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Abstract. In this subsection, we first formulated the proposed model in there infectious classes and then
we derived the basic key value reproductive number, R0 with the help of next generation approach. Then we
obtained all the endemic equilibrium points, as well as, local stability analysis, at disease free equilibria
and, at endemic equilibria of the related model and shown stable. Further the global stability analysis
either, at disease free equilibria, and at endemic equilibria is discussed by constructing Lyapunov function
which show the validity of the concern model exist. In the last part of the article numerical simulation is
presented for the model which support the model existence with the help of RK-4 method.

1. Introduction

MERS-CoV(Middle East respiratory syndrome corona virus) considered chronic disease for respiration
was reported in Saudi Arabia, in 2012. Mostly it linked to the Arabian countries. This virus is perhaps came
from animals, like, camels. Still MERS-CoV have no cure or vaccination developed, so why it is fatal disease
and considered pandemic. Here we considered MERS-CoV virus which gradually spread in population
through camel to owner, shepherd and those who care and treat the camels. The study open the secrete
that the said disease if once attack it round from patient to family member, family member to hospital, from
hospital to clinic centre and then spread in care centre. For the cure purpose treat the camels and patients
in protective way because still no medication or vaccine has been invented, so special precaution are advise
to those who being a part of camels. Also blood, saliva, meat and milk of infected camel is prohibited in
any case. The disease is mainly in Arabic counties but have to care all main kind.

Coronaviruses are a large family of viruses that can cause diseases in humans, ranging from the com-
mon cold to Severe Acute Respiratory Syndrome (SARS). The Middle East respiratory syndrome which is
also called camel flu [1] considered acute respiration disordered mainly occurs from MERS-corona virus
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(MERS-Cov) [2]. The source which spread the virus is probably camels in humans but this assumption
is not clear[3], however the virus is Spread from humans to human requires close relation from infected
person [2]. Up to 2016 no vaccine or treatment has been developed against the disease [3,4]. But currently
many antiviral medications is studied now a day [3]. According to World Health Organization the people
how touch and connected to camels need to wash hands frequently and avoid to touch sick camels [2] in any.

In April 4, 2017 approximately 2000 cases have reported containing 36 percent diagnosed the virus and
die [5]. However first case related in Saudi Arabia reported in June 2012 where a person having 7-days
cough, fever, expectoration, and shortness of breath recorded [6]. Mathematical model has been presented
for Ebola virus by Tahir et al [24]. Further it is noticed that by applying some medicine to that person then
a camel and that person have identical strains of MERS-CoV virus [11,12] were found, while most of them
occurred in Arabian Peninsula [2,3]. According to survey conducted in Saudi Arabia, at April 2014 MERS
virus infected 688 persons in which 282 death occurred from MERS relate virus since 2012 [15]. The Centers
for Disease Control and Prevention(CDC) reported first case diagnosis which related to MERS in United
States on 2 May 2014 in Community Hospital of Munster Indiana. They reported that the infected man was
healthy care worker who,s from Saudi Arabia before a week [16,17].

Then the second case individual also belong to Saudi Arabia and reported by Florida and Orlando in
12 may 2014 by officials of Netherland reported that first case is appeared [18,19,20]. However first case
related in Saudi Arabia reported in June 2012 where a person having 7-days cough, fever, expectoration, and
shortness of breath recorded. Majority cases of MERS virus spread from human-to-human connection in
health care center, a recent scientific research shown camels is a major step of MERS-CoV in humans. These
viruses do not spread easily unless there a close connection among peoples and camels. Philippine MERS
virus is reported on 6 July 2015 when a thirty six year foreigner came from Middle East have positive test
[22]. In South Korea a first MERS case diagnosed at May 2015 when a man traveled United Arab Emirates,
Bahrain and Saudi Arabia [21]. While in Middle East camel urine is one of the medicine considered for
various illnesses [13]. In United Kingdom the department of Accident and Emergency reported at 27 July
2015 the Manchester Royal Infirmary treated 2 patients for suspected MERS virus [23].

