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Abstract. Truncated Toeplitz operators in a model space are C-symmetric with respect to a natural conju-
gation in that space. We show that this and another conjugation associated to an orthogonal decomposition
possess unique properties and we study their relations with asymmetric truncated Toeplitz operators in
terms of C—symmetry. New connections with Hankel operators are established through this approach.

1. Introduction

Let H be a complex Hilbert space, and denote by L(/H) the algebra of all bounded linear operators on
H. A conjugation on H is an antilinear involution C: H — H such that (Cf,Cq) = (g, f) for all f,g € H.
Conjugations and their relations with various classes of operators have been studied in Hilbert spaces for
many years. A new motivation to study them came from [7], and many interesting results have recently
appeared on this topic [2, 8, 10-12, 16]. In particular, the study of C—symmetric operators, i.e., operators
A € L(H) such that CAC = A*, has attracted much attention, with particular emphasis on the case where
the underlying Hilbert spaces are model spaces, defined as follows.

Let us denote by L? the space L*(T,m), where T is the unit circle and m is the normalized Lebesgue
measure on T, and let H> = H*(ID) be the Hardy space on the unit disc, identified as usual with a subspace
of L. If O is an inner function, i.e., 6 € H* (H*® = H*(ID) denotes the space of all bounded analytic functions
in D), |6(t)] = 1 a.e. on T, the model space Ky is defined by Ky = H? © OH?. It follows from Beurling’s
theorem that these are the invariant subspaces for the classical backward shift S*. We denote by Py the
orthogonal projection from L? onto Ky, and by Ky the dense subset of Kg defined by K = Kg N H® ([15]).

One of the most important classes of operators on model spaces is that of truncated Toeplitz operators
([15]), which have been widely studied recently (see for example [1, 5, 15]). For ¢ € L?, a truncated Toeplitz
operator Ag is defined, for all f € Kg such that ¢ f € L? (and, in particular, for all f € Kf), by

ASf = Po(pf).

2010 Mathematics Subject Classification. Primary 47B35; Secondary 30H10, 47A15

Keywords. asymmetric truncated Toeplitz operator, conjugation, C-symmetry

Received: 10 November 2017; Accepted: 08 December 2017

Communicated by Vladimir Miiller

Research of the first author was partially supported by Fundagao para a Ciéncia e a Tecnologia (FCT/Portugal), through Project
UID/MAT/04459/2013. Research of the second and the third authors was supported by the Ministry of Science and Higher Education
of the Republic of Poland.

Email addresses: cristina.camara@tecnico.ulisboa.pt (M. Cristina Camara), rmklis@cyfronet.pl (Kamila Klis-Garlicka),
rmptak@cyf-kr.edu.pl (Marek Ptak)



M. Cristina Camara et al. / Filomat 33:12 (2019), 3697-3710 3698

If this operator is bounded, then it can be uniquely extended to a bounded operator on Ky; in that case we
say that A) € 77(6).

One can define a conjugation Cp in L2, Co(f) = Ozf for f € L?, which preserves the model space Ky (i.e.,
CoPg = PgCs), and therefore induces a conjugation in Ky, also denoted by Cy. This conjugation plays an
important role in the study of truncated Toeplitz operators. In fact, the latter are Co—symmetric [7], i.e.,
CyACy = A" for A € T(0) or, equivalently, ACy — CoA* = 0.

More generally, one can consider asymmetric truncated Toeplitz operators between two (eventually) differ-
ent model spaces Kg and K, where a and 6 are nonconstant inner functions. For ¢ € L2, we define

Al DC KooK,  AYf=Palf) (1.1)

with domain D = Z)(Af;"") ={feKp:pf € 12} o Ky. Again, if this operator is bounded, it has a unique
bounded extension to Kg, A?,’“: Ko — K, and the class of all such operators is denoted by 7 (6, ). Recall
after [3] that if Ag’“ € 7(6,a), then (Ag’“)* = Ag’e € 7 (a, 0). Asymmetric truncated Toeplitz operators were
studied in [3] in the context of H(ID), and in [4] in the context of the Hardy space on the upper half-plane
HP(C*) (1 <p < o).

When « divides 0 (o < 0), i.e,, g is an inner function, then K, C Ky and we have the orthogonal
decomposition Kg = K, ® aKe. This suggests to define another conjugation in Kp, besides Cy, denoted by
C, e and defined by (3.1). It turns out that these conjugations are unique in the sense that they coincide,
on both K, and aKe, with conjugations on L? for which the operator of multiplication by the independent
variable, M,, is C—sgfmmetric (Theorem 4.7).

In this paper we investigate the relations of asymmetric truncated Toeplitz operators with these two
conjugations and we show that certain identities of C—symmetric type still hold for these operators when
the conjugation C is one of the above mentioned ones, Cg or C, o (Theorem 5.3). Moreover, since we no
longer have the equality AZ’“C - C(Az’“)* = 0 in general, we study various differences of that type and we
show that they can be expressed in terms of Hankel operators.

