integer valued random

variables, such that n−1νn
P
−→ ν, where ν is a positive constant or positive random variable. When ν is a

positive constant, Anscombe [2] proved that

Sνn
√
νn

D
−→ N(0, 1) (1.3)

where N(0, 1) denotes the normal random variable. Rényi [28] obtained the central limit theorem (1.3)
provided ν is a positive discrete random variable. Blum et al. [4] weakened the conditions in Anscombe
[2] and Rényi [28] by assuming that ν is a positive, not necessarily discrete, random variable. Shang [30]
gave the central limit theorem for randomly indexed martingale differences. Shang [31] studied the central
limit theorems for functions of random variables under mixing conditions on the differences between the
joint cumulative distribution functions and the product of the marginal cumulative distribution functions.
Shang [32] and Belloni [3] considered the central limit theorem for randomly indexed m-dependent random
variables. These known results did not assume that the random sequence {νn; n ≥ 1} is independent of
the sequence {Xn; n ≥ 1}. Miao and Yang [24] discussed the moderate deviation principle for m-dependent
random variables with unbounded m. Fakhre-Zakeri and Farshidi [8] and Fotopoulos and Wang [9] studied
the central limit theorem (1.3) of the linear process (1.1) driven by the stationary independent sequences
{ξn; n ∈ Z}.

Motivated by the these known works, we are interested in the central limit theorem (1.3) of the linear
process (1.1) driven by the stationary m-dependent sequences {ξn; n ∈ Z}. The following theorem is our
main result and its proof will be given in the next section.

Theorem 1.1. Let {ξn; n ∈ Z} be a sequence of stationary m-dependent random variables on a probability space
(Ω,F ,P) with Eξ1 = 0 and Eξ2

1 < ∞. Consider a linear process of the form

Xn =

∞∑
i=−∞

ciξn−i, n ∈ Z,

with
∑
∞

i=−∞ |ci| < ∞. Assume that {νn; n ∈ N} is a sequence of positive integer valued random variables defined on
the same probability space. Let Sn := X1 + · · · + Xn. If there exists a positive random variable ν, such that

νn

n
P
−→ ν, (1.4)

then we have
Sνn
√
νn

D
−→ N(0, σ2c2),

where c :=
∑
∞

i=−∞ ci , 0 and

σ2 := Eξ2
1 + 2

m+1∑
k=1

Eξ1ξk.



Y. Miao et al. / Filomat 33:12 (2019), 3925–3935 3927

2. Proofs

2.1. Some lemmas
In this subsection, we give some lemmas to prove our results.

Lemma 2.1. [13] Let {ξn; n ≥ 1} be a sequence of stationary m-dependent random variables with Eξ1 = 0 and
E|ξ1|

p < ∞ for some p ≥ 2. Then for all n ≥ 1,

E

[
max
1≤ j≤n

|ξ1 + · · · + ξ j|
p
]
≤ CpE|ξ1|

pnp/2,

where the positive constant Cp depends only on p (regardless of m).

Definition 2.1. Let (Ω,F ,P) be a probability space. A sequence of events {An ∈ F ; n ≥ 0} is said to be P-mixing, if
for any event B ∈ F with P(B) > 0, we have

lim
n→∞

[P(An|B) − P(An)] = 0.

Lemma 2.2. Let (Ω,F ,P) be a probability space. A sequence of events {An ∈ F ; n ≥ 0}withP(An) > 0 isP-mixing,
if and only if for every k, we have

lim
n→∞

[P(An|Ak) − P(An)] = 0.

Proof. Following the method of Theorem 2 in Rényi [27], we can get the lemma.

Lemma 2.3. Let {ξn; n ≥ 1} be a sequence of stationary m-dependent random variables on a probability space
(Ω,F ,P) with Eξ1 = 0 and E|ξ1|

2 < ∞. For any x ∈ R, define

Bn =

{
ξ1 + ξ2 + · · · + ξn

σ
√

n
≤ x

}
,

then the sequence {Bn; n ≥ 1} is P-mixing.