According to hospital based survey one out-break of MERS had examined an incubation time period
of 5.5 days who can range MERS-CoV an asymptomatic disease to pneumonia having (ARDS) or acute
respiratory distress syndrome where reported that patient may have occurred (DIC) disseminated intravas-
cular coagulation, pericarditis and a kidney failure [7,8,9]. From a laboratory test its found MERS-CoV
cases individuals having low defence cells(lymphocytes) and also low white blood cell present in number
[14]. MERS corona-virus generally grows in LLC-MK2 cells and also in Vero cells [10]. The virus appears
to cause more severe disease in people with weakened immune systems, older people, and people with
chronic diseases as renal disease, diabetes, cancer, and chronic lung disease.

In this article we focus on the disease MERS corona virus which is considered chronic in Arabic coun-
tries while the main agent of the transmission of the disease is considered camels. The model is new in
respect of this disease. Disease virus is spread in population if no precaution is used, we try to aware
and established such work through by applying some conditions we avoid the said disease but if not,
we see that virus is then transferred from an infected camel to healthy person and gradually from their
it round in different places, community, country and in last effect the whole world. So for this order, we
first formulated the model with all of its infectious classes and derived the basic reproductive number R0
with the next generation approach. Then all endemic equilibrium points are derived. In the presence of
reproductive number we discussed all the equilibria, that is, local stability analysis, at disease free and, at
endemic equilibria are shown stable for R0 < 1. Similarly we shown the global stability at both respect with
the help of Lyapunov function. In the last we discussed the model by numerical approach of Runge-Kutta
method of order four respectively.
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2. Model Formulation And Methodology

Here we developed a mathematical model of MERS-CoV which is zoonotic and spread from infected
animals to population.
According to the biological characteristics of MERS-CoV, the transmission of the virus is spread from
infected animal to human or non human to human, in family member, patient to clinic centre and clinic
centre to care centre. For this purpose the papulation and virus transmission are classified in the model as:
Sc, represent susceptible camel population, Ic represent infected camels population, Ip represent infected
human population by infected camels, Hh represent human to human transmission population, Fm represent
infected individual to family member, Pc represent patient to clinic centre transmission and Cc represent
infected patient to care centre transmission population. From characteristics of MERS-CoV in the concern
model lead a mathematical model of the following differential equations which we developed as,

dSc

dt
= µs − dnsc Sc − β1ScIc,

dIc

dt
= β1ScIc − (ddIc + dnIc )Ic − β2IcIp,

dIp

dt
= β2IcIp − (ddIp + dnIp )Ip − β3IpHh,

dHh

dt
= β3IpHh − (ddHh + dnHh )Hh − β4HhFm, (1)

dFm

dt
= β4HhFm − (ddFm + dnFm )Fm − β5FmPc,

dPc

dt
= β5FmPc − (ddPc + dnPc )Pc − β6PcCc,

dCc

dt
= β6PcCc − (ddCc + dnCc )Cc.

Concerning the initial conditions, we fix the following conditions as,

Sc(t) ≥ 0, Ic(t) ≥ 0, Ip(t) ≥ 0,Hh(t) ≥ 0,Fm(t) ≥ 0,Pc(t) ≥ 0,Cc(t) ≥ 0.

Here we drawn certain assumptions in model (1) which are classified as: µc and dnsc represent new birth
rate, and natural death rate in susceptible camels population, β1 represent transmission rate of infection in
susceptible camels population from infected camel population, ddIc and dnIc represent natural death rate,
and infectious death rate in infected camels population, β2 represent transmission rate of infection in hu-
man population by infected camels population, ddIp and dnIp represent natural death rate, and infectious
death rate of infected human population, β3 represent infection transmission rate from infected individual
to healthy infected individual population(human to human), while ddHh and dnHh represent natural death
rate, and infectious death rate in healthy infected individual population(human to human), β4 represent
transmission rate of infection from infected individual to own family member population, ddFm and dnFm

represent natural death rate and infectious death rate in family member, β5 represent infection transmission
rate from family member to patient in clinic, ddPc and dnPc represent natural death rate, and infectious death
rate of individuals to clinic centre, β6 represent infection transmission rate of clinic patient to care center,
ddCc and dnCc represent natural death rate and infectious death rate in care center patient respectively.
Also we considered the total population of the model is Z(t) as,

Z(t) = Sc + Ic + Ip + Hh + Fm + Pc + Cc.