2. The actions ¢ and B

In the following section the letters H, K, with or without indexes, denote complex Hilbert spaces. Let
L(H, K) (respectively, LA(H, K)) denote the space of all bounded linear (respectively, antilinear) operators
from H to K. Recall that for X € LA(H,K) there is a unique antilinear operator X*, called the antilinear
adjoint of X, satisfying the equality

(Xf,g) = (f, X*g), 2.1)
forall f € H, g € K. Itis easy to see that the antilinear adjoint has the following properties:

Proposition 2.1. 1. If X € LA(H,K), then (X¥)* = X.
2. If Xy € LA(H1, Hy) and Xa € LA(Hy, Hs), then XX, € L(Hy, Hs) and (X2X1)* = XEXE,
3. IfA € L(Hy, H) and X € LA(H, K), then (XA) = A*X*.
4. If B € (K, %K) and X € LA(H, K), then (BX)* = X*B".
Let Xi: H = K1, Xo: H = Ko, Y1: Ki = H, Yo K; — H be (linear or antilinear) operators. Define

the following actions:
X1 <>X22 7‘( - 7(1 @7(2, (X1 <>X2)f = X1f®X2f

and
YiEY: Ki@Ky = H, Y1 8Yo)(f@g) =Yif + Yog.

Proposition 2.2. Let Xj, X, Y1, Y5 be antilinear operators, then:
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L (X0 Xt =X B XY
2. (X1 BXo)f = XH o XE;
3. if A € L(K: @Ko, K), then (A(X1 o Xo))F = (X} B Xh)A*;
4. if B e L(H,, % @ Ky), then (Y1 8 Y2)B)F = B (Y o YA).

Proof. To show (1) let us take f € H, g1 € K3, g2 € K5. Then
(X100 X0)f, 1@ 92) = (X1 f @ Xof, 91 ® 92) = (Xif, 91) +{Xof, 92) =
(X)) +(f, Xe) = (f, (XE @ XE)(g1 © 00)).

The equalities (2), (3) and (4) follow directly from (1) and Proposition 2.1. [

Remark 2.3. Note that the proposition above holds if we change antilinear operators to linear operators, * to * and
vice versa.

Now let us consider two conjugations C;, C, on ‘H. Define the following actions:

CO=%EC1<>C2:7-(—>7-(€B7-(,andCEE=%ClEECZ:?(EB?-(%?-(. (2.2)

Proposition 2.4. Let Cy, C; be conjugations on H. Then

1. CgoCo: H—> Hand C, 0 Cq: H®H — H & H are linear operators;
CgaolC, =1Iy;

(Ca)? = C, and (C,)F = Cg;

Cs 0 Cg = Q, where Q is an orthogonal projection;

kerQ = {sz@ —le : f € 7‘(},

ranQ = {Cof ®Cif : f € H}.

AN O

Proof. The statement (1) is immediate. To prove (2) let us take f € H. Then we have
3(CEG)(C 0 C)f = 3(CBG)Cf @ Cof) = 3(CIf +C5f) = f.

The equalities in (3) follow from Proposition 2.2. Take now f, g € H, then

F(CroC)CLBC)(f @) = 3((f + C1Cag) @ (9 + C2Co /). (2.3)
Hence

G(CLoC)CBC) (f@g) =

1(Cy 0 C)(C1 B C)(3((f + C1Ca9) @ (9 + C2C1f))) = 3((f + C1C29) @ (9 + C2C1f)).
So (4) holds and (5) and (6) follow from (2.3). O
The next proposition is related to (5.6) in the main theorem of the Section 5.

Proposition 2.5. Let Cy, C; be conjugations in H and let Cq, C,, be defined as in (2.2). Let A € L(H) be C1—symmetric
and Cy—symmetric. Then
Ca(A®A)C, =A".

Recall that any unitary operator U € L(H) is a product of two conjugations Ci, C; ([9]). Moreover, as
it was shown in [6], such a unitary operator is both C; and C,—symmetric. Hence any unitary operator
satisfies the assumptions of Proposition 2.5 for suitable conjugations.



M. Cristina Camara et al. / Filomat 33:12 (2019), 3697-3710 3700

3. Conjugations in model spaces: Cg and C,, 0

Let @ and 6 be nonconstant inner functions such that @ < 8. Then by [5, Lemma 5.10] the model space
Kpg can be decomposed as K, ® aKg or Kg @ —Ka. Hence Pg = P, + ana and Pg = PQ + ePaa

Proposition 3.1 (Proposition 2.3, [3]). Let a, O be nonconstant inner functions such that a < 0. If fi € K, and
f2 € Ko, then

L Colfi+af)=Cofa+ 8C.fi,
2. Cg(fz + gfl) = Cafl + anfz.
The orthogonal decomposition Ky = K, ® aKs suggests to consider another conjugation C, e on Ky

defined as
C

a,

=C,®aCy a,

RS

3.1
Ca,%(gl + (ng) =Cag1 + angz = az"g'1 + 629_2 ( )

for g1 € Ky, g2 € Ko To see that Cy o is a conjugation it is enough to show that CZQ o = Ix,. Namely,

(Ca®aCoa)Co@aCoa) =Py @®aCoaaCoa =P, alg,a =Py +aPoa = Ik,.

