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Ruscheweyh-Type Harmonic Functions with Correlated Coefficients

Jacek Dziok?

Institute of Mathematics, University of Rzeszéw, ul. Prof. Pigonia 1, 35-310 Rzeszéw, Poland

Abstract. In the paper we introduce the classes of functions with correlated coefficients defined by
generalized Ruscheweyh derivatives. We also define the dual set for harmonic functions and show that
the classes of functions can be presented as dual sets. Moreover, by using extreme points theory, we obtain
estimations of classical convex functionals on the defined classes of functions. Some applications of the
main results are also considered.

1. Introduction

Harmonic functions are famous for their use in the study of minimal surfaces and also play important
roles in a variety of problems in applied mathematics. Harmonic functions have been studied by differential
geometers such as Choquet [4], Kneser [18], Lewy [20], and Rado [23]. Recent interest in harmonic complex
functions has been triggered by geometric function theorists Clunie and Sheil-Small [5]. Let H denote the
family of continuous complex-valued functions which are harmonic in the open unit disk U := U (1), where
U(r) := {ze C: |z] <r}, and let A denote the class of functions which are analytic in U. Every harmonic
function f € H has a unique representation

f=h+y, 1)

where /1 and g are analytic in U and g(0) = 0. A result of Lewy [20] shows that f is locally univalent and
sense-preserving if and only if

W (2)] >

7@ @el). @)
We denote by Hj the family of functions f € H of the form
f(z):h+y:z+2(anz"+b,,7) (h,g € A,z € U) 3)
n=2

which are univalent and sense-preserving in U.
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Let Ny := {k,k+1,...}, N := INy. For functions f1, o € H of the form

fiz) = Z a2 + bz (z€ U, 1€ N) (4)
n=0

we define convolution of f; and f, by

o)

(fi*f)(2) = Z (al,naz,nz” + bl,,,bzlnz”) (zeU).

n=0

We say that a function f € Hj is harmonic starlike in U (r) if f maps the circle JU (r) onto a closed curve
that is starlike with respect to the origin i.e.

% (argf(re”)) >0 (0<t<2n)
or equivalently

Dy f (2)

Re @)

>0 (zl=1),

where
Dyif(z):=2zh (z) —z¢' (z) (zeU).

Ruscheweyh [25] introduced an operator D" : A — A, defined by the convolution:

D'f(z) = W +f(2) (A#-1; feA), )
which implies that
n—-1 (n)
D'f(z) = % (n € Ny).

Let D;'{T : H — H denote the linear operator defined for a function f =h + g € H by
D)fi=D'h+1DYg (| =1).

The operator D;\f for T = (-1)" was investigated in [21] (see also [7, 10, 12, 14, 28]).

We say that a function f € H is subordinate to a function F € H, and write f(z) < F(z) (or simply
f < F) if there exists a complex-valued function w which maps U into oneself with w(0) = 0, such that
f(z) = Fw(z) (zel).

Let A and B be two distinct complex parameters.We denote by S;\f (A, B) the class of functions f € Hy
such that

Dyt (D) f) (2) L1+4z
for{T f(2) 1+Bz’

(6)

Also, by Rgf (A, Bywe denote the class of functions f € Hj such that

D} f (2) PEEYE
z 1+Bz’
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In particular, if we put A =n € Ny, T = (-1)", then we obtain the classes
Si (A, B) =SV (A, B), Ri(A,B) =RV (A, B)

related to the harmonic Ruscheweyh derivatives D}, f (see [10]). The classes Sy((A,B) := SgI(A, B),
K (A, B) = S}H(A, B)and R(A, B) := 7€}H(A, B) are defined in [8] (see also [9]) with restrictions—B < A < B < 1.

The object of this papers to obtain some necessary and sufficient conditions for the above defined classes.
Some topological properties and extreme points of the classes are also considered. By using extreme points
theory we obtain coefficients estimates, distortion theorems, integral mean inequalities for these classes of
functions.

2. Dual sets
Let V c H, Uy := U\ {0} . Motivated by Ruscheweyh [24] we define the dual set of V by

V=lfeHy: \(F+q)@#0 (zeUpy.

qev

The object of this section is to show that the defined classes of functions can be presented as dual sets.

Theorem 2.1.