(2)
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By putting values in equation (2) from model (1) we get the following,

dZ(t)
dt
≤ µc − dnsc Sc.

Then after simplification we get,

lim
t→∞

supZ ≤
µc

dnsc

.

Thus biological feasible region for the study of model (1) is,

f = {(Sc, Ic, Ip,Hh,Fm,Pc,Cc) ∈ R7
+,Z ≤

µc

dnsc

}.

There for, to study the model dynamics the sufficient and feasible region is f.

3. Endemic Equilibrium Points of The Proposed Mode

In this subsection, we discussed the endemic equilibrium points of the said model. In any mathematical
epidemiological model endemic equilibrium points play very important role. The potential existence of a
disease-free equilibrium points are now discussed. As we know that the points of disease-free equilibrium
results to be locally asymptotically stable when the basic reproduction number, that is, (R0) < 1, while the
endemic equilibrium points are not locally asymptotically stable when the reproductive number exceeds
unity, that is, greater then 1.

Now all the endemic equilibrium points of our proposed mathematical model are given below,

S?c =
β2Ip + ddIc + dnIc

β1
,

I?c =
β3

β2β4β6
(β5(ddCc + dnCc ) + β6(ddFm + dnFm ) + β4β6(ddIp + dnIp )),

I?p =
β4Fm + ddHh + dnHh

β3
,

H?
h =

1
β4β6

(β5(ddCc + dnCc ) + β6(ddFm + dnFm )),

F?m =
β6Cc + ddPc + dnPc

β5
,

P?c =
ddCc + dnCc

β6
,

C?c =
β5Fm − (ddPc + dnPc )

β6
.

4. Reproductive Number R0 And Local Stability Analysis

In epidemiological models the role of basic reproduction number is a key concept and play very im-
portant role. It represents the expected average number of new infections produced directly and indirectly
by a single infective, when introduced into a completely susceptible population. Now let us define R0 the
basic reproductive number, it is an essential and fundamental parameter having one simple definition is
”An average number when an secondary infection developed by an monad person in susceptible cohort
in its entire period of infection in the whole susceptible cohort”[25]. Many approaches are adopted to
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find the reproductive number but here we developed a technique which is known next generation matrix
approach. For biological purpose the said technique is useful to determine R0 specially in epidemic model
with continuous time means system of differential equations [24]. Now in order to find R0 we using the
next generation approach. According to this approach the whole system of model is need to divide in two
classes, infected and non infected. After that we defining the Jacobian Matrix for infectious group of the
model. Then the Jacobian Matrix further divide in two sub classes and represented by (J = F -V ) where
J is stand for Jacobian Matrix, and F and V are new matrices. Then we find inverse of the matrix V and
multiplying with F, that is, FV−1. Then we derive the biggest eigne value which is the required R0, that is,
the basic reproduction number.
Now the basic reproductive number of our model by taking infectious class is given by,

F =



β1ScIc − β2IcIp
β2IcIp − β3IpHh
β3IpHh − β4HhFm
β4HhFm − β5FmPc
β5FmPc − β6PcCc

β6PcCc


.

Now the non infectious class of the model is represented by
∨

,

∨
= −



(ddIc + dnIc )Ic
(ddIp + dnIp )Ip

(ddHh + dnHh )Hh
(ddFm + dnFm )Fm
(ddPc + dnPc )Pc
(ddCc + dnCc )Cc


.