Proof. Let ηn := ξ1 + ξ2 + · · · + ξn, then for any k + m < n, we have

P(Bn|Bk) = P

(
ηn − ηk+m + ηk+m

σ
√

n
≤ x

∣∣∣∣ ηk

σ
√

k
≤ x

)
.

Based on the central limit theorem of m-dependent random variables, it is easy to check that

P

(
ηn − ηk+m

σ
√

n
≤ x

∣∣∣∣ ηk

σ
√

k
≤ x

)
= P

(
ηn − ηk+m

σ
√

n
≤ x

)
−→ Φ(x)

where Φ(·) is the distribution function of normal random variables, and for any r > 0

P

(
|ηk+m|

σ
√

n
> r

∣∣∣∣ ηk

σ
√

k
≤ x

)
P
−→ 0,

as n→∞. Hence the sequence {Bn; n ≥ 1} is P-mixing.

Lemma 2.4. [4] Let Wn,Xl,n,Y
( j)
l,n and Z( j)

l,n be random variables for l,n = 1, 2, · · · and j = 1, 2, · · · , k. Suppose that

Wn = Xl,n +

k∑
j=1

Y( j)
l,nZ( j)

l,n

and
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(a) lim
l→∞

lim sup
n→∞

P
(
|Y( j)

l,n| > r
)

= 0 for every r > 0 and j = 1, · · · , k;

(b) lim
M→∞

lim sup
l→∞

lim sup
n→∞

P
(
|Z( j)

l,n| > M
)

= 0 for j = 1, · · · , k;

(c) the distributions of {Xl,n} converge to the distribution function F for each fixed l.

Then the distribution functions of {Wn} converge to F.

Lemma 2.5. [29] Let {Yn; n ≥ 1} be a sequence of random variable such that Yn
a.s.
−−→ Y, where Y is a random variable.

Let νn be a sequence of positive random variables which take on only integral values such that νn
P
−→ ∞. Then we have

Yνn

P
−→ Y.

2.2. Central limit theorem for m-dependent random variables

In this subsection, we prove the central limit theorems for randomly indexed m-dependent random
variables. Firstly, we consider the case that the random variable ν has a discrete distribution.

Proposition 2.1. Let {ξn; n ≥ 1} be a sequence of stationary m-dependent random variables on a probability space
(Ω,F ,P) with Eξ1 = 0 and Eξ2

1 < ∞. Assume that {νn; n ∈ N} is a sequence of positive integer valued random
variables defined on the same probability space. If there exists a positive random variable ν having a discrete
distribution, such that

νn

n
P
−→ ν, (2.1)

then we have
ξ1 + ξ2 + · · · + ξνn

σ
√
νn

D
−→ N(0, 1).

Proof. Let ηn := ξ1 + ξ2 + · · · + ξn, then it is easy to check that

ηνn

σ
√
νn

=
η[nν]

σ
√

[nν]
+

√
[nν]
νn

(
ηνn − η[nν]

σ
√

[nν]

)
+

η[nν]

σ
√

[nν]

√ [nν]
νn
− 1

 . (2.2)

Let {bk; k ≥ 1} (0 < b1 < b2 < · · · ) denote the values taken on by νwith positive probability and let Ak denote
the event Ak = {ν = bk}. For any x ∈ R, we have

P

(
η[nν]

σ
√

[nν]
≤ x

)
=

∞∑
k=1

P

(
η[nbk]

σ
√

[nbk]
≤ x

∣∣∣∣Ak

)
P(Ak). (2.3)

From Lemma 2.3, for any fixed k, we have

P

(
η[nbk]

σ
√

[nbk]
≤ x

∣∣∣∣Ak

)
→ Φ(x), as n→∞,

which from (2.3), implies

lim
n→∞
P

(
η[nν]

σ
√

[nν]
≤ x

)
= Φ(x). (2.4)

