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Abstract. Extensions of polygroups such as direct hyper product and wreath product of polygroups have
been introduced and studied earlier by Comer. In this paper, we define and study some other extensions.
We first define regularly normal subpolygroups and prove that they induce quotient polygroup extensions.
In addition, we prove that the kernel of every strong homomorphism is a regularly normal subpolygroup.
This leads to new versions of the isomorphism theorems with respect to such subpolygroups. The main
objective of the paper is to present a new extension K of a polygroup L by a polygroup H via the quotient
polygroup H/I where I is regularly normal in H. This extension is a generalization of both the direct hyper
product and the wreath product of polygroups.

1. Introduction and Preliminaries

The idea of constructing extensions of polygroups via factor polygroups comes from an extension that
De Salvo introduced in [13] which is called (H,G)-hypergroups. Basically, given a hypergroup (H,+) and
mutually disjoint sets {Ai}i∈G where G is a given group such that A0 = H. Set K =

⋃
i∈G

Ai and define a hyper

operation ⊕ on K as follows: For all x, y ∈ H, x⊕ y = x+ y. For all x ∈ Ai and y ∈ A j such that Ai×A j , H×H,
x ⊕ y = Ak where i + j = k. This extension of G by H represents a hypergroup. The wreath product H[G]
introduced in [2] can be obtained by De Salvo’s construction when H and G are polygroups, A0 = H and
Ai = {i} for i , 0.

In our construction, we consider two polygroups H and K. We restrict the cardinalities of sets Ai, i , 0
to be equal to the cardinality of some factor polygroup H/I and the cardinality of A0 equals to that of H.
The hyper operation on K =

⋃
i∈L

Ai is based on the hyper operations on the factor polygroup H/I and the

polygroup L. In principle, the element zero of L is enlarged by the polygroup H and the rest of the elements
of L are enlarged by isomorphic copies of the factor polygroup H/I.

This construction yields a polygroup in the case when the subpolygroup I is normal. However, the
kernel of a strong homomorphism is not necessarily normal, [10]. Therefore, by weakening the condition
of normality, we obtain the utmost possible extension. Indeed, we define and study regularly normal
polygroups. After introducing the isomorphism theorems subject to these polygroups, we are able to
present our new extension via factor polygroups.

Now, we recall some definitions and basic results for the development of our paper.
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A hypergroupoid (H,+) is a non-empty set H together with a hyper operation + defined on H, i.e., a
mapping + : H × H → ℘∗(H) where ℘∗(H) is the set of all non-empty subsets of H. The hyper operation +
can be extended to subsets of H in a normal way, so that A + B is defined by A + B =

⋃
{a + b : a ∈ A, b ∈ B}.

In particular, for x ∈ H, we have x + A = {x} + A.
A hypergroupoid (H,+) is called a hypergroup if for all a, b, c ∈ H, we have a + H = H + a = H and

a + (b + c) = (a + b) + c. The last equality means that⋃
u∈b+c

(a + u) =
⋃

v∈a+b

(v + c).

A non empty subset K of a hypergroup (H,+) is called a subhypergroup if it is a hypergroup under the
hyper operation of H.

For a hypergroup (H,+) and an integer n > 1, consider the relation βn defined on H as aβnb ⇐⇒
∃ (x1, x2 . . . .., xn) ∈ Hn such that {a, b} ⊆

∑n
i=1 xn. Moreover, let β1 = {(x, x) : x ∈ H} and β =

⋃
n≥1 βn. Then

β is an equivalence relation on H and the set of equivalence classes of β on H is denoted by H/β. If we
define a hyper operation ⊕ on H/β as x̄ ⊕ ȳ =

{
z̄ : z ∈ x + y

}
, then (H/β,⊕) is a group,[11]. In fact, β is the

smallest equivalence relation on H such that H/β is a group. The kernel
{
x ∈ H : ΨH(x) = 0̄

}
of the canonical

projection ΨH : H −→ H/β is called the heart of the hypergroup H and is denoted by ωH.

Definition 1.1. [12]Let A be a non empty subset of the hypergroup H. Then A is called a complete part of H if for
any n ∈ N and for all a1, a2, ...an ∈ H, the following implication holds: A ∩

∑n
i=1 ai , ∅ =⇒

∑n
i=1 ai ⊆ A.

If A is a subset of a hypergroup H, then the smallest complete part of H containing A is called the
complete closure of A and is denoted by C(A). The class of all complete parts subhypergroups of H is
denoted by CPS(H). In the following proposition, we show how the heart of a hypergroup H is related to
complete parts of H.

Proposition 1.2. [12]Let (H,+) be a hypergroup and A be a non-empty subset of H. Then

1. ωH + A = A + ωH = C(A).
2. ωH is a complete part of H.
3. ωH =

⋂
K∈CPS(H) K.

Definition 1.3. [11]A hypergroup H is called a polygroup if the following conditions are satisfied.

1. There exists an element 0 ∈ P such that 0 + x = x + 0 = x for all x ∈ P.
2. Every element x ∈ H has an inverse −x ∈ H which means that 0 ∈ x + (−x) ∩ −x + x.
3. For x, y, z ∈ H, we have z ∈ x + y implies x ∈ z + (−y) and y ∈ (−x) + z.

A non empty subset K of a polygroup (P,+) is called a subpolygroup of P if for all a, b ∈ K, a + b ⊆ K
and −a ∈ K.

Definition 1.4. [12]A subpolygroup N of a polygroup P is called normal in P if a + N − a ⊆ N for all a ∈ P.

If N is a normal subpolygroup of a polygroup P, then we define on P a relation NP where xNPy if and
only if (x − y) ∩N , ∅ for x, y ∈ P.

Proposition 1.5. [12]Let N be a normal subpolygroup of a polygroup P. Then

1. The relation NP is an equivalence relation on P.
2. NP (x) = N + x for all x ∈ P.
3. For all x, y ∈ P, N +

(
x + y

)
= N + z for all z ∈ x + y.

4. P/N = {N + x : x ∈ P} is a polygroup under the hyper operation ⊕ defined as (N + x) ⊕
(
N + y

)
={

N + z : z ∈ x + y
}
.
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Definition 1.6. [12]Let (P1,+) and (P2,⊕) be polygroups with identities e1 and e2 respectively. Let ϕ : P1 → P2 be a
mapping such that ϕ (e1) = e2. Then ϕ is called a strong homomorphism if ϕ

(
x + y

)
= ϕ (x)⊕ϕ

(
y
)

for all x, y ∈ P1.

The kernel of a strong homomorphism ϕ : P1 → P2 is defined as Ker(ϕ) =
{
x ∈ P1 : ϕ (x) = e2

}
which is a

subpolygroup of P1 but not normal in general. In [4], Comer determined that the heart of a polygroup P is
a subpolygroup of P generated by all x − x where x ∈ P.

