
Filomat 33:12 (2019), 3977–3983
https://doi.org/10.2298/FIL1912977W

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we present a unique polar-like decomposition theorem for rectangular complex
matrices. Applying this decomposition, we define on the set of rectangular matrices a new partial ordering
called WL(weak Löwner) partial order – an extension of the GL(generalized Löwner) partial order, and
derive some basic properties of the new partial ordering.

1. Introduction

In this paper, we use the following notations. The symbol Cm,n denotes the set of m × n matrices with
complex entries; CH

n and C≥n denote the set of n× n Hermitian matrices and Hermitian nonnegative definite
matrices, respectively. The symbols A∗, R(A) and rk (A) represent the conjugate transpose, range space (or
column space) and rank of A ∈ Cm,n. The symbol |A| denotes the modulus of A ∈ Cm,n, i.e., |A| = (AA∗)

1
2 .

The Moore-Penrose inverse of A ∈ Cm,n is defined as the unique matrix X ∈ Cn,m satisfying the equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (3) (XA)∗ = XA,

and is usually denoted as X = A† (see [18]). Some other generalized inverses have been studied, see for
example, [3, 18]

A binary relation is called a partial order if it is reflexive, transitive and anti-symmetric on a non-empty
set. For matrices A and B (see [6, 15]), we say

(i) A is below B with respect to the star partial order, i.e. A
∗

≤B, if A∗A = A∗B and AA∗ = BA∗, in which A
and B ∈ Cm,n;

(ii) A is below B with respect to the Löwner partial order, i.e. A
L
≤B, if exists K such that B − A = KK∗, in

which A,B and K ∈ Cm,m.
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Matrix decomposition, an important tool in the study of partial order theory, is used to prove some
characterizations and properties of partial orders, and, furthermore, establish some partial orders. For
example, the core-nilpotent, core and core-EP partial orders are derived on the basis of the core-nilpotent,
core and core-EP decompositions , respectively, [2, 15, 19, etc]. A particular concern is a generalized polar
decomposition, [3, Chapter 6(Theorem 7)].

Theorem 1.1. Let A ∈ Cm,n. Then A can be written as

A = GAEA = EAHA, (1.1)

where EA ∈ Cm,n is a partial isometry, i.e., E∗A = E†A, and GA ∈ Cm,m, HA ∈ Cn,n are Hermitiam nonnegative definite
matrices. The matrices EA, GA and HA are uniquely determined by R (EA) = R (GA) and R

(
E∗A

)
= R (HA), in which

case GA = |A|, HA = |A∗| and EA = G†AA = AH†A.

Applying the generalized polar decomposition, Hauke and Markiewicz characterize the notion of GL partial
order in [9, Definition 1 and Theorem 5].

Theorem 1.2. [9, Theorem 5] Let A,B ∈ Cm,n, and A = GAEA and B = GBEB be their polar decompositions, where
R (EA) = R (GA) and R (EB) = R (GB). Then

A
GL
≤ B⇔ EA

∗

≤EB and GA
L
≤GB, (1.2)

⇔ EA
∗

≤EB and HA
L
≤HB. (1.3)

Furthermore, the simultaneous polar decomposability of a pair of rectangular matrices is derived in [14,
Definition 1], and a new characterization of the GL partial order is given in [14, Proposition 3]. The unique
weighted polar decomposition theorem is given in [21, Theorem 3.5] and the WGL partial order is derived
in [21, Definition 4.2]. Note that, the generalized polar decompositions are important in the numerical
calculation as well. For more results about the generalized polar decompositions and related problems,
refer to [4, 5, 7, 10, 12, 13, 16, 17, etc]. In this paper, we give, on the basis of Theorem 1.1, the notion of WL
partial order, a generalization of the GL partial order. We derive properties and characterizations of the WL
partial order, and consider its differences from the GL partial order.

2. Main Results

Theorem 2.1. Let A ∈ Cm,n. Then A can be written as

A = G
1
2
AEAH

1
2
A, (2.1)

where EA , GA and HA are given in Theorem 1.1.