From the condition (2.1), we have

η[nν]

σ
√

[nν]

√ [nν]
νn
− 1

 P−→ 0. (2.5)
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In order to prove the proposition, from (2.2), (2.4) and (2.5), it is enough to see that

ηνn − η[nν]

σ
√

[nν]
P
−→ 0. (2.6)

For any r > 0 and ρ > 0, we have

P

(
|ηνn − η[nν]|

σ
√

[nν]
> r

)
=

∞∑
k=1

P

(
|ηνn − η[nν]|

σ
√

[nν]
> r, ν = bk

)

≤

∞∑
k=1

P

(
|ηνn − η[nbk]|

σ
√

[nbk]
> r, ν = bk, |νn − [nbk]| < nρ

)
+ P

(
|νn − [nν]| ≥ nρ

) (2.7)

Since {bk, k ≥ 1} are the values taken on by ν with positive probability, then there exists a positive constant
M, such that P(ν > M) ≤ ρ. Furthermore, from Lemma 2.1, for any k, there exists a positive constant Ck
such that

P

(
max

|l−[nbk]|<nρ

|ηl − η[nbk]|

σ
√

[nbk]
> r

)
≤

Ckρ

r2bk
.

Hence we can get

∞∑
k=1

P

(
|ηνn − η[nbk]|

σ
√

[nbk]
> r, ν = bk, |νn − [nbk]| < nρ

)

≤

M∑
k=1

P

(
max

|l−[nbk]|<nρ

|ηl − η[nbk]|

σ
√

[nbk]
> r

)
+ P(ν > M)

≤ρ

 M∑
k=1

Ck

r2bk
+ 1


(2.8)

From (2.1), (2.7), (2.8) and the arbitrariness of ρ, we get the claim (2.6).

Next we consider the case that the random variable ν is not necessarily discrete.

Proposition 2.2. Let {ξn; n ≥ 1} be a sequence of stationary m-dependent random variables on a probability space
(Ω,F ,P) with Eξ1 = 0 and Eξ2

1 < ∞. Assume that {νn; n ∈ N} is a sequence of positive integer valued random
variables defined on the same probability space. If there exists a positive (not necessarily discrete) random variable ν,
such that

νn

n
P
−→ ν, (2.9)

then we have
ξ1 + ξ2 + · · · + ξνn

σ
√
νn

D
−→ N(0, 1).

Proof. Let us define

µl =
k
2l

when
k − 1

2l
≤ ν <

k
2l

and
µl,n = νn + [n(µl − ν)].

It is easy to check that µl is a discrete random variable for each l,

0 < µl − ν <
1
2l

and
µl,n

n
P
−→ µl > ν.
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Let ηn := ξ1 + ξ2 + · · · + ξn, then we have

ηνn
√
νn

=
ηµl,n
√
µl,n

+

(
ηνn − ηµl,n
√

nµl

) √
nµl

νn
+

( √
µl,n −

√
νn

√
νn

)
ηµl,n
√
µl,n

=:Xl,n + Y(1)
l,n Z(1)

l,n + Y(2)
l,n Z(2)

l,n .

(2.10)

From Proposition 2.1, for each m, we have

Xl,n
D
−→ N(0, 1) and Z(2)

l,n
D
−→ N(0, 1), (2.11)

which implies that for any M > 0,

lim sup
n→∞

P
(
|Xl,n| > M

)
= lim sup

n→∞
P

(
|Z(2)

l,n | > M
)

= 1 −Φ(M) + Φ(−M).

For any ε > 0, there exists a positive constant l0, such that for all l > l0, we have

P

(
0 < ν <

l
2l

)
< ε.