In the case of normal subpolygroups, Davvas, [10] presented the following isomorphism theorems.

Theorem 1.7. [10](First isomorphism theorem) Let P1 and P2 be polygroups and let ϕ : P1 → P2 be a strong
homomorphism with kernel K such that K is a normal in P1. Then P1/K � lmϕ.

Theorem 1.8. [10](Second isomorphism theorem) If K and N are subpolygroups of a polygroup P where N is normal
in P, then K/(N ∩ K) � (N + K)/N.

Theorem 1.9. [10](Third isomorphism theorem) If K and N are normal subpolygroups of a polygroup P such that
N ⊆ K, then K/N is a normal subpolygroup of P/N and (P/N)/(K/N) � P/K.

Definition 1.10. [12]Let (P,+) be a polygroup and Ω be a non empty set. A map f : Ω × P → ℘∗(Ω) is called an
action of P on Ω if the following axioms hold.

1. f (ω, e) = {ω} = ω for all ω ∈ Ω.
2. f

(
f
(
ω, 1

)
, h

)
=

⋃
α∈1+h f (ω, α) for all 1, h ∈ P and ω ∈ Ω.

3.
⋃
ω∈Ω f (ω, 1) = Ω for all 1 ∈ P.

4. ∀1 ∈ P, we have α ∈ f (β, 1) =⇒ β ∈ f (α,−1).

Forω ∈ Ω, we writeω1 = f (ω, 1). The kernel of the action is defined as K =
{
1 ∈ P : ω1 = {ω} f or all ω ∈ Ω

}
.

Extensions of polygroups by polygroups in a notion of product can be done as the direct hyper
product of two polygroups and as the wreath product introduced in [2]. The direct hyper product of
two polygroups (P1,+) and (P2,⊕) is (P1 × P2,⊗) where for

(
x1, y1

)
,
(
x2, y2

)
∈ P1 × P2,

(
x1, y1

)
⊗

(
x2, y2

)
={(

x, y
)

: x ∈ x1 + x2, y ∈ y1 ⊕ y2
}
.

Suppose that (A,+) and (B,+) are two polygroups whose elements have been renamed so that A∩B = {e}.
An extension (M,⊕) of A by B (denoted by A [B]) is formed in the following way: We set M = A ∪ B and let
e ⊕ x = x ⊕ e = x for all x ∈M and for all x, y ∈M\{e},

x ⊕ y =


x + y i f x, y ∈ A

x i f x ∈ B, y ∈ A
y i f x ∈ A, y ∈ B

x + y i f x, y ∈ B, y , −x(
x + y

)
∪ A i f x, y ∈ B, y = −x

In this case, A [B] is a polygroup which is called the wreath product of A by B, [2].

2. Regularly normal subpolygroups and isomorphism theorems

In this section, we define regularly normal subpolygroups by weakening the condition of normality.
We prove that kernel of a polygroup strong homomorphism is always regularly normal and then give new
versions of isomorphism theorems for such subpolygroups.

In [9], Davas has proved that if I is a normal subpolygroup of a polygroup H, then I induces an
equivalence relation ϕ on H defined as xϕy if and only if (x− y)∩ I , ∅. In the following lemma, we prove
that this is in fact true for any subpolygroup of H.

Lemma 2.1. Let (H,+) be a polygroup and I be a subpolygroup of H. Then I induces an equivalence relation ρ on H
defined as xρy if and only if (x − y) ∩ I , ∅.
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Proof. Since 0 ∈ x − x for all x ∈ H and 0 ∈ I, then (x − x) ∩ I , ∅. So, xρx and ρ is reflexive on H. Let
x, y ∈ H with xρy and let a ∈ (x − y) ∩ I. Then a ∈ x − y and a ∈ I which imply that −a ∈ −(x − y) and −a ∈ I.
Hence, −a ∈ (y− x)∩ I and yρx. Thus, ρ is symmetric on H. Finally, we check the transitivity of ρ on H. Let
x, y, z ∈ H such that xρy and yρz. Then (x− y)∩ I , ∅ and (y− z)∩ I , ∅. Let a ∈ (x− y)∩ I and b ∈ (y− z)∩ I.
Then a ∈ x − y, a ∈ I , b ∈ y − z and b ∈ I. By the reversibility in H, we have x ∈ a + y and y ∈ b + z. Thus,
x ∈ a + y ⊆ a + (b + z) = (a + b) + z and a + b ⊆ I. So, there is u ∈ a + b such that x ∈ u + z and then u ∈ x − z
and u ∈ I. It follows that (x − z) ∩ I , ∅ and xρz.

If I is a subpolygroup of a polygroup H, then I + x = ρ(x) for all x ∈ H. Indeed, for y ∈ I + x, there
exists i ∈ I such that y ∈ i + x which implies that i ∈ y − x. So, (y − x) ∩ I , ∅ and yρx. Thus y ∈ ρ(x) and
I + x ⊆ ρ(x). Similarly, we can justify the other inclusion.

Definition 2.2. Let H be a polygroup and I be a subpolygroup of H. Then I is called regularly normal in H if
x + I = I + x for all x ∈ H.

If a subpolygroup I is normal in a polygroup H, then it is regularly normal. Indeed, suppose x+ I−x ⊆ I
for all x ∈ H. Then x + I − x + x ⊆ I + x and so x + I ⊆ I + x as −x + x ⊆ I since I is normal. Similarly, we can
verify the other inclusion. However, the converse is not always true as we demonstrate in the following
example.

Example 2.3. Let H = {0, 1, 2, 3, a, b} with a hyperoperation + defined as follow.

+ 0 1 2 3 a b
0 0 1 2 3 a b
1 1 1 0123 3 ab b
2 2 012 2 23 a ab
3 3 13 3 0123 ab ab
a a a ab ab 0123ab 23ab
b b ab b ab 13ab 0123ab

Then I = {0, 1, 2, 3} is a subpolygroup of H. It is clear that I + a = {a, b} = a + I and I + b = {a, b} = b + I. But
a + I − a = {a, b} − a = {0, 1, 2, 3, a, b} and so I is not normal in H.

Proposition 2.4. Let (H,+) be a polygroup and I be a regularly normal subpolygroup of H. Then H/I = {I+x : x ∈ H}
is a polygroup under the hyperoperation ⊕ defined as (I + x) ⊕ (I + y) = {I + t : t ∈ x + y}.

Proof. First, we check that the hyper operation is well defined. Let I + a = I + x, I + b = I + y and
I + t ∈ (I + a)⊕ (I + b). Then t ∈ a + b ⊆ I + a + b = I + I + a + b = I + a + I + b = I + x + I + y = I + x + y. Hence,
t ∈ I + u for some u ∈ x + y and so I + t ⊆ I + u ⊆ (I + x) ⊕ (I + y). Thus, (I + a) ⊕ (I + b) ⊆ (I + x) ⊕ (I + y). The
other inclusion can be proved similarly. For the associativity, we let I + x, I + y, I + z ∈ H/I. Then

(I + x) ⊕ [(I + y) ⊕ (I + z)] = (I + x) ⊕ {I + t : t ∈ y + z} = {I + h : h ∈ x + (y + z)}
= {I + h : h ∈ (x + y) + z} = [(I + x) ⊕ (I + y)] ⊕ (I + z).