Now Jacobian of F of model (1) is given below,

F =



β1Sc − β2Ip −β2Ic 0 0 0 0
β2Ip β2Ic − β3Hh −β3Ip 0 0 0

0 β3Hh β3Ip − β4Fm −β4Hh 0 0
0 0 β4Fm β4Hh − β5Pc −β5Fm 0
0 0 0 β5Pc β5Fm − β6Cc −β6Pc
0 0 0 0 0 β6Pc


.

Now Jacobian of
∨

, its inverse and the required value of R0 is given by,

V =



(ddIc + dnIc ) 0 0 0 0 0
0 (ddIp + dnIp ) 0 0 0 0
0 0 (ddHh + dnHh ) 0 0 0
0 0 0 (ddFm + dnFm ) 0 0
0 0 0 0 (ddPc + dnPc ) 0
0 0 0 0 0 (ddCc + dnCc )


.

Now R0, the basic reproductive for the model (1) is,

R0 = [
µs − dnSc

(ddIc + dnIc )Ic
].

Now Local Stability Analysis At Disease Free Equilibrium of The Model

To find the local stability analysis at disease free equilibrium of the model (1) the points of local sta-
bility analysis are, Ep0 = (Sc, dIc , dIp , dHh , dFm , dPc , dCc ) which implies Ep0 = (µs−dnSc

β1Ic
, 0, 0, 0, 0, 0, 0). Thus we
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processed by Jacobian matrix, as,

Ep0 =



0 −β1Sc 0 0 0 0 0
0 A 0 0 0 0 0
0 0 −(ddIp + dnIp ) 0 0 0 0
0 0 0 −(ddHh + dnHh ) 0 0 0
0 0 0 0 −(ddFm + dnFm ) 0 0
0 0 0 0 0 −(ddPc + dnPc ) 0
0 0 0 0 0 0 −B


. (3)

Where,
A = β1Sc − (ddIc + dnIc ),
and,
B = (ddCc + dnCc ).

Now the following known result will stated for local stability analysis at disease free equilibrium.

Theorem 4.1. If the reproductive number R0 < 1, model (1) is locally asymptotically stable at disease free
equilibrium, Ep0 = (µs−dnSc

β1Ic
, 0, 0, 0, 0, 0, 0) and if R0 > 1 then unstable.

Proof: We have the following eigenvalues from Jacobian matrix defined in equation (3),

λ1 = 0, (4)
λ2 = β2Sc − (ddIc + dnIc ), (5)
λ3 = −(ddIp + dnIp ), (6)
λ4 = −(ddHh + dnHh ), (7)
λ5 = −(ddFm + dnFm ), (8)
λ6 = −(ddPc + dnPc ), (9)
λ7 = −(ddCc + dnCc ). (10)

We observed from equations (6), (7), (8), (9) and (10) that all the eigenvalues are negative except from
equation (4) and (5), that is λ1 = 0 and λ2 = β2Sc− (ddIc + dnIc ), Clearly λ2 = β2 < 0 if and only if, R0 < 1. Now
at the disease free equilibrium all the values of the system (1) are less then unity. So model (1) is locally
asymptotically stable with λ1 = 0 which complete the proof.

Local stability Analysis of The Model At Endemic Equilibrium

Theorem 4.2. The model (1) defined in equation (3) is locally asymptotically stable at endemic equilibrium Sc(t) =
S?c (t), dIc(t) = d?Ic(t), dIp(t) = d?Ip(t), dHh(t) = d?Hh(t), dFm(t) = d?Fm(t), dPc(t) = d?Pc(t), dCc(t) = d?Cc(t). If
R0 > 1, then model (1) is stable if not, then unstable.

EPE =



−β1I?c −β1S?c 0 0 0 0 0
β1I?c A −β2I?c 0 0 0 0

0 β2I?p B −β3I?p 0 0 0
0 0 β3H?

h C −β4H?
h 0 0

0 0 0 β4F?m D −β5F?m 0
0 0 0 0 β5P?c E −β6P?c
0 0 0 0 0 β6C?c F


.
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From simplification we get the following eigenvalues.