Sy (AB) = {ye : & = 1),
where

B-A)E+(1+A+ABE+AE)z
ve o = EETQL AL IR ”
_T22+(A+B)<S—(1—;\+2—)\BE+A.£)Z (zel).
(1-%2)

Proof. Let f € Hy be of the form (1). Then f € Si’; (A, B) if and only if it satisfies (6) or equivalently

Dy(Dyf)@ 144

(2] S zeUp KE1=1). ®)

D7 f(2) 1+B¢E

Since

z z zZ+ Az?
* =h(@)* ——=,
(l _ Z)A+1 (1 _ Z)2 (1 _ Z)/\+2

Dy (D) h) (2) = i (2) »

the above inequality yields

(1+B&) Dy (D f) (@) = (1+ A&) D) f (2)
= (1+B&) Dy (D)) (@) - (1 + A D) h (2)

~t|(1+ B Dy (Dyg) @)+ (1 + A DY )|

B . (1+Bc§)(1+/\z)z_(1+A£)z
= h@) ( (1 —2)M2 1- Z)/Hl )
_ (a+B&®(1+12)z =
@) L) arao:
(1-2) (1-2)

= f@*P:(@)#0 (zeUy, & =1).
Thus, f € S}7(A, B) if and only if f (z) * ¢ (z) # 0 forz € Up, |& = 1ie. S (A,B)={pe: [&]=1}. D
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Using an argument similar to that given in the proof of Theorem 2.1, we can prove the following Theorem
2.2.

Theorem 2.2.
Ry (A,B) = {o¢ : &l =1},
where
_ _ At
b (z) = At BEZAHADA =2V | o T+BE ) )

(1-2)"" (1-2)™
If we put A =n € Ny, 7 = (-1)", in Theorems 2.1 and 2.2 we obtain the following results (see [8]).
Theorem 2.3.

SiAB) = lpe : =1, (10)
where
0:(2) ZZ(B—A)£+(1+n:+§nB+A)§)z 1)
(1-2)
_(_1)n22+(A+B)5+(n: 1 : (nB-A)&)z (zeU).
(1 _ Z)n+
Theorem 2.4.
R4(A,B) = {o¢ : €] =1},
where
n+1
e (2) = Zl +BE-(1 +Ar§)1(1 - z) +(=1)" 21+—_351 (ze ).
(1 _ Z)VH— (1 _ Z)n+

Moreover, if we get n = 0 and n = 1 in Theorem 2.3 and n = 1 in Theorem 2.4 we obtain the following
results (see [8]).

Theorem 2.5.
Sn(A,B) = {y:: [E] =1},
where
B-A)é+(1+A8)z _2+(A+B)E—-(1+Adz
= — U).
V(@)= s— z - (zeU)
Theorem 2.6.
Kn(A,B) = {y:: €] =1},
where
B-A)&é+R+AE+BEz _2+(A+B)E+(B-A)é&z
= - U).
Ye (@) =z T z o (zel)
Theorem 2.7.
Ry(A,B) = {os : & =1},
where
2
5¢ (2) ::Zl+BE—(1 + A& (1 -2) _21 +B52 (zel).

(1-2)? (1-32)
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3. Correlated coefficients

Let us consider the function ¢ € H of the form

(e8] (o8]

p=u+0v, uiz)= Z uz", v(z) = Z v,2" (zeU). (12)

n=0 n=1
We say that a function f € H of the form (3) has coefficients correlated with the function ¢, if
Uny = =yl lanl, vuby = [0y| byl (71 € NZ) . (13)

In particular, if there exists a real number 7 such that

[

Z ’(” Dngn 4 e‘“”*””i”) (zeU),

n=1

z —21qz

zZ) = -
(P( ) 1- 8”72 1- ezqz

then we obtain functions with varying coefficients defined by Jahangiri and Silverman [15] (see also [9]).
Moreover, if we take

(p(Z)zZRellZTZ :i<z”+2") (ze ),

n=1

then we obtain functions with negative coefficients introduced by Silverman [27]. These functions were
intensively investigated by many authors (for example, see [6, 8-11, 13, 15, 17, 30]).
Let 777 (1) denote the class of functions f € H with coefficients correlated with respect to the function

z T2z

p(2) = (zel). (14)

(1 — einz)r+1 " (1 — einz)t+1
Moreover, let us define
Syt (m;A,B) := TV (1) N S} (A, B), Ry"(n; A, B) := T () NR}T(A, B),

where 1; A, B are real parameters with B > max{0, A}.