For any inner function 8 and A € D, denote

ke(Z) /_{ 0(z) and f{ﬁ(Z) = % .

Recall that kG are reproducing kernel functions for the model space Kp, i.e., (f, k9) = f(A) for all f € Ky.
Assume that a < 0, the conjugations Cg and C, o act on reproducing kernel functions k{ as follows:

s;\cn

Cokf =k and Coo k) =k} + a(Ad) aks.

We have also the following “reproducing” properties. For any f € Ky:

(f,Cokf) = (Cof)(A) and (f,Cu k) = (Cp e Y.

Moreover, C, ¥ Cgand CoC,, o are unitary operators (as compositions of two conjugations, see [6], [9]), which
are inverses of each other. More precisely:

Proposition 3.2. Let a, 6 be nonconstant inner functions such that o < 6. Then C, 0Co: Ko = Ko & 9K, — Ko =
K, ® aK 0 and Cgca/g : Kg = K, ®aK o = Ky =K 0 ® %Ka are unitary operators such that

1. CoC,o = Pedt+ 2P,

2. C,Co = P2+ aPs.

As a special case of Proposition 2.4 we have:

Proposition 3.3. Let o, 0 be nonconstant inner functions such that o < 6. Define the following actions:

CQ— Vv asOCg Ko — Kg @ Ko, (C(XHOCQ)f C stBCQf
and

Ca (C o BCy: Kg®Kg — Ky, (Ca,g H Cg)(f@{]) = Ca,gf+ ng.

Then
1. CgoCs: Ky = Kgand C, o Cg: Ko ® Kg — Ko @ Kg are linear operators,
CgoC, = IKH/
C, 0 Cq = Q, where Q is an orthogonal projection in Ko @ Ko,
kerQ = {Ca,§f® —Cgf : f € Ky},
ranQ = {CalngBCgf : f € Ko}

A
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4. M.—conjugations in L?

In this section we will show that the conjugations Cg and C, ¢ are in a certain sense unique.

Since we are motivated by truncated Toeplitz operators, we will concentrate on conjugations for which
the multiplication by the independent variable M, is C—-symmetric. Let | denote the complex conjugation
in L2, that is J: L? — L2, Jf = f for f € L?. For ¢ € L™, denote by M,,: L*> — L? a multiplication operator
M,f = @f, f € [%. A conjugation C on L? will be called an M-conjugation if M,C = CM; (i.e., M, is
C-symmetric) for all ¢ € L, and C will be called an M,—conjugation if M,C = CM:.

The following theorem fully characterizes M—conjugations in L2. It also says that in fact the definitions
of M—conjugation and M,—-conjugation are equivalent.

Theorem 4.1. Let C be a conjugation in L. Then the following are equivalent:
1. M,C = CMj, for all ¢ € L™ (C is an M—conjugation),
2. M,C = CM; (C is an M,—conjugation),
3. thereis € L™, with || = 1, such that C = My].

Proof. It is enough to show that (2) = (3). Assume that CM, = M;C. Then JCM, = JM:C = M,JC. It means
that the linear operator JC commutes with M.. By [14, Theorem 3.2] JC = M;; for some ¢ € L. Hence
C=JMy=My].

Since C is a conjugation, we have C? = I;>. Therefore for all f € L? we have

f=Cf = MyIJMyJf = MyJ(f) = lpPf,
which implies that [{)| =1 a.e. O

Now we study the invariant subspaces of M,—conjugations and their relations with orthogonal decom-
positions of model spaces.

Theorem 4.2. Let a,y, 0 be inner functions (a, 0 nonconstant) such that ya < 0. Let C be a conjugation in L*
such that M,C = CM;. Assume that C(yK,) C Kg. Then there is an inner function B such that C = Cg, with
ya<p<yo.

Proof. Recall the standard notation for the reproducing kernel functions at 0 in K,, namely, kg =1- ma
and 128‘ = Cok§ = z(a — a(0)). By Theorem 4.1 we know that C = M, ] for some function ¢ € L, || = 1.
Hence ~ - —

Ko  C(yky) = My J(yky) = ¢yz(a — a(0)) = yazy(1l — a(0)a).

Thus there is h € Kg such that h = yazy(1 — W&). Since (1 — Wa)‘l is a bounded analytic function, we
have
yazp = h(1 - a(0)a) ™! € H2.