Hence, for any r > 0 and all l > l0, we have

lim sup
n→∞

P
(
|Y(2)

l,n | > r
)

= lim sup
n→∞

P

(
[n(µl − ν)]

νn
> r2 + 2r

)
= lim sup

n→∞
P

(
[n(µl − ν)]

νn
> r2 + 2r,

∣∣∣∣νn

n
− ν

∣∣∣∣ ≤ l
2l+1

)
≤ lim sup

n→∞
P

 [n(µl − ν)]

n
(
ν − l

2l+1

) > r2 + 2r, ν ≥
l
2l

 + ε

≤ lim sup
n→∞

P

 [n/2l]
nl

2l+1

> r2 + 2r, ν ≥
l
2l

 + ε

≤P

(
1
l
> r2 + 2r, ν ≥

l
2l

)
+ ε.

While l→∞ and from the arbitrariness of ε, we have

lim
l→∞

lim sup
n→∞

P
(
|Y(2)

l,n | > r
)

= 0. (2.12)

By the similar proof as (2.12), we can get

lim
M→∞

lim sup
l→∞

lim sup
n→∞

P
(
|Z(1)

l,n | > M
)

= 0. (2.13)

Furthermore, for any r > 0, we have

P
(
|Y(1)

l,n | > r
)

= P

(∣∣∣∣∣∣ηνn − ηµl,n
√

nµl

∣∣∣∣∣∣ > r
)

≤P

(∣∣∣∣∣∣ηνn − ηµl,n
√

nµl

∣∣∣∣∣∣ > r,
∣∣∣∣νn

n
− ν

∣∣∣∣ < 1
2l
,
∣∣∣∣µl,n

n
− µl

∣∣∣∣ < 1
2l

)
+ P

(∣∣∣∣νn

n
− ν

∣∣∣∣ ≥ 1
2l

)
+ P

(∣∣∣∣µl,n

n
− µl

∣∣∣∣ ≥ 1
2l

)
,
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which yields

lim sup
n→∞

P
(
|Y(1)

l,n | > r
)

≤ lim sup
n→∞

P

(∣∣∣∣∣∣ηνn − ηµl,n
√

nµl

∣∣∣∣∣∣ > r,
∣∣∣∣νn

n
− ν

∣∣∣∣ < 1
2l
,
∣∣∣∣µl,n

n
− µl

∣∣∣∣ < 1
2l

)

≤ lim sup
n→∞

P

 max
|in−1
−ν|<2−l

| jn−1
−µl |<2−l

∣∣∣∣∣∣ηi − η j
√

nµl

∣∣∣∣∣∣ > r

 .
For any ε > 0 and for all l large enough such that

P

(
ν <

l − 1
2l

or ν ≥ l
)
< ε,

we have

P

 max
|in−1
−ν|<2−l

| jn−1
−µl |<2−l

∣∣∣∣∣∣ηi − η j
√

nµl

∣∣∣∣∣∣ > r


≤ ε +

l2l∑
k=l

P

 max
|in−1
−ν|<2−l

| jn−1
−ν|<2−l+1

∣∣∣∣∣∣ηi − η j
√

nµl

∣∣∣∣∣∣ > r,
k − 1

2l
≤ ν <

k
2l


≤ ε + 2

l2l∑
k=l

P

 max
|

i
n−

k
2l |<

3
2l

∣∣∣∣∣∣∣∣∣
ηi − η[n(k−3)2−l]√

nk
2l

∣∣∣∣∣∣∣∣∣ >
r
2
,

k − 1
2l
≤ ν <

k
2l


≤ ε + 2

l2l∑
k=l

P
(
An,l,k

∣∣∣∣Bl,k

)
P(Bl,k)

where

An,l,k :=

 max
|

i
n−

k
2l |<

3
2l

∣∣∣∣∣∣∣∣∣
ηi − η[n(k−3)2−l]√

nk
2l

∣∣∣∣∣∣∣∣∣ >
r
2

 and Bl,k :=
{

k − 1
2l
≤ ν <

k
2l

}
.