Let f € H be of the form (3). Thus, by (5) we have

(o]

f(z —Z+Z)\an b,z" (zeU),
where
_ A+ (A +n=1)
Ai=1, A, = (11 — 1)' (Tl S Nz) (15)
Moreover, let us assume
IAal 2 |A2] 2 1, B > max{0, A}. (16)

Theorem 3.1. If a function f € H of the form (3) satisfies the condition

o)

Y (1l laa] + [Baf1bal) < B - 4, (17)
n=2

where
an=A{n(1+B)—(1+A)}, Bu=Au{n(1+B)+(1+A4)}, (18)

then f € S} (A, B).
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Proof. It is clear that the theorem is true for the function f (z) = z. Let f € Hj be a function of the form (3)
and let there exist n € N, such that a, # 0 or b, # 0. By (16) we have

o £+
B_AZn,B_AZn (neN»). (19)
Thus, by (17) we get
Y (nlal+nb,)) <1 (20)
n=2
and

(o]

g @21 nlagllal =Y nlbl " = 1= 12 ) (laul + b))
n=2 n=2

= n=2

I (2)| -

|z|

>1-
- B-A

Y (aullal + [Ba] lal) 2 1= 1 >0 (z€ V).

n=2

Therefore, by (2) the function f is locally univalent and sense-preserving in U. Moreover, if 21,2z, € U,
Z1 # 2z, then.

Z — 1 1
1 2\ - Zzll‘lzg_l < Z 1z < n (e Ny).
Z1 — 22
1=1 =1
Hence, by (20) we have

|f @) = f(22)| 2 h(21) = h (22)] - |9 (21) — 9 (22)|

(o] (o)
Z1 — Zp — E a, (2’1‘ - zg) Z b, (z’f - zg)
n=2 n=2
[ee) [ee)

>l — 2l = ) a2 - 28] = ) bl 25 - 24
n=2 n=2
(o] _ (e8]
:|zl—zZ|[1—Z|an| =) b
n=2 1 2 n=2

>|21—zzl[l—ananl—anbnl]ZO.

n=2 n=2

n n n
21 Z, Z1

|

This leads to the univalence of f i.e. f € Sg;. Therefore, f € SQLT(A, B) if and only if there exists a complex-
valued function w, w(0) = 0, |w(z)] < 1 (z € U) such that

_ N
Z)
21— 22

Dy (Dy )@ 1+ Awz)
D;}T f@) " 1+ Bw(z)

(zel),

or equivalently

Dy (D}ff)(2) - D f (2)
BDy (D} f)(2) - A(D)i f (2)) (2)

<1 (zelU). (21)
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Thus for z € U\ {0} it suffices to show that
|D71, (DA f) 2 - D) f (z)| - |BDW (D)) @ - Dy f (z)| <0.
Indeed, letting |z| = (0 < r < 1) we have

D4 (D} £) @) - D3 £ )| - [BDw (D3 £) 2) - D) £ )|

Z(n 1) Apanz" —Z(n+1)TME”

n=2

—B-A)z+ Z (Bt — A) Ayanz" + Z (Bn + A) TA,b,2"

n=2 n=2

Z 1) [ A 7" +Z (n+ 1) |Aubal 7" — (B — A) r
n=2

n=2

Z (B — A) [Auan| 7" +Z (Bi + A) |A byl 7"
n=2

n=2

< r{Z (lan| |a,| + |ﬁn| |bn|) e - (B —A)} <0
n=2

whence f € 8}7(A,B). O

3675

The next theorem, shows that the condition (17) is also the sufficient condition for a function f € H of

correlated coefficients to be in the class S(AF’T(r],' A, B).

Theorem 3.2. Let f € 717 (1) be a function of the form (3). Then f € S;'T(n; A, B) if and only if the condition (17)

holds true.

Proof. In view of Theorem 3.1 we need only to show that each function f € S(Ar’f(n; A, B) satisfies the
coefficient inequality (17). If f € Sfr’T(r]; A, B), then f is of the form (3) satisfying (13) for which (21) must

hold, or equivalently
Z (n— 1) Aanz" — (n + 1) TA,b, 2"
n=2

(B-A)z+ Y {(Bn — A) Ayanz" — (Bn + A) mnbnz"}
n=2

Therefore, by (14) and (13) for z = re' (0 < r < 1), we obtain

Y, (n=1)[Aullaul + (n + 1) |A,] byl i

n=2

<1.

e8]

(B-A) - ;2{(371 = A) [Aulla] + (Br + A) | Au| [bu] 1}

<1 (z€WU).