λ1 = −β1I?c , (11)
λ2 = A − β1S?c , (12)
λ3 = −G, (13)
λ4 = −L, (14)
λ5 = M, (15)
λ6 = P, (16)
λ7 = PF. (17)

The terms used above are classified by the following,

A = β1S?c − (ddIc + dnIc ) − β2I?p ,

B = β2I?c − (ddIp + dnIp ) − β3H?
h ,

C = β3I?p − (ddHh + dnHh ) − β4F?m,

D = β4H?
h − (ddFm + dnFm ) − β5P?c ,

E = β5F?m − (ddPc + dnPc ) − β6C?c ,
F = β6C?c − (ddCc + dnCc ),
G = −(β2

2I?c I?p + B(A − β1S?c )), (18)

L = −(GC + β2
3I?p H?

h ),

K = Gβ4H?
h − (A − β1S?c )β3H?

h ,

M = −DL − Kβ4F?m,
N = Lβ5F?m,
P = ME −Nβ5P?c ,
R = −Mβ6P?c .

From above equations it is clear that equations (11) and (12), that is, λ1 and λ2 are negative eigne values.
Also equation (13) λ3 < 0 iff β3 < 1. Using equation (14) λ4 < 0 iff β4 < 0. Taking equation (15) λ5 < 0 if
β2 < 1. Also from equation (16) λ6 < 0 iff β2 < 1 and β3 < 0. Now taking equation (17) λ7 < 0 iff β2 < 1,
with β3 < 0 and (ddCc + dnCc ) < 1. All the values of model (1) are negative eigne values, so model (1) is
asymptotically stable at endemic equilibrium.

5. Global Stability Analysis of The Proposed Model

In this subsection, we find the global stability analysis of the proposed model. In mathematical epi-
demiology global stability analysis is an interesting and especial work. For this purpose we construct a
Lyapunov function for global stability at disease free equilibrium and at endemic equilibrium of the model.
The Lyapunov function [26, 27] is an interesting and easy rule to study stability analysis. Many authors
[25, 27] use this technique for the same job in there work. Now for global stability analysis of model (1) we
define the following Lyapunov function for stability and also we have the following stability results which
are stated as,

Global Stability Analysis of The Model At Disease Free Equilibrium

Theorem 5.1. Model (1) at disease free equilibrium is said globally asymptotically stable, if R0 ≤ 1, at Sc = Sc0 and
the model unstable for R0 > 1.
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Proof: To find the global stability analysis at disease free equilibrium, we define the following Lyapunov
function,

P(Sc, dIc, dIp, dHh, dFm, dPc, dCc) =
1
2

[Sc − S?c + Ic − I?c + Ip − I?p + Hh −H?
h +

Fm − F?m + Pc − P?c + Cc − C?c ]2 (19)

We see clearly that the above function P(Sc, dIc, dIp, dHh, dFm, dPc, dCc) ≥ 0, and it also equal to zero if and
only if Sc = S?c , Ic = I?c , Ip = I?p ,Hh = H?

h ,Fm = F?m,Pc = P?c ,Cc = C?c . Now to show the required result, let us
differentiate equation (19) with respect to t, we get,

dP
dt

(Sc, dIc, dIp, dHh, dFm, dPc, dCc) = (Sc − S?c + Ic − I?c + Ip − I?p + Hh −H?
h + Fm − F?m +

Pc − P?c + Cc − C?c )(
dSc

dt
+

dIc

dt
+

dIp

dt
+

dHh

dt
+

dFm

dt
+

dPc

dt
+

dCc

dt
). (20)

Using values from model (1), then equation (20) becomes,

dP
dt

(Sc, dIc, dIp, dHh, dFm, dPc, dCc) = (Sc − S?c + Ic − I?c + Ip − I?p + Hh −H?
h + Fm − F?m +

Pc − P?c + Cc − C?c )[µs − (dnSc + (ddIc + dnIc )Ic + (ddIp + dnIp )Ip + (ddHh + dnHh )Hh +

(ddFm + ddFm )Fm + (ddpc + dnPc )Pc + (ddPc + dnPc )Cc)].