By the similar proof as Lemma 2.3, for any fixed l, k, we can obtain that the events {An,l,k; n ≥ 1} areP-mixing.
Hence we get, from Lemma 2.1,

lim
n→∞
P

(
An,l,k

∣∣∣∣Bl,k

)
= lim

n→∞
P

(
An,l,k

)
≤

C
k
,

which implies

lim
l→∞

lim
n→∞

l2l∑
k=l

P
(
An,l,k

∣∣∣∣Bl,k

)
P(Bl,k) = 0.

From the above discussions and the arbitrariness of ε, we have

lim
l→∞

lim
n→∞
P

(
|Y(1)

l,n | > r
)

= 0. (2.14)

From (2.10)-(2.14) and by using Lemma 2.4, the desired results can be obtained.
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Remark 2.1. Shang [32] and Belloni [3] considered respectively the central limit theorems for randomly indexed
m-dependent random variables based on the cases that ν is a positive (discrete or general) random variable. But they
assume the following additive condition: there exist some k0 ≥ 0 and c > 0 such that for any λ > 0 and n > k0, we
have

P

(
max

k0<k1≤k2≤n

∣∣∣Sk2 − Sk1 − (k2 − k1)ν
∣∣∣ ≥ ε) ≤ cVar(Sn − Sk0 )

ε2 .

In Proposition 2.1 and Proposition 2.2, the above condition is removed.

2.3. Proof of Theorem 1.1

Let
c =

∑
j∈Z

c j and c̄ =
∑
j∈Z

|c j|.

For l, k ∈N, define

al =

l∑
j=−l

c j, Xk,l =

l∑
j=−l

c jξk− j,

c̃l = 0, c̃ j =

l∑
i= j+1

ci, j = 0, 1, · · · , l − 1,

˜̃c−l = 0, ˜̃c j =

j−1∑
i=−l

ci, j = −l + 1,−l + 2, · · · , 0,

ξ̃k =

l∑
j=0

c̃ jξk− j,
˜̃ξk =

0∑
j=−l

˜̃c jξk− j.

According to the above notations, it is clear that

Xk,l =

 l∑
j=−l

c j

 ξk −

 l∑
j=1

c j

 ξk +

l∑
j=1

c jξk− j −

 −1∑
j=−l

c j

 ξk +

−1∑
j=−l

c jξk− j

=

 l∑
j=−l

c j

 ξk − c̃0ξk +

l∑
j=1

(c̃ j−1 − c̃ j)ξk− j − ˜̃c0ξk +

−1∑
j=−l

( ˜̃c j+1 − ˜̃c j)ξk− j

=alξk + ξ̃k−1 − ξ̃k + ˜̃ξk+1 −
˜̃ξk.

(2.15)

Based on the decomposition, we get

νn∑
k=1

Xk =

νn∑
k=1

Xk,l +

νn∑
k=1

∑
| j|>l

c jξk− j

=al

νn∑
k=1

ξk + ξ̃0 − ξ̃νn + ˜̃ξνn+1 −
˜̃ξ1 +

νn∑
k=1

∑
| j|>l

c jξk− j

=:M1 + · · · + M6.

(2.16)

From Proposition 2.2, for any x ∈ R, we have

lim
l→∞

lim
n→∞
P

(
al

∑νn
k=1 ξk
√
νn
≤ x

)
= Φ̂(x),
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where Φ̂(·) denotes the distribution of the normal random variable N(0, c2σ2). Hence it is enough to show

Mi
√
νn

P
−→ 0, for i = 2, · · · , 6.

Now we consider the term M3. For any l and n, ξ̃n contains only {ξn, ξn−1, · · · , ξn−l}, so it is easy to prove
that n−1/2ξ̃n

a.s.
−−→ 0. From Lemma 2.5, we know that

ν−1/2
n M3 = ν−1/2

n ξ̃νn

P
−→ 0.

By the same proof, we have
Mi
√
νn

P
−→ 0, for i = 2, · · · , 5.