Proof. Let A ∈ Cm,n, rk (A) = r, and

A = UAΣAV∗A

be the SVD decomposition of A, where UA ∈ Cm,r and VA ∈ Cn,r are unitary matrices, U∗AUA = Ir = V∗AVA,
ΣA is a diagonal positive definite matrix. Then

GA = UAΣAU∗A, EA = UAV∗A and HA = VAΣAV∗A.

Therefore,

A = UAΣ
1
2
AU∗AUAV∗AVAΣ

1
2
AV∗A = |A|

1
2 EA |A∗|

1
2 = G

1
2
AEAH

1
2
A.
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We call (2.1) as the polar-like decomposition of A. It is easy to check that

E∗AG
1
2
AEA = VAU∗AUAΣ

1
2
AU∗AUAV∗A = VAΣ

1
2
AV∗A = H

1
2
A,

EAH
1
2
AE∗A = G

1
2
A.

Consider the binary operation:

A
WL
≤ B ⇔ G

1
2
A

L
≤G

1
2
B , EA

∗

≤EB, H
1
2
A

L
≤H

1
2
B , (2.2)

in which A = G
1
2
AEAH

1
2
A and B = G

1
2
B EBH

1
2
B are the polar-like decompositions of A and B, respectively. Since

the decomposition of a given matrix is unique, it is easy to check that the binary operation is a partial order.
We call it the weak GL partial order (the WL partial order for short).

Theorem 2.2. The binary operation (2.2) is a partial order.

Theorem 2.3. Let A,B ∈ Cm,n. Then

A
WL
≤ B ⇔ A∗

WL
≤ B∗. (2.3)

Proof. Let A = G
1
2
AEAH

1
2
A. Since G

1
2
A = H

1
2
A∗ , EA = EA∗ and H

1
2
A = G

1
2
A∗ , we derive (2.3).

Theorem 2.4. Let A,B ∈ Cm,n, A = G
1
2
AEAH

1
2
A and B = G

1
2
B EBH

1
2
B be their polar-like decompositions, and EA

∗

≤EB.
Then

G
1
2
A

L
≤G

1
2
B ⇔ H

1
2
A

L
≤H

1
2
B . (2.4)

Proof. Let G
1
2
A

L
≤G

1
2
B and EA

∗

≤EB. Then

UAΣ
1
2
AU∗A

L
≤UBΣ

1
2
B U∗B, (2.5)

UAV∗A
∗

≤UBV∗B. (2.6)

Applying (2.6), we have VAU∗AUAV∗A = VAU∗AUBV∗B. It follows from U∗AUA = I = V∗AVA and

V∗A
(
VAU∗AUAV∗A

)
VB = V∗A

(
VAU∗AUBV∗B

)
VB

that

V∗AVB = U∗AUB. (2.7)

Applying (2.5) and (2.7), we have V∗BVAΣ
1
2
AV∗AVB

L
≤Σ

1
2
B . Therefore,

VBV∗BVAΣ
1
2
AV∗AVBV∗B

L
≤VBΣ

1
2
B V∗B. (2.8)

Applying (2.6), we have
(
UAV∗A

)∗
UAV∗A

∗

≤

(
UBV∗B

)∗
UBV∗B, i.e.,

VAV∗A
∗

≤VBV∗B.
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It follows that VAV∗AVAV∗A = VAV∗A = VAV∗AVBV∗B. Therefore, V∗AVAV∗A = V∗AVAV∗AVBV∗B, that is, V∗A =
V∗AVBV∗B. It follows from (2.8) that

VAΣ
1
2
AV∗A

L
≤VBΣ

1
2
B V∗B,

i.e., H
1
2
A

L
≤H

1
2
B .

On the contrary, applying EA
∗

≤EB and H
1
2
A

L
≤H

1
2
B , we obtain G

1
2
A

L
≤G

1
2
B .