From above it is clear that dP
dt (Sc, dIc, dIp, dHh, dFm, dPc, dCc) = 0 if and only if Sc = S?c , Ic = I?c , Ip = I?p ,Hh =

H?
h ,Fm = F?m,Pc = P?c ,Cc = C?c , further it also be clear that

dP
dt (Sc, dIc, dIp, dHh, dFm, dPc, dCc) < 0 for µs < K, where K = (dnSc + (ddIc + dnIc )Ic + (ddIp + dnIp )Ip + (ddHh +
dnHh )Hh + (ddFm + ddFm )Fm + (ddpc + dnPc )Pc + (ddPc + dnPc )Cc)].
Which show that the global asymptotically stability at disease free equilibrium is stable, which complete
the proof.

Global Stability Analysis of The Model At Endemic Equilibrium

Theorem 5.2. Endemic equilibrium for model (1) is globally asymptotically stable if R0 > 1, if Sc = S?c , Ic = I?c ,
Ip = I?p , Hh = H?

h , Fm = F?m, Pc = P?c , Cc = C?c and unstable, if R0 < 1, that is, R0 is less then unity.

Proof: Now to show the global stability analysis at endemic equilibrium of the model (1), considered the
following Lyapunov function,

R(Sc, dIc, dIp, dHh, dFm, dPc, dCc) =
1
2

(Sc − S?c )2 +
1
2

(Ic − I?c )2 +
1
2

(Ip − I?p )2 +
1
2

(Hh −H?
h )2 +

1
2

(Fm − F?m)2 +
1
2

(Pc − P?c ) +
1
2

(Cc − C?c )2.

We see the above define function, R(Sc, dIc, dIp, dHh, dFm, dPc, dCc) ≥ 0, and its equal to zero, if and only if
Sc = S?c , Ic = I?c , Ip = I?p , Hh = H?

h , Fm = F?m, Pc = P?c , Cc = C?c ,now Differentiating the above equation with
respect to ”t” we have,

dR
dt

(Sc, dIc, dIp, dHh, dFm, dPc, dCc) = [(Sc − S?c ) + (Ic − I?c ) + (Ip − I?p ) + (Hh −H?
h ) + (Fm − F?m) +

(Pc − P?c ) + (Cc − C?c )][µs − (dnSc + (ddIc + dnIc )Ic + (ddIp + dnIp )Ip + (ddHh + dnHh )Hh +

(ddFm + ddFm )Fm + (ddpc + dnPc )Pc + (ddPc + dnPc )Cc)],

After some simplification we get the following,

dR
dt

(Sc, dIc, dIp, dHh, dFm, dPc, dCc) = −[(Sc − S?c ) + (Ic − I?c ) + (Ip − I?p ) + (Hh −H?
h ) +

(Fm − F?m) + (Pc − P?c ) + (Cc − C?c )](M − µs) (21)
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Where the value of ”M” is given by,

M = dnSc + (ddIc + dnIc )Ic + (ddIp + dnIp )Ip + (ddHh + dnHh )Hh + (ddFm + ddFm )Fm

+(ddpc + dnPc )Pc + (ddPc + dnPc )Cc)].

From equation (21) it is clear that dR
dt (Sc, dIc, dIp, dHh, dFm, dPc, dCc) = 0 if Sc = S?c , Ic = I?c , Ip = I?p , Hh = H?

h ,
Fm = F?m, Pc = P?c , Cc = C?c and also equation (21) dR

dt (Sc, dIc, dIp, dHh, dFm, dPc, dCc) < 0 if and only if M < µs.
From above the model (1) is globally asymptotically stable at endemic equilibria which is required.