(22)

It is clear that the denominator of the left hand side cannot vanish for r € (0, 1) . Moreover, it is positive for

r =0, and in consequence for r € (0, 1). Thus, by (22) we have

o)

Y (Il lanl +[Ba]10al) " < B=A (07 <1).

n=2

(23)
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The sequence of partial sums {S,} associated with the series Z (Ianl || + |ﬁn| |b,, I) is non-decreasing se-

quence. Moreover, by (23) it is bounded by B — A. Hence, the sequence {S4} is convergent and
Y (ol lasl +[B,]1Ba]) = lim S, < B - 4,
n=2

which yields the assertion (17). [

The following result may be proved in much the same way as Theorem 3.2.
Theorem 3.3. Let f € Hy be a function of the form (15). Then f € R;\_’T(n; A, B) if and only if

. B-A
< —.
;Mnummwnn_ 7

By Theorems 3.2 and 3.3 we have the following corollary.

Corollary 3.4. Let a = ¥4 and

- 1 n
4 z" 24
Z+;(n—az +n+az) (ze ), (24)

(9]

w(z) = Z+Z n—a)z" +n+a)z) (zeU).

¢ (2)

Then
f € RY(;AB) e f+peSy(AB),
f € S}AB) e frweR(1;AB)

In particular,

Ry (n;~1,B) = Sy*(n; -1, B).

4. Topological properties

We consider the usual topology on H defined by a metric in which a sequence {f,} in H converges to
f if and only if it converges to f uniformly on each compact subset of U. It follows from the theorems of
Weierstrass and Montel that this topological space is complete.

Let  be a subclass of the class H. A functions f € ¥ is called an extreme point of ¥ if the condition

f=vA+0-f (L LheF, 0<y<l)

implies fi = f, = f. We shall use the notation E¥ to denote the set of all extreme points of . It is clear that
EF CF.
We say that F is locally uniformly bounded if for each r, 0 < r < 1, there is a real constant M = M (r) so that

lfa| <M (feF, l<r).
We say that a class ¥ is convex if

yf+(1-y)geF  (f,geF,0<y<1).
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Moreover, we define the closed convex hull of F as the intersection of all closed convex subsets of H that
contain ¥. We denote the closed convex hull of # by cof .
A real-valued functional J : H — R is called convex on a convex class ¥ C H if

Jof+A-9<yTH+1A-1T (@ (fgeF, 0<y<1).

The Krein-Milman theorem (see [19]) is fundamental in the theory of extreme points. In particular, it
implies the following lemma.

Lemma 4.1. [8, pp.45] Let F be a non-empty compact convex subclass of the class H and J : H — R be a
real-valued, continuous and convex functional on ¥ . Then

max{J(f): f e F}=max{J(f): f € EF}.
Since H is a complete metric space, Montel’s theorem implies the following lemma.
Lemma 4.2. A class ¥ C ‘H is compact if and only if F is closed and locally uniformly bounded.
Theorem 4.3. The class S;‘:T(n; A, B) is convex and compact subset of H.

Proof. Let fi, f> € SQJT(T];A, B) be functions of the form (4), 0 <y < 1. Since

VA@+ A= @ =2+ ) [(an,+ 1= y)ar) 2" + b+ (1= y) baw) 2},
n=2

and by Theorem 3.2 we have

Z {lan| |Val,n +(1-y) aZ,n) + |ﬁn) b/bl,n +(1-y) bZ,nZn|}

n=2

]/Z {|ana1,n| + |ﬁnb1,n)} + (1 - 7/) Z {|ana2,n| + ),Bnbz,n‘}
n=2 n=2
y(B-A)+(1-y)(B-A)=B-A,

IA

IA

the function ¢ = y f1 + (1 — y) f> belongs to the class SQLT(T];A, B). Hence, the class is convex. Furthermore,
for f € S,?:T(U;A, B), |zl <r, 0 <r<1,wehave

f@ <7+ Y Gaul +1bal) " <7+ Y (laallal + [Ba] l) < 7+ (B - A). (25)
n=2 n=2

Thus, we conclude that the class S‘;T(n; A, B) is locally uniformly bounded. By Lemma 4.2, we only need to

show that it is closed i.e. if f; € S,?.’T(n;A, B) (leN)and fi — f, then f € S,?T(n; A, B). Let f; and f be given
by (4) and (3), respectively. Using Theorem 3.2 we have

Y. (Jwain] + |Bubia) <B-A (1€ N). (26)
n=2
Since f; — f, we conclude that (al,”’ — |a,| and |bl,n| — |byl as I — oo (n € IN). The sequence of partial
sums {S,} associated with the series Y (Iananl + )‘Bnbn|) is a non-decreasing sequence. Moreover, by (26) it is
n=2

bounded by B — A. Therefore, the seq_uence {S,} is convergent and

1=

(lauttal + [Bubi]) = lim S, < B~ A.