Since f1 = yazy € H? and |[yazy| = 1 a.e. on T, it has to be an inner function.
On the other hand, we have similarly

Ko 3 CoC(yky) = Co(y(1 - a(0)a) = Byzi(1 - a(0)a),
and 0yziy € H2. Hence
H?*> 0yz( = 2y azyp = 2 B;.

But this is only possible when p; divides 2. Hence ¢ = yapiz = pz with ya < g < y6. Finally, we have
C= C[g. |

Taking y = 1 and @ = 6 we conclude that the conjugation Cy is the only M,—conjugation in L* which
preserves the model space Kp.
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Theorem 4.3. Let C be an M,—conjugation in L2 (i.e., M,C = CM:). Assume that C(Kg) C Kg for some nonconstant
inner function 0. Then C = C.

Remark 4.4. Let us consider nonconstant inner functions «, p, 0 such that « < p < 0. Then we have the
decompositions:

Ko = K}g @ﬁK% =K, ®aKpg @ﬁK%.
Observe that Cg(K,) C K. Let C be any conjugation on ﬁK%, Then Cglk, ® C is a conjugation on K.

The following is a consequence of Theorem 4.2 and Remark 4.4.

Proposition 4.5. Let o < 6 be some nonconstant inner functions. Let C be an M,—conjugation in L? (ie.,
M.C = CM;). Assume that C(K,) C Kg. Let C be a conjugation on Kg such that Clg, = Clk,. Then there is an inner

function B with a < B < 0 and a certain conjugation C on pK o such that Co=CsaC.

The following lemma will be used to prove the next theorem.

Lemma 4.6. Let a1, vy be nonconstant inner functions and let y1,y2 be inner functions such that y1 < oy and
V2 < ap. Assume that y1 Ky, ® Y2 Ko, = Kayay- Then y1 =1, y2 =agory1 = ay, y2 = 1.

Proof. Recall that inner functions are identified up to multiplication by a constant and let us assume that
neither y; nor y; is constant. By [5, Theorem 5.11] we can decompose the space K,,4, in two ways

Koo, = Ky, @1 Ky, @ y1002 Kﬁ =K, ® 2Ky, @201 K%
Since y1 K, ® y2 Koy, = Kyy0,, we have

Y1 Ke, = Ky, ®y211 Ki
Therefore

K,, C y1 K, € y1HA
It follows, as in [3, Lemma 4.2] that 1 has to be a constant or K,, = {0}, i.e., 2 is a constant, and so we
obtain a contradiction.

If y1 = 1, then, by [5, Theorem 5.11], we have
Ko, ® 72 Koy = Koy, = Koy ® a2 Koy,

hence y, = a,. If 1 is not a constant, then we obtain y; = a1, > = 1, analogously. [

The definition of the conjugation C, ¢ is natural in view of the orthogonal decomposition Ky = K, ®aKo.
However, it is easy to see that M, is not C, o—symmetric. Moreover, C, o is not a restriction to Ky of any
M_;—conjugation C on L?. On the other hand, the restrictions of C, » to the spaces K, and Ky © K, are equal

respectively to the restrictions of some (different) M,—conjugations. In the following result we show that
C, ¢ and Cy are the only conjugations in Ky with this property.

Theorem 4.7. Let o, 6 be nonconstant inner functions such that a < 6, and let Cbhea conjugation on Kg. Assume
that th~ere are conjugations C;,i=1,2, on L? with M, C; = C;iM; such that Clk, = Cilk, and Clg,ekx, = Calkyoxk, -
Then C=CoporC=C,o =Co®aCoa.
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Proof. Note firstly that C;(K,) = C(K,) c Ko. By Theorem 4.2 there is an inner function y1, 1 < y1 < g, such
that

Cl, = Cilk, = Cyalk, : Ko = y1Ka C K.

Recall that C, 4|k, fa = 7102 f; = 71Cu fa for f, € K,, and note that C,, |k, is a bijection between K, and y1K,.
Similarly, Co(aKe) = Co(Kg © Ky) = C(Kg ©K,) C Kg. Hence there is an inner function 72,1 < y2 < @, such
that

Clkyek. = Calak, = Cyolak, aKe — y2Ke C Kp.
On the other hand,
Cpaolax, afe = Cpolafe) = y20zafo = y282fo = y2Co fo

for fo € Ko. Note that C,,0lak, is a bijection between aKe and y,Ke. Since involution preserves orthogo-
nality and K, ®aK., = Kg, we get that 1K, ®y2Ke = Kg. By Lemma 4.6 there are now only two possibilities:
eithery1 =1,y =aory; = g,yz = 1. In the second case C|1<ﬂ = Cylk, and CIKGQKM = Colak, , hence C = Cy.

In the first case CN,’IKQ, = Culx, and Claks = Caolak, , since for fo € Ko we have
a o a a
Ca9|aKg af% = aGZo‘cf% = (ngfg = anﬁlafg = anC_Ylakgafg.