The identity element in H/I is I + 0 = I where 0 is the identity element of H. Indeed, for every I + a ∈ H/I,
(I + 0) ⊕ (I ⊕ a) = {I + t|t ∈ 0 + a} = I + a = (I + a) ⊕ (I + 0). Next, for I + x ∈ H/I, there exists a unique −x ∈ H
such that 0 ∈ x − x. Hence, I + 0 ⊆ {I + t : t ∈ x − x} = (I + x) ⊕ (I + (−x)). Therefore, I + (−x) is the inverse of
I + x. Finally, for x, y, z ∈ H, let (I + x) ∈ (I + y)⊕ (I + z). Then x ∈ y + z and so y ∈ x− z and z ∈ −y + x. Thus,
I + y ∈ ((I + x) ⊕ (I + (−z)) and I + z ∈ (I + (−y)) ⊕ (I + x).

Lemma 2.5. Let I and J be subpolygroups of a polygroup H with I regularly normal in H. Then

1. I + J = J + I is a subpolygroup of H.
2. I is regularly normal in I + J.
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Proof. (1) Since I is regularly normal then, I + J = {I + x : x ∈ J} = {x + I : x ∈ J} = J + I. Let a, b ∈ I + J. Then
there exist i1, i2 ∈ I and j1. j2 ∈ J such that a ∈ i1 + j1 and b ∈ i2 + j2. Hence, a + b ∈ (i1 + j1) + (i2 + j2) ⊆
i1 + J + I + j2 = i1 + I + J + j2 = I + J since I is regularly normal. Moreover, −a ∈ (− j) + (−i) ⊆ J + I = I + J.

(2) It is clear since I ⊆ I + J and I is regularly normal in H.

Proposition 2.6. Let H1 and H2 be polygroups, f : H1 → H2 be a strong homomorphism and K = ker ( f ) . Then K
is a regularly normal subpolygroup of H1.

Proof. It is easy to see that K is a subpolygroup of H1. Let x ∈ a + K for some a ∈ H1. Then f (x) = f (a) and so
f (x)− f (a) = f (a)− f (a) ⊇ e2 = f (e1). Thus, f (x−a) ⊇ f (e1) and (x−a)∩K , ∅. It follows that xρa and x ∈ K+a.
by Lemma 2.1. Conversely in the same manner, let x ∈ K + a for some a ∈ H1. Then there exists k ∈ K such
that x ∈ k + a. Since f is a strong homomorphism and k ∈ K, then f (x) = f (a). By the uniqueness of inverses
in polygroups, − f (x) = − f (a) and so − f (x) = f (−a). Thus, e2 ∈ − f (x) + f (x) = f (−a) + f (x) = f (−a + x).
Hence, there exist t ∈ −a + x such that f (t) = e2 and so t ∈ K. By reversibility, x ∈ a + t ∈ a + K. Therefore,
x + K = K + x and K is regularly normal.

Now, by considering regularly normal subpolygroups, we present the following new versions of
isomorphism theorems.

Theorem 2.7. (First Isomorphism Theorem). Let ϕ : H1 → H2 be a polygroup strong homomorphism with kernel
K. Then H1/K � Imϕ.

Proof. By Proposition 2.6, K is a regularly normal subpolygroup. Define a mapping Ψ : H1/K → Imϕ by
Ψ(K + x) = ϕ(x). For K + x = K + y, we have ρ(x) = ρ(y) and so (x − y) ∩ K , ∅. Hence, clearly ϕ(x) = ϕ(y)
and Ψ(K + x) = Ψ(K + y). Thus, Ψ is well defined. Now, for K + x, K + y ∈ H1/K,

Ψ[(K + x) ⊕ (K + y)] = Ψ[
{
K + t : t ∈ x + y

}
] = {ϕ(t) : t ∈ x + y}

= ϕ(x + y) = ϕ(x) + ϕ(y) = Ψ(K + x) + Ψ(K + y).

Hence, Ψ is a strong homomorphism. Let Ψ(K + x) = Ψ(K + y) for x, y ∈ H1. Then ϕ(x) = ϕ(y) and
0 ∈ ϕ(y) − ϕ(x) = ϕ(y − x). Thus, ϕ(z) = 0 for some z ∈ y − x and z ∈ K. By reversibility, y ∈ z + x ⊆ K + x.
Thus, K + y ⊆ K + x. Similarly, K + x ⊆ K + y and Ψ is one to one. Clearly,Ψ is onto and so Ψ is a strong
isomorphism.

Theorem 2.8. (Second Isomorphism Theorem). If I and J are subpolygroups of a polygroup H where I is regularly
normal in H, then J/(I ∩ J) � (I + J)/I.

Proof. Since I is regularly normal in H and by Lemma 2.5, I + J is a subpolygroup of H. Now, I ⊆ I + J is a
regularly normal subpolygroup of I + J, so we can consider the polygroup (I + J)/I. Define Ψ : J→ (I + J)/I
by Ψ( j) = I + j and let x, y ∈ J. Then

Ψ(x + y) = Ψ[
{
t : t ∈ x + y

}
] =

{
I + t : t ∈ x + y

}
= (I + x) ⊕ (I + y) = Ψ(x) ⊕Ψ(y)

and so Ψ is a strong homomorphism. Let I + a ∈ (I + J)/I where a ∈ I + J. Then a ∈ i + j for some i ∈ I and
j ∈ J and so j ∈ −i + a ⊆ I + a. Thus, I + j = I + a and Ψ( j) = I + j = I + a. Hence, Ψ is onto. Moreover,
Ker (Ψ) = { j ∈ J : Ψ( j) = I} = { j ∈ J : I + j = I} = I ∩ J. It follows by Theorem 2.7 that J/(I ∩ J) � (I + J)/I.

Theorem 2.9. (Third Isomorphism Theorem). Let I and J be regularly normal subpolygroups of a polygroup H such
that I ⊆ J. Then J/I is a regularly normal subpolygroup of H/I and (H/I)/(J/I) � H/J.