=
I
N

This gives the condition (17), and, in consequence, f € S;\:T(n;A, B), which completes the proof. O
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Theorem 4.4.
ES)y*(;A,B) = {(hy: n € N}U{g,: n €Ny},

where

-A T(B-A)_,
- aBeiT gn(z) =z + Mz (z e ). (27)

hl(Z) =72z, hn(z) =z ‘B z(n+1)1]

Proof. Suppose that 0 <y <1 and

gn=vA+QQ=9)f,

where fi, f» € Sfr”(n; A, B) are functions of the form (4). Then, by (17) we have )b1,n| = |b2,n| = | ﬁ |

consequence, a1; = az; = 0 for I € N, and by; = by; = 0 for I € INo\ {n}. It follows that g, = fi = f», and
consequently g, € ES:(1; A, B). Similarly, we verify that the functions &, of the form (27) are the extreme

,and, in

points of the class S;\:T(U;A, B). Now, suppose that a function f belongs to the set ESfr'T(n; A,B) and f is not
of the form (27). Then there exists m € IN, such that

0<|am|<u or 0<|bm|<;A.
et ||
If0 < |a,| < |a I’ then putting
Ioz a |

we have that 0 < y <1, hy, # ¢ and
f=rh+ 1=7) 9.
Thus, f ¢ ES“(U,A B). Similarly, if 0 < |by,| < l|3 ‘i‘ then pouting

Emﬂ ¢ = y(f—wm)/

we have that0 <y <1, g, # ¢ and

f=ygm+1=7)¢.
It follows that f ¢ ES*(n; A, B), and the proof is completed. []

5. Applications

It is clear that if the class
={fieH: neN},
is locally uniformly bounded, then
ETz{Zynfn: Y =1 ynZO(ne]N)}. (28)
n=1 n=1

Thus, by Theorem 7 we have the following corollary.
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Corollary 5.1.

Sy (1;A,B) = {Z (Ynhn + Ongn) - Z (Vn+06n) =1 (61 =0,74,00 > 0)},
n=1 n=1

where hy,, g, are defined by (27).

For each fixed value of m,n,A € N, z € U, the following real-valued functionals are continuous and
convex on H:

T ) =laul, T (F) =1bal, T (f) = |f @| T (f) =|Daf @) (f e H). (29)

Moreover, for y > 1, 0 < r < 1, the real-valued functional

2n 1y
T (f)=[§ f i (reie)'yde] (f € H) (30)
0

is also continuous and convex on H.

Therefore, by Lemma 4.1 and Theorem 7 we have the following corollaries.

Corollary 5.2. Let f € SQLT(n; A, B) be a function of the form (15). Then

B-A B-
lan] < ===, |bal < ——

|Oln| |ﬁn| (Tl (S Nz), (31)

where ay, By are defined by (18). The result is sharp. The functions hy, g, of the form (27) are the extremal functions.

Corollary 5.3. Let f € Sfr’f(r]; A,B), |zl =r < 1. Then

B_A 2 B—A 2
- < < -
marmea S felsr e

2B-4) 2B-4) ,

-———— < |D, <r4—"
A = PUOlE s
where A, is defined by (15). The result is sharp. The function h, of the form (27) is the extremal function.

Corollary 54. Let0<r<1, y>1.Iff € Sy(n;A, B), then

2n -
oy 1 '
%f‘f(relg)l’ do < Ef'hZ(rele))A 40,
0 0
1 r 1 2n
2 f'Dﬁf(Z)ly o < 2n f|th2(1’eie)}y do,
° 0

where hy is the function defined by (27).
The following covering result follows from Corollary 5.3.
Corollary 5.5. If f € Sy*(1; A, B), then U (r) C f (U), where

_L
Ao (14 2B —A)
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By using Corollary 3.4 and the results above we obtain corollaries listed below.