Hence C=C,®@aCoad=C,o. O

Example 4.8. Let O = z° and a = z°. The only conjugation, besides C,, defined by C,(z0,21,22,23,21) =
(24,23, 22, 21, 20), fulfilling the conditions of Theorem 4.7 is the conjugation Cys ,» given by Cys 2(20,21,22,23,24) =
(ZZr 21/20/ Z4r 23)

Example 4.9. Let 0(z) = exp % and a(z) = exp(af_'—%)for 0<a<1. Then g(z) = exp((1 - a)%). The only

conjugation, besides Co (defined by Co(f) = Ozf for f € Ko), fulfilling the conditions of Theorem 4.7 is the conjugation
Cy o given by C, o(fo ® afe) = azfo + 0zfo for fo ® afs € Kg = K, ® aKo.

5. C-symmetry of asymmetric truncated Toeplitz operators

Let C: H — H be a conjugation. Note that every conjugation is antilinearly selfadjoint, i.e., C* = C. The
next lemma gives simple but important equivalent conditions for an operator to be C—symmetric.

Lemma 5.1. Let A € L(H). Then the following are equivalent:

1. A is C—symmetric;
2. AC is antilinearly selfadjoint, i.e., (AC)* = AC;
3. CA is antilinearly selfadjoint, i.e., (CA)* = CA.

It is well known that truncated Toeplitz operators are Co—symmetric, [7], i.e., for Ag € 7 (0) we have
AJCo = CoAY. CRY
One may wonder whether Ag is C, o—symmetric for all @ < 6 but that is not the case in general, as it is
shown by this simple example.

Example 5.2. Let 6 = z2 and a = z. Then C = C,, = | is the conjugation given by C(zo,z1) = (Zo,21), (20, 21) € C.

0 -1 ] Then AC # CA".

Take a Toeplitz matrix A = [ 1 0
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Since an asymmetric truncated Toeplitz operator Ag’“ € 7 (0, a) reduces to the truncated Toeplitz oper-
ator Ag, and C, e = Cg when a = 6, we may ask whether the following generalizations of (5.1) hold:

Ag,ace — CQA%’GPO( or (52)
Agf“cmg = Ca,gA;‘;ePa. (5.3)
It is easy to see that neither (5.2) nor (5.3) are true in general. To obtain properties which, in the context

of Lemma 5.1, can be regarded in some sense as describing C—symmetric properties of truncated Toeplitz
operators, we will consider the whole space Ky and use the actions ¢, @.

Theorem 5.3. Let o, 6 be nonconstant inner functions such that a < 6, and let ¢ € L* be such that all asymmetric
truncated Toeplitz operators below are bounded. Let us consider the conjugations Co and C, e = Co ® aCed in

Ko = Ky ® aKqo. Then the following equalities hold:

0,2 %0 _
(Ag” o aA)Co = Co(AZ’ BAL, @), (5.4)
(A% 0 aA"NC 4 = C (A% m A R) (5.5)
¢ P2/ Ty Gy ol ’
(A% ® a AV)(Cpa 0 Co) = ¥ A"
@ @ a,2 o Cy) = (Ca,%EECQ)(A(p @A(p a). (5.6)
Equivalently, the above operators are antilinearly selfadjoint, i.e.,
0,8 0,8
((AG 0 aAj7)Co)t = (A" 0 @A 7)Co, (5.4a)
(A2 0 aA?)C, o) = (AG" 0 aa”})C (5.52)
@ <{J§ o) =W [ (P% a,2s oa
6,(1 6/% ﬁ — Q,Dt 6/%
(A" @ aA,")(Cye o Co))f = (AG" ®@a A, )(C, e © Co). (5.6a)

Proof. Letus take fi € K, f, € K7 and f = f; @ af, (recall that K7’ ® aKF is dense in Kg — see [5, (5.23)]). To
prove (5.4) note that ' A
0
(A(ep'a o OZA(Gp,; )Cof = Pa(pCof) + aPod(9Cof) = Po(pCof) = PoCo(pf) = CoPo(@f), (5.7)

since P, + aPo@ = Pg. On the other hand, we obtain

0
Co(A%" 8 A3, a)(fi ® afs) = Co(Po( i) + Po(@afs)) = CoPo(@f).
Now we will show that , ,
a 0,5\ _ a, 20
Ca,g(Af; o aA(Pg )= (A" @ A({Tga)Ca,g,

which is equivalent to (5.5). Note that

C, oA 0aA!D)f = C, sPu(@f) + C, 2(aPs (S f)
=CaPua(pf) + aCoPo(S9f) = Pa(¢Caf) + aPoa(@Caf)
=Po(¢Ca f)-
On the other hand, C,f = Z(af; + f2). Hence by Proposition 3.1 we get

2]
a’

0_ 90 _
(Ag%aA(pg a)C,o(fr@af) = (A} @ ATz 0)(Cafi ®aCsf)

= Po(@Cufi) + Po@2Cs f2) = Po(@(azfi + 2f2)) = Po(@Calf).