Proof. Since I, J are regularly normal in H and I ⊆ J, then I is regularly normal in J. Let Ψ : H/I → H/J
be defined by Ψ(I + a) = J + a. Then Ψ is well defined since if I + a = I + b, then a and b are in the same
equivalence class of the relation ρ in Lemma 2.1. Hence, I ∩ (a − b) , ∅ and since I ⊆ J, then J ∩ (a − b) , ∅.
Therefore, J + a = J + b and Ψ(I + a) = Ψ(I + b). Now, for I + a, I + b ∈ H/I, we have

Ψ((I + a) + (I + b)) = Ψ({I + k : k ∈ a + b}) = {J + k : k ∈ a + b}
= (J + a) + (J + b) = Ψ(I + a) + Ψ(I + b).
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So, Ψ is a strong homomorphism with Ker (Ψ) = {I + a : Ψ(I + a) = J} = {I + a : J + a = J} = {I + a : a ∈ J} = J/I.
By Proposition 2.6, J/I is regularly normal in H/I. Since clearly Ψ is onto, then (H/I)/(J/I) � H/J by Theorem
2.7.

If a subpolygroup I of a polygroup H is normal, then x + I − x ⊆ I for all x ∈ H. Hence, we have x− x ⊆ I
and so ωH = 〈x − x〉 ⊆ I. Since ωH + I = I and by Proposition 1.2, we see that I is a complete part in H and
so absorbs any non-empty intersection with hyper sums in H. Hence, the equivalence relation ρ of Lemma
2.1 takes the form xρy⇔ x − y ⊆ I. Therefore, when a subpolygroup I is normal, then it induces a stronger
equivalence relation on H.

Proposition 2.10. Let I be a regularly normal subpolygroup of a polygroup H. Then I is normal in H if and only if
(H/I,⊕) is a group where for I + x, I + y ∈ H/I, (I + x) ⊕ (I + y) = {I + t : t ∈ x + y}.

Proof. Since I is regularly normal in H, then (H/I,⊕) is a polygroup by Proposition 2.4. Let I be a normal
subpolygroup of H. Then I is a complete part in H and the equivalence relationρ takes the form xρy⇔ x−y ⊆
I for all x, y ∈ H. Let a, b ∈ (I+x)⊕ (I+ y). Since (I+x)+ (I+ y) = I+ I+x+ y = {I+z : z ∈ x+ y} = (I+x)⊕ (I+ y),
then there exist u1,u2 ∈ I + x and v1, v2 ∈ I + y such that a ∈ u1 + v1 and b ∈ u2 + v2. Now, u1ρu2 and v1ρv2
and so u1 − u2 ⊆ I and v1 − v2 ⊆ I. Thus, a − b ⊆ (u1 + v1) − (u2 + v2) = u1 + v1 − v2 − u2 ⊆ u1 + I − u2 ⊆ I
and then aρb. This implies that any two elements from (I + x) ⊕ (I + y) are in the same equivalence class.
In conclusion,

∣∣∣(I + x) ⊕ (I + y)
∣∣∣ = 1 and H/I is a group. Conversely, suppose (H/I,⊕) is a group. Define a

mapping f : H→ H/I by f (x) = I + x. Then clearly, f is a strong homomorphism with Ker( f ) = I. For x ∈ H,
we have f (x + I − x) = f (x) − f (x) = I since I is the zero of H/I. The last equality holds since (H/I,⊕) is a
group, hence x + I − x ⊆ I and I is normal in H.

3. Construction of The Extension

Let (H,+) and (L,+) be two polygroups and I be a regularly normal subpolygroup of H. Let {Ai}i∈L be
a family of pair wise disjoint sets such that A0 = H and for all i , 0, |Ai| = |H/I|. For all 0 , i ∈ L, we may
write Ai =

{
ah

i : h ∈ H/I
}

and with no loss of generality we have a0
0 = I and ah

0 = h. For all i ∈ L, let fi : H→ Ai

be a mapping such that f0 is the identity mapping and for i , 0, fi(x) = ah
i for x ∈ h.

Let K =
⋃
i∈L

Ai and define a hyper operation ⊕ on K as follows: For k1 ∈ Ai ⊆ K and k2 ∈ A j ⊆ K,

k1 ⊕ k2 =
⋃

x∈i+ j

fx( f−1
i (k1) + f−1

j (k2)).

As special cases, we have:

1. For k1, k2 ∈ A0 = H,

k1 ⊕ k2 =
⋃

x∈0+0

fx( f−1
0 (k1) + f−1

0 (k2)) = k1 + k2.

2. For i, j , 0, k1 = ah
i ∈ Ai and k2 = ak

j ∈ A j,

k1 ⊕ k2 =
⋃

x∈i+ j

fx( f−1
i (ah

i ) + f−1
j (ak

j)) =
⋃

x∈i+ j

fx(h + k)

=
⋃

x∈i+ j

fx({t : t ∈ h + k}) =
{
aq

p : p ∈ i + j, q ∈ h + k
}
.

3. For k1 ∈ A0 = H and k2 = ah
i ∈ Ai, i , 0,

k1 ⊕ k2 =
⋃

x∈0+i

fx( f−1
0 (k1) + f−1

i (ah
i )) =

⋃
x∈i

fx(k1 + h) = fi(k1 + h)

= fi({t : t ∈ k1 + h}) = {aq
i : q ∈ k1 + h}.
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Proposition 3.1. Let H,L, I,K and ⊕ be defined as above. Then (K,⊕) is a polygroup.

Proof. First, we check the associativity. For i, j, k , 0, let an
i ∈ Ai, am

j ∈ A j and ah
k ∈ Ak. Then

an
i ⊕

(
am

j ⊕ ah
k

)
= an

i ⊕
{
ay

x : x ∈ j + k, ȳ ∈ m + h
}

=
{
aq

p : p ∈ i + ( j + k), q ∈ n + (m + h)
}

=
{
aq

p : p ∈ (i + j) + k, q ∈ (n + m) + h
}

= (an
i ⊕ am

j ) ⊕ ah
k .

For h ∈ H, we have,

h ⊕ (an
i ⊕ am

j ) = h ⊕
{
ay

z : z ∈ i + j, y ∈ n + m
}

=
{
aq

p : p ∈ i + j, q ∈ h + (n + m)
}

=
{
aq

p : p ∈ i + j, q ∈ (h + n) + m
}

= (h ⊕ an
i ) ⊕ am

j .

For h, k ∈ H, we have,

h ⊕ (k ⊕ an
i ) = h ⊕

{
az

i : z ∈ k + n
}

=
{
aq

i : q ∈ h + (k + n)
}

=
{
aq

i : q ∈ (h + k) + n
}

= (h ⊕ k) ⊕ an
i .

The identity element 0 of H is also the identity element of (K,⊕). Indeed, for an
i ∈ K, we have 0 ⊕ an

i ={
aq

i : q ∈ 0 + n
}

= an
i = an

i ⊕ 0. Now, let ak
i ∈ Ai and consider the elements −i ∈ L and −k ∈ H such that

0 ∈ i − i and 0 ∈ k − k. Then a−k
−i ∈ A−i and 0 ∈ I = a0

0 ⊆
{
aq

p : p ∈ i − i, q ∈ k − k
}

= ak
i ⊕ a−k

−i and so −ak
i = a−k

−i .