6. Numerical Simulation

In this section, we want to observe the dynamical behavior of our proposed model. In order to do this,
we purpose numerical results by using Runge-Kutta of order 4th scheme[28,29] which have used several
authors for a wide range of problems consisting of ordinary differential equations. For the simulation
purpose, we use different value of parameters used in the proposed model are given in the Table.
The parameters are taken in such away which would be more biologically feasible. Moreover the time
interval is taken 0 − 1 year. While the different positive population size for the compartmental population
susceptible camel population Sc(t), infected camel population Ic(t), infected camel to infect human pop-
ulation Ip(t), Infected individual to infect healthy population Hh(t), infected individual to, infect family
member population Fm(t), family member to clinic centre population Pc(t) and clinic centre to care centre
population Cc(t) are presented in Table below.
By using the parameters value, non-negative initial population sizes and the time interval 0 − 1(year), we
obtain the simulation Figs (1) to (8), while Fig(1) represents combine behaviour of all population. Only
susceptible camels Fig (2) after some time reach to zero showing no infection in population. Fig (3) showing
sharply decreasing in behaviour mean, effectiveness occur after some time rapidly in this class. Figs (4)
and (6) initially increasing and then show rapid decreasing in behaviour, while Figs (5), (7) and (8) are
increasing, showing some infection exist in these classes rapidly.

Figures .
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Figure 1: The plot represents combine time dynamics of all categories population.
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Figure 2: The plot represents the time dynamics of the susceptible camel population.
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Figure 3: The plot represents the time dynamics of infected camel population.
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Figure 4: The plot represents the time dynamics of infected camel to infect human population.
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Figure 5: The plot show time dynamics of infected individual to healthy population.
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Figure 6: The plot represents the time dynamics of individual to family member population.
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Figure 7: The plot represents the time dynamics of family member to clinic centre population.
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Figure 8: The plot represents the time dynamics of clinic centre to care centre population.

Notation Parameter Value

Z(t) Total population 00-600
Sc Susceptible camel population 00-600
Ic Infected camel population 200-500
Ip Infected camel to infect human population 240-440
Hh Infected individual to healthy(human to human)population 100-400
Fm Individual to own family member population 40-220
Pc Family member to clinic centre population 00-300
Cc Clinic centre to care centre population 00-300
µs New birth rate in susceptible camels population 1.5000
dnsc Natural death rate in susceptible camels population 1.7000
dnIc Infectious death rate in infected camels population 0.0143
ddIc Natural death rate in infected camels population 0.1340
dnIp Infectious death rate of infected camels to infect human population 0.3002
ddIp Natural death rate of infected camels population to infect human population 0.1343
dnHh Infectious death rate of infected individual to healthy individual(human to human) 0.0054
ddHh Natural death rate of infected individual to healthy individual(human to human) 0.0024
dnFm Infectious death rate of individual to infect own family member 0.0019
ddFm Natural death rate of individual to infect own family member 0.0074
dnPc Infectious death rate of family member to clinic center 0.0640
ddPc Natural death rate of family member to clinic center 0.3440
dnCc Infectious death rate of clinic patient to care center 0.4400
ddcc Natural death rate of clinic patient to care center 0.5410
β1 Transmission rate from susceptible camels population to infected camel population 1.2300
β2 Transmission rate of infected camels population to infect human population 0.1000
β3 Transmission rate of infected individual to healthy individual(human to human) 0.0060
β4 Transmission rate of infected individual to own family member 1.0090
β5 Transmission rate of infected family member to clinic centre 0.0040
β6 Transmission rate of clinic centre individual to care center 0.0900
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7. Conclusion

In this article, we have established a model for the transmission dynamic of MERS-CoV by taking into
account the classification of different phases of its spread in population. We presented different mathemati-
cal analysis including, biological feasibility, positivity and equilibrium analysis of the proposed model. For
that order we obtained the basic reproduction number by using next generation matrix approach and then
discussed its feasibility region. Moreover, we derived all the endemic equilibriums points and discussed
the stability analysis and showed that the model is locally, as well as, globally asymptotically stable for
the disease free equilibria and for endemic equilibria. The global stability is retrieved by using Lyapunov
function theory approach. Finally, the numerical simulation and sensitivity analysis are presented to show
the feasibility of the proposed model.

In future, we will consider the proposed model with septic and spatial effect. We will also design the
optimal control strategy and will be reported in a near future publication very soon.
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