M. Cristina Camara et al. / Filomat 33:12 (2019), 3697-3710 3705

To prove (5.6), since Py = P, + aPo @, note that

(AY" ® @ A" )(Cufi + 2 Ca f2) ® Cof)
= Po(@(Cafr + aCe f2)) + aPo(9Cof)
= Po(pazfi + 09zfo) + aPa(pOzfi + pOzaf2)
= Po(Ca(@/1) + Pa(Cu(pafa)) + aPo(aCo(paf)) + aPo(Co(pafr))
= Po(Ca(@f1)) + aPo(Co(pafr)) + Po(Co(paf2)).

On the other hand,

(Coz BCo) A% ® AL D) fi @ afy)
= Ca(Pa(@f)) + aCo(Pa(apfir)) + Co(Po(@ f2))-

Using Py = P o+ gPag we obtain

Co(Po(9/2)) = Co(Pa(@f2)) + aPe(apfa)
= Co(Po(@f) + 2CalPa((f2)
= Ps(Co(@aph) + 2Pu(Ca(@f))
= Py(Ce(@pf) + 2P, 5(Co(apf)) = Po(Ce(@pf)).

That completes the proof of (5.6). All calculations were made on a dense subset of Ky, hence we get all the
equalities in the theorem. [J

One can also ask for which symbols ¢ € L? the equalities (5.2) and (5.3) hold. From Theorem 5.3 and [3,
Theorem 4.4] we obtain the following:

Corollary 5.4. Let o, O be nonconstant inner functions such that o < 0, and let A € 7 (0, ). Then

1. ACg = CoA*P, if and only if there is ¢ € 2K, such that A = AZ’“,
2. AC, 0 =C, 0 APy if and only if there is ¢ € K, such that A = AZ’“.

0
Proof. Note that to obtain the desired equality (1) we have to assume that Az; = 0 in the formula (5.4) of
Theorem 5.3, which is equivalent by [3, Theorem 4.4] to pa € 2H? + 6H?, i.e, ¢ € OH? + 2H2. Since for

¢ € aH? + OH? the operator Az’“ = 0, we may assume that ¢ € Ko N 2H? = 2K,

0 — -
Similarly, the assumption Az’é’ = 0 is equivalent to 2 € 2H? + 6H2. Since for ¢ € aH? + OH? the

operator AZ’“ =0, it is enough to consider ¢ € K,, for the equality (2). O

Note that if ¢ € 2K,, then A)*f = PogPof = Po@Pof for all f € Ko, while if ¢ € K,, then AY"f =
PypPof = PopP,f for all f € Kg. Therefore the conditions in (1) and (2) of the previous corollary are
satisfied if and only if AZ’“ can be identified with truncated Toeplitz operators Ag and A, respectively.

6. Example with 0 = zV.

To illustrate the equalities in Theorem 5.3 we consider the simplest inner function 6 = zN. Then K.« is the
space of polynomials of degree smaller than N. Hence K,v can be identified with CV. Then the conjugation
C,vin CN is given by C,v(zo, ...,2zn) = (ZN, ..., Z0). Let us firstly illustrate Lemma 5.1.
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Remark 6.1. Let A € L(CV) be a truncated Toeplitz operator with matrix A = (aij)%;é, aij =tijfori,j=0,...,N.
Recall that A is C,x—symmetric, i.e., the matrix is symmetric according to the second diagonal (see [7]). On the other
hand, by (2.1), an antilinear operator X given by a matrix (si]-)%;% is antilinearly selfadjoint if its matrix is symmetric,
ie., sij = sji fori,j = 0,...,N. Note that the antilinear operator AC,n has the Hankel matrix (bij); j=o,.,N, With
bi; = tiyj-N+1, which is clearly symmetric (b;; = bj; fori,j=0,...,N).

Now we will illustrate the equations (5.4a), (5.5a), (5.6a).

2 —
Example 6.2. Let a = 23 and O = z°. Then any operator in T (2°,2%) has a symbol ¢ = Y. az* € K + K5 (see
n=—4
s 5 ap A1 A A_3 O_4
[3, Corollary 4.5]). Thus it has a matrix representation Ay~ = | a1 do a-1 42 4-3
a a1 dg a—-1 ad_p

. To illustrate the equality

. 522 _ 0 a a1 dp d— 25,28 342522 . . . L 5
(5.4a) in Theorem 5.3 note that A; " = [0 0 @ a1 ag ], s0 A, 0z A(pi3 is simply the Toeplitz matrix in C

2 — —
with the symbol @ = Y, az" € K3 + K5 G Kys + K5, and its Cs—symmetry or the symmetry of the Hankel matrix
n=—4

(Ai 7 o 23 Ajifz) Cys is easily satisfied. Now to obtain equality (1) in Corollary 5.4 in our case we have to assume that
p=a_4z* +a32% +a 7%, s0a1=ap=a; =a, = 0.
Toillustrate (5.5a), besides the involution C,s, we consider another involution Cys ,2(z0, 21, 22, 23, 24) = (22, 21, 20, Z4, 23).