Finally, for an
i , a

m
j , a

h
k ∈ K, let an

i ∈ am
j ⊕ ah

k =
{
ay

x : x ∈ j + k, y ∈ m + h
}
. Then i ∈ j + k and n ∈ m + h. By the

reversibility in the polygroups L and H/I, we have j ∈ i − k, k ∈ − j + i, m ∈ n − h and h ∈ −m + n. Hence,
am

j ∈
{
aq

p : p ∈ i − k, q ∈ n − h
}

= an
i ⊕a−h

−k = an
i ⊕(−ah

k) and ah
k ∈

{
aq

p : p ∈ − j + i, q ∈ −m + n
}

= a−m
− j ⊕an

i = −am
j ⊕an

i .

If h ∈ H with h ∈ am
j ⊕ an

i =
{
aq

p : p ∈ j + i, q ∈ m + n
}
, then i = − j since h ∈ h = ah

0. Hence, h ∈ m + n and so

m ∈ h − n. Now, h ⊕ (−an
i ) = h ⊕ a−n

−i =
{
aq
−i : q ∈ x − n

}
⊇ am

−i = am
j . Similarly, we can see that an

i ∈ −am
j + h.

If am
i ∈ h ⊕ ak

i for h ∈ h = ah
0, then we have am

i ∈
{
aq

i : q ∈ h + k
}

and so m ∈ h + k. Thus, h ∈ m − k and

h ∈ h = ah
0 ⊆

{
aq

p : p ∈ i − i, q ∈ m − k
}

= am
i ⊕ a−k

−i = am
i ⊕ (−ak

i ).

Proposition 3.2. Let H,L and K be defined as in Proposition 3.1. Then K/H ' L.

Proof. Let π : K → L be defined as π(x) =

{
0 i f x ∈ H
i i f x = ak

i , i , 0

}
. Then π is a strong homomorphism.

Indeed, if ah
i ,ak

j ∈ K with i, j, i + j , 0, then π
(
ah

i ⊕ ak
j

)
= π

{
aq

p : p ∈ i + j, q ∈ h + k
}

= i + j = π(ah
i ) + π(ak

i ).
Similarly, we can check that π is a strong homomorphism in all other cases for any pair of elements in K.
Moreover, clearly π is surjective and Ker(π) = {x ∈ K : π(x) = 0} = H = Im( f ). By Theorem 2.7, we conclude
that K/H ' L.

Remark 3.3. We will denote the above extension K of L via H/I by L ×H/I H.

In the following two corollaries, we justify that the new extension K = L×H/I H is in fact a generalization
of both the direct hyper product L ×H and the wreath product H [L].

Corollary 3.4. Let H and L be polygroups and let I = {0} ⊆ H. If K = L ×H/I H, then (K,⊕) is isomorphic to the
direct hyper product L ×H of L and H.
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Proof. For I = {0}, the factor polygroup H/I ' H which implies that |Ai| = |H| for all i. With no loss of
generality, we can rename the elements of H so that each h ∈ H can be written as ah

0 and the elements
of Ai as ah

i , h ∈ H. For all i ∈ L, the mapping fi : H → Ai is defined by fi
(
ah

0

)
= ah

i , h ∈ H. Now,

K =
⋃
i∈L

Ai =
{
aq

p : p ∈ L, q ∈ H
}
. Let ϕ : K → L × H be defined by ϕ(aq

p) = (p, q). Then it is straightforward to

prove that ϕ is a bijection. Moreover,

ϕ
(
ak

j ⊕ ah
i

)
= ϕ

{
aq

p : p ∈ j + i, q ∈ k + h
}

=
{
(p, q) : p ∈ j + i, q ∈ k + h

}
= ( j, k) + (i, h) = ϕ(ak

j) + ϕ(ah
i ).

So, ϕ is a strong homomorphism and K = L ×H/I H is isomorphic to L ×H.

Corollary 3.5. Let H and L be polygroups and let I = H. If K = L ×H/I H, then (K,⊕) is isomorphic to the wreath
product H [L].

Proof. For I = H, we have H/H ' {0} which implies that |Ai| = 1 for all i ∈ L\ {0}. Set Ai = {i} for i ∈ L\ {0}
and A0 = H. Then K = H ∪ L and by following the definition of the hyper operation ⊕ on K, we have the
following cases:

For x, y ∈ H,

x ⊕ y = x + y.

For i, j ∈ L\ {0} and i , − j, we have

i ⊕ j =
⋃

x∈i+ j

fx( f−1
i (i) + f−1

j ( j)) =
⋃

x∈i+ j

fx(H + H) = i + j.

For i, j ∈ L\ {0} and i = − j,

i ⊕ j =
⋃

x∈i+ j

fx(H) = f0(H) ∪


⋃

x∈i+ j\{0}

f x (H)

 = H ∪ (i + j).

For x ∈ H, i ∈ L,

x ⊕ i =
⋃

x∈0+i

fx( f−1
0 (x) + f−1

i (i)) = fi(x + H) = fi(H) = i.

Similarly, we can see that i ⊕ x = i for i ∈ L and x ∈ H. Thus, for x, y ∈ K\{0}, we have

x ⊕ y =


x + y i f x, y ∈ H

x i f x ∈ L, y ∈ H
y i f x ∈ H, y ∈ L

x + y i f x, y ∈ L, y , −x
x + y ∪H i f x, y ∈ L, y = −x


.

This is exactly the hyper operation on H[L].

Corollary 3.6. Let H and L be polygroups and K = L ×H/I H. Then J = I ∪ {a0
i : i ∈ L\{0}} is a regularly normal

subpolygroup of K. Moreover, K/J ' H/I.
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Proof. For h1, h2 ∈ I, h1 − h2 ⊆ I ⊆ J. For a0
i , a

0
j ∈ J where i, j ∈ L/{0}, we have −a0

j = a0
− j ∈ J. Hence,

a0
i ⊕−a0

j = a0
i ⊕ a0

− j = {a0
x : x ∈ i− j} ⊆ J. For h ∈ I and a0

i ∈ J, i , 0, we have h⊕ (−a0
i ) = −a0

i ∈ J. Therefore, J is

a subpolygroup in K. Now, let h ∈ I ⊆ K. Then h + J = J = J + h . For ak
j ∈ K and since I = a0̄

0 we have

ak
j ⊕ J = {ak

j ⊕ a0
i : i ∈ L} = {ay

x : x ∈ j + i for all i ∈ L and y ∈ k + 0} = {ak
x : x ∈ L}

= {ay
x : x ∈ i + j for all i ∈ L and y ∈ 0 + k} = {a0

i ⊕ ak
j : i ∈ L} = J ⊕ ak

j .

Therefore, J is regularly normal. Now, let Ψ : K → H/I be defined by Ψ(ah
i ) = h for all i ∈ L. Then Ψ is

clearly well defined and onto. Let ah
i , a

k
j ∈ K where i, j, i + j , 0. Then

Ψ(ah
i ⊕ ak

j) = Ψ({ay
x : x ∈ i + j, y ∈ h + k}) = {y : y ∈ h + k} = h + k = Ψ(ah

i ) + Ψ(ak
j).