For any r > 0 and t ∈N, we have

lim
n→∞
P

ν−1/2
n

∣∣∣∣∣∣∣∣
νn∑

k=1

∑
| j|>l

c jξk− j

∣∣∣∣∣∣∣∣ > r


≤ lim

n→∞
P

ν−1/2
n

∣∣∣∣∣∣∣∣
νn∑

k=1

∑
| j|>l

c jξk− j

∣∣∣∣∣∣∣∣ > r,
∣∣∣∣νn

n
− ν

∣∣∣∣ < 2−t


≤ lim

n→∞
P


∑
| j|>l |c j|√

n(ν − 2−t)
max

{q:|qn−1−ν|<2−t}

∣∣∣∣∣∣∣
q∑

k=1

ξk− j

∣∣∣∣∣∣∣ > r,
t − 1

2t ≤ ν < t


+ P

(
ν ≤

t
2t

)
+ P(ν > t)

≤

t2t∑
i=t

lim
n→∞
P


∑
| j|>l |c j|√

n(i − 2)2−t
max

i−2
2t ≤

q
n≤

i+1
2t

∣∣∣∣∣∣∣
q∑

k=1

ξk− j

∣∣∣∣∣∣∣ > r,
i − 1

2t ≤ ν <
i

2t


+ P

(
ν ≤

t
2t

)
+ P(ν ≥ t).

(2.17)

For any ε > 0, there exists a positive constant T > 2, such that for all t ≥ T,

P
(
ν ≤

t
2t

)
+ P(ν ≥ t) < ε. (2.18)

By the similar proof of Proposition 2.2, we have

lim
n→∞
P


∑
| j|>l |c j|√

n(i − 2)2−t
max

i−2
2t ≤

q
n≤

i+1
2t

∣∣∣∣∣∣∣
q∑

k=1

ξk− j

∣∣∣∣∣∣∣ > r,
i − 1

2t ≤ ν <
i

2t


= lim

n→∞
P


∑
| j|>l |c j|√

n(i − 2)2−t
max

i−2
2t ≤

q
n≤

i+1
2t

∣∣∣∣∣∣∣
q∑

k=1

ξk− j

∣∣∣∣∣∣∣ > r

P ( i − 1
2t ≤ ν <

i
2t

)
.

(2.19)

From Lemma 2.1, we get

P


∑
| j|>l |c j|√

n(i − 2)2−t
max

i−2
2t ≤

q
n≤

i+1
2t

∣∣∣∣∣∣∣
q∑

k=1

ξk− j

∣∣∣∣∣∣∣ > r


≤

(∑
| j|>l |c j|

)2

r2n(i − 2)2−tE max
i−2
2t ≤

q
n≤

i+1
2t

∣∣∣∣∣∣∣
q∑

k=1

ξk− j

∣∣∣∣∣∣∣
2

≤
C

i − 2

∑
| j|>l

|c j|


2

,

(2.20)
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where C is a positive constant. From (2.17) to (2.20), we have

lim
n→∞
P

ν−1/2
n

∣∣∣∣∣∣∣∣
νn∑

k=1

∑
| j|>l

c jξk− j

∣∣∣∣∣∣∣∣ > r


≤

∑
| j|>l

|c j|


2 t2t∑

i=t

C
i − 2

P
( i − 1

2t ≤ ν <
i

2t

)
+ ε

≤

∑
| j|>l

|c j|


2

C
T − 2

P
( t − 1

2t ≤ ν < t
)

+ ε.

Letting l→∞, we can get

ν−1/2
n M6

P
−→ 0.

So we finish the proof of Theorem 1.1.

3. Conclusion

In the paper, we establish the central limit theorem for randomly indexed linear process driven by
m-dependent sequence. The main methods are to use the decomposition (2.16) for the sums Sνn and the
the central limit theorems for randomly indexed m-dependent random variables (see Proposition 2.2). The
randomly indexed linear processes driven by the independent random variables and m-dependent sequence
have been discussed, so a more general and worth studying question could be: whether the central limit
theorem with random indexed linear process driven by other dependent sequence holds?
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