Note that A== = | %2 #-3 (-4 00 . Hence
2
Pz ai1apa3a40
a-p d-1 Ao Ay a-3 20
a1 a4 @ 43 4 Z1
2,23 2,22 ! _
(Ag oaAquz )Ca22(20,21,22,23,24) = | G041 A 142 A1 || Z2|. (6.1)
a4 a3 a0 0 Z3
a3 ap a1. 0 a4 Z4

Note that to obtain the equality (2) in Corollary 5.4 we have to take ¢ = ag + a1z + a»z>.
ap a1 d—p Ad_3 d_4
ai ap a1 d_p dad_3

In the equality (5.6a) Af;’zz = [ . Hence

a_, a_q 4 311_4 a3 1T Zo

s s s 5 a-1 ap M 43 42 || 21
(Ag" @A) (Coz2 0 Co)(20, 21,2, 23,24) = | M0 M1 @2 a2 a-1 || 22 |. (6.2)

a_4 Aa-3 4a—p . 4a-1 A Z3

a3 a-p a_q 3 ap M Z4

are antilinearly selfadjoint. If we write, in both cases, the above matrices by blocks [ ffffff S ] , then each block is
21 2

a Hankel matrix and the whole matrix is symmetric, moreover, Hyy is symmetric to Hy. In the first case some part of
Hy, annihilates. The above should be also seen in the context of Remark 6.1.
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7. Connections with Hankel operators

In light of Theorem 5.3 it is natural to ask about the differences A?,’“Ce - CQA%’GPLX and AZ’“C% 0 —

C a,gA%’BPa, which have to become zero when a = 0. It turns out that these differences can be expressed in

terms of certain Hankel operators.
Let P denote the orthogonal projection from L? onto H?, and P~ denote the orthogonal projection from

L? onto ITS = L2 6 H?. For ¢ € L2 we define:
Hy: H* - H2, H,f =P (¢f);
for f € H? such that ¢ f € L2. Similarly, for 6 € L*,
Ho: Eé — H?, ﬁgf = P(0f) for f eﬁg.
Let 6 be a nonconstant inner function. Recall firstly the following:

Proposition 7.1. Let O be a nonconstant inner function and let Kg = H> © OH? be the associated model space. Then
1. Pg=6P-OP=0P 6-P",
2. Pof = 0P~ Of = f — OPOf forall f € H?,
3. Pof = PoPf = f(0)Pe1 = f(0)(1 — 6(0)6) for all f € H.

Using Proposition 7.1 it it easy to see that, for AJ € 7(6), both AJCg and CA{ can be expressed in terms
of Hankel operators. In fact we have

Agca = ﬁgHg(PCQ and CQAZ = ﬁQHé(pCG/

which is another way to see that AJCy = C@Ag, ie., AY is Co-symmetric.

In the asymmetric case (@ < 8) we no longer have, in general, either
AG“Cq = CoAy’ or (7.1)
Ag"Ca = Cop Ay’ 72

where, for simplicity, we identify AZ’“ and A%’H with the operators P,pPg and Pyo@P,, respectively. Thus
it is natural to ask about the differences between the operators on the left and on the right hand sides of
the equalities (7.1) and (7.2). In the following theorem we characterize those differences in terms of Hankel
operators. This will later provide, in particular, another way to prove (5.6).

Theorem 7.2. Let a, O be nonconstant inner functions and o < 6. If Ag’“ € T7(6,a) for ¢ € L2, then the following
equalities hold:

(AJ"Co — CoA% P,)f = (ﬁaHa(pCSPga - aﬁgng)C@Pa) f; (7.3)

(AQ*C,ye = Co 2 APL) f = (HaHyCo — HoHyCuPo) f; (7.4)

(2A0"Co — CoAL P )f = (ﬁgH(ngPg - ﬁgH(pc@) f (7.5)
for f € Kp.