The other cases for pairs of elements of K can be checked similarly. Thus, Ψ is a strong homomorphism.
Also,

ker (Ψ) = {ah
i : Ψ(ah

i ) = I} = {ah
i : h = I} = {ah

i : h = 0} = I ∪ {a0
i : i ∈ L} = J.

Based on the first isomorphism Theorem 2.7, we have K/J � H/I.

Corollary 3.7. Let H and L be polygroups, K = L ×H/I H and J = I ∪ {a0
i |i ∈ L\{0}}. Then J ' L ×I/I I ' I[L].

Proof. Based on Corollary 3.5, L ×I/I I = I ∪ L where I ∩ L = {0} and we can define a hyper operation ⊕
′

on

L ×I/I I as: x ⊕′ y =


x + y i f x, y ∈ I

x i f x ∈ L, y ∈ I
y i f x ∈ I, y ∈ L

x + y i f x, y ∈ L, y , −x
(x + y) ∪ I i f x, y ∈ L, y = −x


. . . . . . . . . . . . . . . (*)

Define ϕ : J → L×I/II by ϕ(x) =

{
x i f x ∈ I
i i f x = a0

i ∈ J\I

}
. Then clearly ϕ is bijective. Now, let a0

i , a
0
j ∈ J

with a0
i , −a0

j . Then i , − j and from (*) we have that i ⊕′ j = i + j. So,

ϕ(a0
i ⊕ a0

j ) = ϕ
{
a0

x : x ∈ i + j
}

= i + j = i ⊕
′

j = ϕ(a0
i ) ⊕

′

ϕ(a0
j ).

For a0
i , a

0
j ∈ J with a0

i = −a0
j , we have i = − j and by (*) we have i ⊕′ j = (i + j) ∪ I. So,

ϕ(a0
i ⊕ a0

j ) = ϕ
{
a0

x : x ∈ i + j
}

= ϕ(I) ∪ ϕ
{
a0

x : x ∈ (i + j)\{0}
}

= I ∪ ((i + j)\{0}) = I ∪
(
i + j

)
= i ⊕

′

j = ϕ(a0
i ) ⊕

′

ϕ(a0
j ).

For h, k ∈ I, we have h + k = h ⊕′ k. So,

ϕ(h + k) = ϕ({t : t ∈ h + k}) = {t : t ∈ h + k} = h ⊕
′

k = ϕ(h) ⊕
′

ϕ(k).

Finally, for h ∈ I and a0
i ∈ J\I, we have

ϕ(h ⊕ a0
i ) = ϕ(a0

i ) = i = h ⊕
′

i = ϕ(h) ⊕
′

ϕ(a0
i ).

Therefore, J ' L ×I/I I ' I[L].

Corollary 3.8. Let H,L be polygroups and K = L ×H/I H. Then K/I � (H/I) × L.
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Proof. Let ϕ : K → (H/I) × L be defined by ϕ(k) =

 (h, i) i f k = ah
i , i ∈ L\{0}

(h, 0) i f k ∈ I + h

.Then ϕ is obviously well

defined and onto. Let ah
i , a

k
j ∈ K where i, j, i + j , 0. Then

ϕ(ah
i ⊕ ak

j) = ϕ({ay
x : x ∈ i + j, y ∈ h + k})

= {(y, x) : x ∈ i + j, y ∈ h + k} = (h, i) + (k, j) = ϕ(ah
i ) + ϕ(ak

j).

After considering the other cases, we conclude that ϕ is a strong homomorphism. Moreover, Ker (ϕ) = {ah
i :

ϕ(ah
i ) = (0, 0)} = {ah

i : (h, i) = (0, 0)} = {a0
0} = I. According to Theorem 2.7, we get K/I � (H/I) × L.

Corollary 3.9. Let I and I1 be regularly normal subpolygroup of polygroup H such that I ⊆ I1 and J be a regularly
normal subpolygroup of a polygroup L. Then, J ×I1/I

I1 is a regularly normal subpolygroup of L ×H/I H.

Proof. Since I ⊆ I1 and I is regularly normal in H, then I is regularly normal in I1 and so J×I1/I
I1 is a polygroup.

Since I1 ⊆ H, J ⊆ L and I1/I ⊆ H/I, then J ×I1/I
I1 ⊆ L ×H/I H. Let x, y ∈ J ×I1/I

I1 where x = ak̄
j and y = ah̄

l for

0 , j, l ∈ J and k̄, h̄ ∈ I1/I. Then x ⊕ y =
{
at̄

d : d ∈ j + l, t̄ ∈ k̄ + h̄
}
∈ J ×I1/I

I1 since I1/I is a subpolygroup of H/I.
The other cases of elements of J ×I1/I

I1 can be checked similarly. Also, if x = ak̄
j ∈ J ×I1/I

I1, then −k̄ ∈ I1/I and

− j ∈ J. Hence, −x = a−k̄
− j ∈ J ×I1/I

I1. Therefore, J ×I1/I
I1 is a subpolygroup of L ×H/I H. By Theorem 2.9, I1/I is

a regularly normal subpolygroup of H/I. Thus, for ah̄
i ∈ L ×H/I H, h̄ ∈ H/I and i ∈ L, we have

ah̄
i ⊕ (J ×I1/I I1) = ah̄

i ⊕ {I1 ∪
{
aȳ

x : x ∈ J\{0}, ȳ ∈ I1/I
}
} = ah̄

i ⊕
{
aȳ

x : x ∈ J, ȳ ∈ I1/I
}

=
{
a f̄

e : e ∈ i + J, f̄ ∈ h̄ + (I1/I)
}

=
{
a f̄

e : e ∈ J + i, f̄ ∈ (I1/I) + h̄
}

= (J ×I1/I I1) ⊕ ah̄
i .

It follows that, J ×I1/I
I1 is regularly normal in L ×H/I H.

Corollary 3.10. Let L ×H/I H and J ×I1/I
I1 be as in Corollary 2.9. Then (L ×H/I H)/(J ×I1/I

I1) � (L/J) × (H/I1).

Proof. Define a mapping Ψ : (L ×H/I H)/(J ×I1/I
I1)→ (L/J) × (H/I1) by Ψ((J ×I1/I

I1)⊕ah̄
i ) = (J + i, I1 + h) where

ah̄
i ∈L ×H/I H. Then Ψ is well-defined and one to one. Indeed, for ah̄

i , a
k̄
j ∈L ×H/I H, we have

(J ×I1/I
I1)⊕ah̄

i = (J ×I1/I
I1)⊕ak̄

j

⇔ (ah̄
i ⊕ a−k̄

− j) ∩ (J ×I1/I
I1) , ∅

⇔ (i − j) ∩ J , ∅ and (h − k) ∩ I1 , ∅

⇔ (J + i, I1 + h) = (J + j, I1 + k)

⇔ Ψ((J ×I1/I
I1)⊕ah̄

i ) =Ψ((J ×I1/I
I1)⊕ak̄

j).