Corollary 5.6. The class R’;T(n;A, B) is convex and compact subset of H. Moreover,
ERY*(n;A,B) = {h, : n € N}U{g, : n € N}

and

R‘);T(TT?A/ B) = {Z (Vuhtn +0ugn) = (Pn+04) =1 (61 =0,y 00 2 0)}/

n=1
where hy(z) = z, and

B—A ei(l—n)n
hy(z) =z — ﬁz”, In(z) =z +

_ i(n+1)n
%z” (z e U).
(1+B)7A,
Corollary 5.7. Let f € R’;T(W;A,B) be a function of the form (3). Then
B-A B-A
- < -
s R
r———r" < |f@)| <7+ ———7
am <O
f————---1" <Dy f2)| £ r + ——————v
apn < PrEls+ g

2n 2
% f |f(re®)| do < % f Iha(re)|" d6,
0 0

la,| <
(2l =r<1),

(zl =r<1),

2n 2n
% f Dy f(re®)|” do < i f |Dgeha ()| do,
0 0

3680

(32)

where A, is defined by (15). The results are sharp. The functions h,, g, of the form (32) are the extremal functions.

Corollary 5.8. Let us assume (16). If f € Rﬁ\r’T(n; A,B), then U (r) C f(U), where

B-A

r=1-———.
(1+B)|Ay

The classes Sg{ (A, B) and Rﬁ;{ (A, B) are related to harmonic starlike functions, harmonic convex functions

and harmonic Janowski functions.

The classes Sy(a) := 82_1(2(1 -1,1) and Ky (a) := S;{(Zoz —1,1) were investigated by Jahangiri [13]
(see also [2, 22]). They are the classes of starlike and convex functions of order «, respectively. The
classes Nyy(a) := 7{1H(20z —1,1) and Ry(a) := R%(Za —1,1) were studied in [1] (see also [17]). Finally,
the classes S := Sx(0) and Ky := Ky (0) are the classes of functions which are starlike and convex
in W (r), respectively, for all r € (0,1). We should notice that the classes S(A,B) := Sy(A,B) N A and

R(A, B) := Ry (A, B) N A were introduced by Janowski [16].

By Theorem 2.3 or Theorem 2.4 for the classes defined above we obtain corollaries listed below (see [7]).

Corollary 5.9.
Sule) = {¢e: &l =1},

where

21-a) &+ (1-E+208)z 24208~ (1-E+208)2

- 2)2 Q- 2)2 (zeU).

Y (2z) =z
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Corollary 5.10.
Kpla) = {ye : 1] =1},
where
I-a)é+0+ad)z _1+aé+(1-a)éz
= U).
Ve (z) =z REEE +z -z (ze )
Corollary 5.11.
Ny(a) = {os : Il =1},
where
2(1-a)é+QaE-E+1)(22 -2
e () =2 (1-a)&+Q2a : )(z z)_21+_52 e U).
(1-2) (1-2)
Corollary 5.12.
Sy ={¢pe: 1l =1},
where
28+(1-&8)z _2-(1-9z
= - U).
Ve ma e —E e e )
Corollary 5.13.
Ky = {¢pe = 1l =1},
where
Ye(2) =z frz  gltéz (ze ).

+z
1-27 -z
The class S;{(T, n; A, B) generalizes the classes of starlike functions of complex order. The class CS¢/(y) :=

Sz (1-2y,1) (y € C\{0}) was defined by Yalcin and Oztiirk [29]. In particular, if we put y := =%, then

we obtain the class RS(a, ) := Sy (%, 1) studied by Yalgin et al. [30]. It is the class of functions
f € Hy such that

Re{(1+ei")D(}{ffZ§Z) —ei”} >a (zeU, neR).
Thus, by Theorem 2.3 we have the following two corollaries (see [7]).
Corollary 5.14.
CSuly) = {ge: EI=1},
where
2pE+(1+E-2p8)z _22+2(1—)/)5—(1+£—2y5)2
(-2 -2’

Ys(z) =z (zeU). (33)

Corollary 5.15.
CSplam) = {ye - €l =1},
where V¢ is defined by (33) with y := 1%

1+e

Remark 5.16. By varying the parameters in the defined classes of functions we can obtain new and also well-known
results (see for example [1]-[3], [6]-[17], [22] and [27]-[30]).
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