Proof. As in the proof of Theorem 5.3, it is enough to consider f = f, +afs, fo € K7, fo € K7. To prove (7.3)
note that by Proposition 3.1 and by Proposition 7.1, we have ’
AY*Cof = Ag*(Cafe + 2Cafa) = Pal9Cu fo) + Palplazfy)
= P(aP~(@@Co fo)) + Pa(0zfa) = HoHapCo fo + Pa(O9Zf3)
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and
CoAy Puf = CoPo(@fa) = Po(09zf2)
= Po(09zfa) + aPo(apCofa)
= Po(092f;) + aP(2P" (BpCof.))
= Po(Opzfy) + aHs HgyCofa-
To prove (7.4) note firstly that Ag"" = A%Pa + Py (paP 0 (alk,)). So we have
Aéca,gu(a = ApCa = CoAG = C, 0 AG
on K,. On the other hand,
Po(paPs(aC, o f)) = Pa(paPs (a(az fo + aCa(f2)))) = PalpaCas(fs)) = PaP~¢Ca fo.
Thus, Ag’“Cm% =C,0Ag + ﬁqu,Cgo‘z. Analogously, A%’e = Ag +aPea Py and
PaP™(¢pCe fo) = Cy o (aPe (@ @Pyf))
= PaP~(pCs fo) + PaP~(92Caf) — PaP~(2C, fo) — aCa(Po(@@fo)
= PaP*((pC;f)a — (PaP~a + ano‘z)(G(pCa ) s
= HoHyCof = POP™(¢Cufa),
since PaP~& + aPya = Py = POP~6. Hence (A)"C, o - C, 0 AL")f = (HiHyCo — HoHyCaPu)f for f € Ko.
To show (7.5) consider g = go + 890, 00 €K, g 0 € K"%" Then by Proposition 3.1 we have
8Ag Cog = LA (Caga + aCugs) = LPu(pCafa) + EPa(paCege) = LPu(@azfa) + LPu(paCeygo),
and
CoAG Pa(39¢ + o) = CoPo@ya = PoCoPga = (Pe + P2 2)(0924) = Po(092d0) + 2PalapZda)-
Hence
Ap*Cog = CoAl Pa(2g) = SPa(agCage) - Pu(09Z]0)
= P2Py(apCago) + PLP~(apCags) = (PSP (apzga) + PEP™(apCugy))
=Pe(P, + P™)(apCags) — PEP(p(Caga + aCsgo))
= POP™(pCags) — PLP™(¢Cog) = HoHyCoge — HoH,Cog,
since by Proposition 7.1 P, + P~ =aP~a. O
From (7.5) we can obtain in particular the following;:
Corollary 7.3. Let a, O be nonconstant inner functions such that a < 0. If Ag% €76, 9) for p € L2, then
aAY"Co— CoAL Pod = HoHyCoPa — HyH,yCo. (7.6)

Note that comparing (7.4) with (7.6) we get:

A%C )+ aA%iCy = C. s AP, + CoA+Puad 7.7
@ a/% aq) 0 — 0(,%([) at 6@ %(X, ()

which is equivalent to (5.6). Hence we obtained another proof of (5.6).



M. Cristina Camara et al. / Filomat 33:12 (2019), 3697-3710 3709

8. Examples with Hankel matrices
To illustrate the equalities in Theorem 7.2 let us consider the following examples.

Example 8.1. Let « = 2%, 0 = 22 and ¢ = Zi:,4 a,z" € K_Zs + Kys. Then for f = (zo,21,22,23,24) € K5 we have,
regarding the left hand side of (7.3),

a3 dop a_1|dy day

5 5 a4 A3 d_p|d_1 Ay Z1

2>,z _
A7 Csf =
a_p ad_1 dg | Aay dp

and

3.5
CZSA%’Z stf =||d-2 a1 4o
z a ap ai

apg di1 dp

a_4 a_3 ad_p
a3 a_p a_q [Zo

The right hand side is given by Hankel matrices
— a-1 ap Z
H23H2325C22P22(Z3f) =| 4o Mm |: = ]
a ap 24

and

Zo |
a_q dp ai 5
ap ai az !

Z3ﬁzz Zs(pczspzsf = [

Example 8.2. The equation (7.4) will be illustrated with the same data as before. Hence

2,
5 a_p a_q1 Ag|d—4 A_3 Z1
Ay Cppaf =||a-1 a0 @m|a-3 a2 || 22
Ay a1 z|a-3 a-1 || z3
[ Z4
and
a_op ad_1 A
a1 ag M Zo
CanAZZPaf=|ay a1 a Z
23,22 7 z3f = 0 1 2 Z1
a-4 a3 a2 ||z
as adp adq
On the other hand,
Zo

. 0 0 0laygas Z1
HZSH(pCZsf =(|0 0 a_4la_3 a-||22
Oay4aszlaraq]||2s

and

0 0 O
B 0 0 a-4l|[Z2o
HZSH(PCZSPZ3f = 0 ag4as Z1
ad_4 A_3 A_p ¥4)
a3 d_p ad_q
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Example 8.3. Using the same data again we obtain for the equation (7.5)

and

s 5 a_4 a_zjd_p ad_q1 Ao Z1
ZALFCof =727 |3 aja1 ag m ||| 2
a-p a-1|ap a1 ap Z3

a4 a_3 ad_p
\ s a_3 a_p a_1 Z
CsAZ7 Ppaz’f =|lazaq ao |||z
? a-1 ap m Z4

ag @ a4z
On the other hand,
0 0
— 0 a4 Zo
stH(pCZzPsz =| d4-4 a3 Z
a3 a—p
a_p a_1
and
Zy
Z
= 0 0jagaszan||;
HZzH(pczsf = [ 408 02 ] Z)
0a_y asz a-p aq =
Z3
Z4
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