Now, let (J ×I1/I
I1)⊕ah̄

i ,(J ×I1/I
I1)⊕ak̄

j ∈(L ×H/I H)/(J ×I1/I
I1). Then

Ψ(((J ×I1/I
I1)⊕ah̄

i ) ⊕ ((J ×I1/I
I1)⊕ak̄

j)) = Ψ(
{
(J ×I1/I

I1)⊕aȳ
x : x ∈ i + j, ȳ ∈ h̄ + k̄

}
=

{
(J + x, I1 + y) : x ∈ i + j, y ∈ h + k

}
= (J + i, I1 + h) × (J + j, I1 + k)

= Ψ((J ×I1/I
I1)⊕ah̄

i )×Ψ((J ×I1/I
I1)⊕ak̄

j).

Hence, Ψ is a strong homomorphism. Finally, it is straightforward that Ψ is onto and the result follows.

Corollary 3.11. Let M, L and H be polygroups and let J ⊆ L, I ⊆ H be regularly normal subpolygroups in L and H
respectively. Then (M ×

L/J
L) ×

H/I
H � M ×

(L ×
H/I

H)/(J×
I/I

I)
(L ×

H/I
H).
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Proof. By Corollary 3.10, (L×H/I H)/(J×I1/I
I1) � (L/J)× (H/I1). Thus, the elements of M ×

(L ×
H/I

H)/(J×
I/I

I)
(L ×

H/I
H) can

be denoted by c(h̄J ,k̄I)
i where h̄J = J + h ∈ L/J, k̄I = I + k ∈ H/I and i ∈ M. In this case, the hyper operation ⊕

can be expressed as

c(h̄J ,k̄I)
i ⊕c(p̄J ,q̄I)

j =
{
c(yJ ,zI)

x : x ∈ i + j, ȳJ ∈ h̄J + p̄J, z̄I ∈ k̄I + q̄I

}
.

On the other hand, we may denote the elements of (M ×
L/J

L) ×
H/I

H by bk̄I

a
h̄J
i

where ah̄J

i ∈M ×
L/J

L and k̄I = I+k ∈ H/I.

The hyper operation ⊕ can be written as bkI

a
h̄J
i

⊕bq̄I

a
p̄J
j

=
{
bz̄I

a
ȳJ
x

: x ∈ i + j, ȳJ ∈ h̄J + p̄J, z̄I ∈ k̄I + q̄I

}
. Therefore, it is

easy to check that the mapping Ψ : (M ×
L/J

L) ×
H/I

H → M ×
(L ×

H/I
H)/(J×

I/I
I)

(L ×
H/I

H) defined by Ψ(bk̄I

a
h̄J
i

) = c(h̄J ,k̄I)
i is a

strong isomorphism.

Example 3.12. Consider the two polygroups H = {0, 1, 2, 3}and L = {0, x}with the following tables

.

H 0 1 2 3
0 0 1 2 3
1 1 01 23 23
2 2 23 013 123
3 3 23 123 012

L 0 x
0 0 x
x x 0x

Then clearly, I = {0, 1} is a subpolygroup of H with I+2 = {2, 3} = 2+ I. We now present the extensions K = L×H/I H
of L by H via H/I when I = {0}, I = H and I = {0, 1}.

Case 1: I = H. In this case, K is isomorphic to H[L] with the following table.

K 0 1 2 3 x
0 0 1 2 3 x
1 1 01 23 23 x
2 2 23 013 123 x
3 3 23 123 012 x
x x x x x 0123x

This is the extension of L by H via H/H and it is the minimal extension since |K| = |H| + |L\{0}| = 4 + 1 = 5.
From the table, we can see that K is obtained by enlarging the element 0 in L by H.

Case 2: I = {0, 1}. In this case, K is represented as follows.

K 0 1 2 3 a0̄
x a2̄

x
0 0 1 2 3 a0̄

x a2̄
x

1 1 01 23 23 a0̄
x a2̄

x
2 2 23 013 123 a2̄

x a0̄
xa2̄

x
3 3 23 123 012 a2̄

x a0̄
xa2̄

x
a0̄

x a0̄
x a0̄

x a2̄
x a2̄

x 01a0̄
x 23a2̄

x
a2̄

x a2̄
x a2̄

x a0̄
xa2̄

x a0̄
xa2̄

x 23a2̄
x 0123a0̄

xa2̄
x

and |K| = |H| + |H/I||L\{0}| = 4 + 2 = 6.
Case 3: I = {0}.
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K 0 1 2 3 a0̄
x a1̄

x a2̄
x a3̄

x
0 0 1 2 3 a0̄

x a1̄
x a2̄

x a3̄
x

1 1 01 23 23 a1̄
x a0̄

xa1̄
x a2̄

xa3̄
x a2̄

xa3̄
x

2 2 23 013 123 a2̄
x a2̄

xa3̄
x a0̄

xa1̄
xa3̄

x a1̄
xa2̄

xa3̄
x

3 3 23 123 012 a3̄
x a2̄

xa3̄
x a1̄

xa2̄
xa3̄

x a0̄
xa1̄

xa3̄
x

a0̄
x a0̄

x a1̄
x a2̄

x a3̄
x 0a0̄

x 1a1̄
x 2a2̄

x 3a3̄
x

a1̄
x a1̄

x a0̄
xa1̄

x a2̄
xa3̄

x a2̄
xa3̄

x 1a1̄
x 01a0̄

xa1̄
x 23a2̄

xa3̄
x 23a2̄

xa3̄
x

a2̄
x a2̄

x a2̄
xa3̄

x a0̄
xa1̄

xa3̄
x a1̄

xa2̄
xa3̄

x 2a2̄
x 23a2̄

xa3̄
x 013a0̄

xa1̄
xa3̄

x 123a1̄
xa2̄

xa3̄
x

a3̄
x a3̄

x a2̄
xa3̄

x a1̄
xa2̄

xa3̄
x a0̄

xa1̄
xa3̄

x 3a3̄
x 23a2̄

xa3̄
x 123a1̄

xa2̄
xa3̄

x 012a1̄
xa2̄

xa3̄
x

This is the extension of L by H via H/{0} and it is isomorphic to L×H. It is the maximal extension of L by H since
|K| = |H| + |H/{0}||L\{0}| = |H| + |H|.|L\{0}| = |H|.|L| = (4)(2) = 8. From the table, we can see that K is obtained by
enlarging the elements of L by copies of the polygroup H.