Theorem 2.5. Let A,B ∈ Cm,n. Then

A
WL
≤ B⇔ G

1
2
A

L
≤G

1
2
B ,EA

∗

≤EB, (2.9)

⇔ EA
∗

≤EB,H
1
2
A

L
≤H

1
2
B . (2.10)

It is well known that the star partial order is preserved for the Moore-Penrose inverse, that is,

A
∗

≤B ⇔ A†
∗

≤B†.

Theorem 2.6. Let A ∈ Cm,n. Then the polar-like decomposition of A† is

A† =
(
H†A

) 1
2 E∗A

(
G†A

) 1
2 , (2.11)

where EA, GA and HA are given in Theorem 1.1

Proof. 1) Let A be written as in (1.1), and let X = E∗AG†A. Now, since GA = G∗A, we have
(
G†A

)∗
= G†A, and thus

AX = GAEAE∗AG†A = GAEAE†AG†A = GAGAG†AG†A,

hence

(AX)∗ =
(
G†A

)∗
GAG†AG∗A = G†AGAG†AGA = G†AGA,

which proves that AX is Hermitian and AX = G†AGA. Also,

XA = E∗AG†AA = E∗AEA is Hermitian,

AXA = A(XA) = GAEAE∗AEA = GAEAE†AEA = GAEA = A,

XAX = (XA)X = E∗AEAE∗AG†A = E†AEAE†AG†A = E†AG†A = E∗AG†A = X.

This proves that A† = E∗AG†A. In the same way, we have A† = H†AE∗A. Therefore, applying Theorem 2.1, we
have (2.11).

Note that, the Löwner partial order may not be preserved for the Moore-Penrose inverse. Even when
A,B ∈ C≥n ,

A
L
≤B < B†

L
≤A†.

It follows from Theorem 2.6 that we drive the following Theorem 2.7.

1)This proof was provided by an anonymous reviewer.
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Theorem 2.7. Let A,B ∈ Cm,n, A = G
1
2
AEAH

1
2
A and B = G

1
2
B EBH

1
2
B be their polar-like decompositions. Then

A†
WL
≤ B† ⇔ G †

1
2

A

L
≤G †

1
2

B and EA
∗

≤EB,

⇔ EA
∗

≤EB and H †
1
2

A

L
≤H †

1
2

B .

Lemma 2.8. [1] For Hermitian nonnegative definite matrices A and B consider the following:

(a1) A
L
≤B, (a2) A

∗

≤B, (b1) A2 L
≤B2, (b2) A2 ∗

≤B2, (c) AB = BA.

Then

(a1), (c)⇒ (b1); (b1)⇒ (a1); (a2)⇔ (b2)⇒ (c).

Theorem 2.9. Let A,B ∈ Cm,n and A
GL
≤ B. Then A

WL
≤ B.

Proof. Let A
GL
≤ B, that is,

HA
L
≤HB, EA

∗

≤EB, GA
L
≤GB.

Applying Lemma 2.8, we have

GA
L
≤GB ⇒ G

1
2
A

L
≤G

1
2
B ,

HA
L
≤HB ⇒ H

1
2
A

L
≤H

1
2
B .

Therefore, we derive A
WL
≤ B.

The condition A
WL
≤ B does not imply the condition A

GL
≤ B as the following example shows.

Example 2.10 ([1]). Let A =

[
5 10

10 20

]
,B =

[
9 0
0 36

]
. Then

GA =

[
5 10

10 20

]
, EA =

[
0.2 0.4
0.4 0.8

]
, HA =

[
5 10

10 20

]
,

GB =

[
9 0
0 36

]
, EB =

[
1 0
0 1

]
, HB =

[
9 0
0 36

]
.

Since

G
1
2
A =

[
1 2
2 4

]
, H

1
2
A =

[
1 2
2 4

]
, G

1
2
B =

[
3 0
0 6

]
, H

1
2
B =

[
3 0
0 6

]
,

we derive

G
1
2
A

L
≤G

1
2
B , EA

∗

≤EB, H
1
2
A

L
≤H

1
2
B ,

that is, A
WL
≤ B. Furthermore,

B − A = HB −HA = GB − GA =

[
4 −10
−10 16

]
,

rk(B) = 2, rk(A) = 1, rk(B − A) = 2,

V(A) = 0, V(B) = 0 and V(B − A) = 1 are 0, 0 and 1, respectively, where V(A) denotes the numbers of negative
eigenvalues of A. Then
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(1.) since det(B − A) = −36, A is not below B with respect to the GL partial order;

(2.) since rk(B − A) , rk(B) − rk(A), A is not below B with respect to the minus partial order;

(3.) sinceV(B − A) ,V(B) −V(A), A is not below B with respect to the “
o
≤ ” partial order.

The “
o
≤ ” partial order is given [15, Theorem 8.5.4]

A
o
≤B ⇔ R(A) ⊆ R(B) and V(B − A) =V(B) −V(A),

where A,B ∈ CH
n .

Note that, when A,B ∈ C≥n ,

A
GL
≤ B⇔ A

L
≤B [9, Theorem 3],

⇔ A
CL
≤ B, [20, Corollary 3.8, Corollary 3.9].

From the Example 2.10 above, we can see that such a property is not valid for the WL partial order, that is,

A
WL
≤ B < A

L
≤B, even when A,B ∈ C≥n .

Theorem 2.11. Let A,B ∈ C≥n , and AB = BA (or AB ∈ C≥n ). Then

A
WL
≤ B ⇔ A

GL
≤ B ⇔ A

CL
≤ B ⇔ A

L
≤B. (2.12)

Proof. Let A,B ∈ C≥n and A
WL
≤ B. It is well known that, if A commutes with B, then AB is a Hermitian

nonnegative definite matrix, and A
1
2 commutes with B

1
2 , [11] . It follows from Lemma 2.8, G

1
2
A = A

1
2 and

G
1
2
B = B

1
2 that GA

L
≤GB. Therefore, applying Theorem 2.2 and Theorem 1.2, we derive A

GL
≤ B.

On the contrary, applying Theorem 2.9, we have A
GL
≤ B ⇒ A

WL
≤ B.

Furthermore, applying [9, Theorem 3] and [20, Corollary 3.8, Corollary 3.9] we obtain (2.12).

A binary relation is called a pre-order if it is reflexive and transitive on a non-empty set. It is well known
that the Drazin order,

A
D
≤B⇔ AAD = BAD = ADB, (2.13)

is a pre-order. Especially, when Ind(A) = 1, the Drazin order is reduced to the well-known partial order:
the sharp order. In [8, Page 164], a pre-order is characterized by:

A ≺ B : EA
∗

≤EB, (2.14)

in which A = G
1
2
AEAH

1
2
A and B = G

1
2
B EBH

1
2
B are the polar-like decompositions of A and B, respectively.

From Theorem 2.1, we know that the polar-like decomposition of a given A is unique. In Theorem 2.5,

we reduce the number of the conditions to two. But we cannot derive A
WL
≤ B by applying H

1
2
A

L
≤H

1
2
B and

G
1
2
A

L
≤G

1
2
B . For example, let

A = In and B = −In, (2.15)
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then GA = GB = HA = HB = In, EA = In and EB = −In. It is obvious that A , B, although HA
L
≤HB, HB

L
≤HA,

GA
L
≤GB and GB

L
≤GA.

Consider the binary operation

A
P
≺B : H

1
2
A

L
≤H

1
2
B and G

1
2
A

L
≤G

1
2
B , (2.16)

in which A = G
1
2
AEAH

1
2
A and B = G

1
2
B EBH

1
2
B are as in (2.2). It is easy to check that the binary operation (2.16) is

reflexive and transitive. From (2.15), we see that the binary operation is not antisymmetric. Therefore, it is
a pre-order.
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