4. Properties of the construction

An extension of a polygroup L by a polygroup H can always be done as their direct hyper product
L × H or wreath product H[L]. The possibility of other extensions depends on the existence of regularly
normal subpolygroups I of H. In that case, we can collapse the polygroup H into the factor polygroup H/I
and use the canonical homomorphism ϕ : H → H/I as the base for the extension. Every non zero element
of L is enlarging by isomorphic copies of H/I and the zero element of L is enlarging by H. Indeed, for
Ai =

{
ah̄

i : h̄ ∈ H/I
}
, 0 , i ∈ L, the functions fi : H→ Ai are defined as copies of the canonical homomorphism

ϕ : H → H/I. For all i ∈ L, we define a hyper operation ⊕i on the set Ai as ah̄
i ⊕i ak

i =
{
ax̄

i : x̄ ∈ h̄ + k̄
}
. Then

one can easily see that (Ai,⊕i) is a polygroup and fi is a homomorphism for all i.

Proposition 4.1. Consider the extension K = L ×H/I H defined in proposition 3.1. Then for all i ∈ L\{0} , H acts
on Ai by the action 1i : Ai ×H→ ρ (Ai) defined as 1i

(
ak

i , h
)

= ak
i ⊕ h = {ax

i : x ∈ k + h}.

Proof. We check the axioms of Definition 1.10.
1) For all ak

i ∈ Ai, 1i

(
ak

i , 0
)

= ak
i ⊕ 0 = ak

i .

2) For all h, h′ ∈ H and ak
i ∈ Ai, we have

1i

(
1i

(
ak

i , h
)
, h′

)
= 1i

(
ak

i ⊕ h, h′
)

= 1i

(
{(t, h′) |t ∈ ak

i ⊕ h}
)

= {t ⊕ h′|t ∈ ak
i ⊕ h} =

(
ak

i ⊕ h
)
⊕ h′

= ak
i ⊕ (h ⊕ h′) = {ak

i ⊕ t : t ∈ h + h′} =
⋃

t∈h+h′
1i

(
ak

i , t
)
.

3) For all h ∈ H ,⋃
ak

i ∈Ai

1i

(
ak

i , h
)

=
{
ak

i ⊕ h : ak
i ∈ Ai

}
=

{
ax

i : x̄ ∈ k̄ + h̄, k̄ ∈ H/I
}

=
{
ax

i : x̄ ∈ (H/I) + h̄
}

=
{
ax

i : x̄ ∈ H/I
}

= Ai

4) Let h ∈ H and let ak
i ∈ 1i

(
an

i , h
)

. Then ak
i ∈ an

i ⊕ h = {ax
i |x ∈ n + h} . Hence, k ∈ n + h and so n ∈ k − h . It

follows that an
i ∈ {a

x
i |x ∈ k − h} = ak

i ⊕ (−h) = 1i

(
ak

i ,−h
)

.
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Remark 4.2. In the previous Proposition, we consider the right action of H on Ai . Similarly, we can consider the

left action defined as 1i

(
h, ak

i

)
= h ⊕ ak

i . For simplicity, we will denote the right action 1i

(
ak

i , h
)

of H on Ai by
(
ak

i

)h

Proposition 4.3. The kernel of the action of H on Ai defined by 1i

(
ak

i , h
)

= ak
i ⊕ h is the subpolygroup I of H .

Proof. For all i ∈ L, Ker(1i) = {h ∈ H : 1i

(
ak

i , h
)

= ak
i for all k ∈ H/I}. Let x ∈ Ker(1i) ⊆ H . Then ak

i ⊕ x = ak
i

for all ak
i ∈ Ai and so {ay

i |y ∈ k + x} = ak
i . Hence, k + x = k for all k ∈ H/I and then x = 0 = I since H/I is a

polygroup. Therefore, x ∈ I and Ker(1i) ⊆ I. Conversely, for x ∈ I, ak
i ⊕ x = ak

i for all ak
i ∈ Ai. It follows that

1i

(
ak

i , x
)

= ak
i for all ak

i ∈ Ai and so x ∈ Ker(1i). Thus, I ⊆ Ker(1i) and the result follows.

Remark 4.4. For polygroups L and H, the direct product L×H is an extension of L by H via H/{0}. Thus, the kernel
of the action 1i of H on Ai is Ker(1i) = {0} . On the other hand, the Wreath product H [L] is an extension of L by H
via H/H and in this case, Ker(1i) = H.

To visualize the table of a polygroup extension of L by H via H/I and also simplify the construction, we
consider some notations. By B (Ai), we denote the block of Ai that represents the table of hyper sums of
(Ai,⊕i).

B(Ai) =

∑i
0̄0̄

∑i
0̄h̄ · · ·∑i

h̄0̄

∑i
h̄h̄ · · ·

...
...

. . .

where
i∑

x̄ȳ

= ax̄
i ⊕i aȳ

i

By the definition of the hyperoperation ⊕, we can write ah̄
i ⊕ ak̄

j =
{
aq̄

p : p ∈ i + j, q̄ ∈ h̄ + k̄
}

=
⋃

p∈i+ j

{
ah̄

p ⊕p ak̄
p

}
.

Also, we have, Ai ⊕ A j =
{
Ax : x ∈ i + j

}
. Thus, we denote the block of hyper sums in Ai ⊕ A j with

B(Ai ⊕ A j) =
⋃

x∈i+ j
B(Ax). where

⋃
x∈i+ j

B(Ax) =

⋃
x∈i+ j

∑x
0̄0̄

⋃
x∈i+ j

∑x
0̄h̄ · · ·⋃

x∈i+ j

∑x
h̄0̄

⋃
x∈i+ j

∑x
h̄h̄ · · ·

...
...

. . .
Whenever 0 ∈ i + j, then B(A0) ∈

⋃
k∈i+ j

B(Ak). Although|B(A0)| ≥ |B(Ak)| for k ∈ (i + j)\{0}, but the

hyperoperation ⊕ defined on K fits B(A0) in the union by collapsing A0 = H into factor polygroup H/I.
Indeed,

ah̄
i ⊕ ak̄

j =
{
aq̄

p : p ∈ i + j, q̄ ∈ h̄ + k̄
}

=
{
aq̄

0 : q̄ ∈ h̄ + k̄
}
∪

{
aq̄

p : p ∈ (i + j)\{0}, q̄ ∈ h̄ + k̄
}

=
{
q̄ : q̄ ∈ h̄ + k̄

}
∪ (

⋃
p∈(i+ j)\{0}

(ah̄
p ⊕p ak̄

p))

Therefore, the table for (K,⊕) has the form

⊕ H Ai A j · · ·

H B(H) B(AH
i )L B(AH

j )L · · ·

Ai B(AH
i )R

⋃
k∈i+i

B(Ak)
⋃

k∈i+ j
B(Ak) · · ·

A j B(AH
i )R

⋃
k∈ j+i

B(Ak)
⋃

k∈ j+ j
B(Ak) · · ·

...
...

...
...

. . .
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