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Integral Operator Acting on Weighted Dirichlet Spaces
to Morrey Type Spaces

Liu Yang®

#Shaanxi Xueqian Normal University, Department of Mathematics, Shaanxi Xi’an 710100, P. R. China

Abstract. In this paper, we studied the boundedness and compactedness of integral operators from
weighted Dirichlet spaces Dx to Morrey type spaces Hz. Carleson measure and essential norm were also
considered.

1. Introduction

Let ID be the unit disk in the complex plane C and H(ID) be the class of functions analytic in ID. As usual,
let H* be the set of bounded analytic functions in ID and @,(z) = (a — z)/(1 — az).
The Hardy space H” (0 < p < o) is the spaces of all functions f € H(ID) with

1 27T )
IIfII’IZp = sup — |f(re'?)PdO < oo.
0<r<1 <70 Jo
Assume that K : [0, 00) — [0, o) is a right-continuous and nondecreasing function.
We say that a function f € H? belongs to Morrey type space Hz if

_ 1 dac
||f||f{§ = |f(0)F” + sup XD f1|f(g) _ﬁlzﬁ <o,

ICID

where

_1 LS

This space was introduced by H. Wulan and J. Zhou in [32]. When K(t) = ¢, it gives the BMOA space, the
space of those analytic functions f in the Hardy space H” whose boundary functions have bounded mean
oscillation on dD. In the case K(t) = #},0 < A < 1, the space HZ gives classical Morrey spaces £**. Morrey

spaces £>! were introduced by Morrey in [21]. It has been studied extensively. We refer to [1, 2, 21, 31, 32].
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Let D denoted the space of function f € H(ID) satisfies

2
IWMINW.[VI%QMHM@<m

Clearly, Dy is a Hilbert space. In the case K(t) = #/, 0 < p < 1, the space Dk gives the usual Dirichlet type

space D,. In particular, if p = 1 and p = 0, this gives the classical Dirichlet space D and Hardy space H>. We

refer to [25, 28, 29] for D), spaces. The space D also has been extensively studied. For example, under some

conditions on K, R. Kerman and E. Sawyer [15] characterized Carleson measures and multipliers of Dk in

terms of a maximal operator. A. Aleman [5] proved that each element of the space Dg can be written as a

quotient of two bounded functions in the same space. See [6, 19, 23, 24, 36] for more results on D spaces.
Throughout this paper, let weighted function K satisfies:

1
f (PK—(S)ds < o0 (1.1)
0 S
and .
f1 (P’f) ds < oo, (1.2)
where

@x(s) = sup K(st)/K(t), 0<s < oo.
0<t<1
By [13], there exists a small enough constant ¢ > 0, such that tK(t) is nondecreasing and K(#)t! is
nonincreasing. If K satisfies (1.2), we get K(2t) = K(t) for t > 0 and we can assume that K is differentiable up
to any desired order.
In this paper, the symbol f ~ g means that f < g < f. We say that f < g if there exists a constant C such
that f < Cg.

2. Preliminaries

In this section, we are going to give some auxiliary results. The following lemma can be found in [32,
Theorem 3.1].
Lemma 1. Let (1.1) and (1.2) hold for K. Then the following are equivalent.

(1) fEHz;
(2)
(1= 2P)d oo;
Kmenj.V@”l AR <
(3) -
L 1N _ 2 o
sup s [ IF@R( - I IPMAG) < o
(4) o
2 (S o)
P BT O 108 7 40 <
(5)
(1-laf? Q- f@Fld _
b KA —1aP) Jop ~ [C-aP 21 =7
(6)

1-la 21 lal* 14C] 2
ilelgm( |f(C| u|2§—|f(ﬂ)| <
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Lemma 2. Let (1.1) and (1.2) hold for K. Suppose that f € D, then

—|~2
FEN S oy [~y o3, €.

Proof. Noticed the fact that
1-zw ~1-z~1-wf, weD(7r),

and
K1 -z%) =~ KA = [w]*), we D(z,7),

where D(z,7) = {w : |p.(w)| < r}. Using the sub-mean value property of |f’[>, we can deduce that

FEPR < %2)2 fD I (@)PdAw)

zlfl(l_—h'lzz')? I >|2%'|z)dA( )
<a |Z'|§';’ f )P 'T"'Tz)dA(w).
Thus,
If' @] < I1fllog K(l I'Ii')?
Since ) )
@) = FO1 = = [ fess| <t [ 1

we can easy to get

1
@) - fO) < f |f (zs)ld(2ls)

K1 - |z|s)
(1-[sP

. Ka
Slifllo, f t)s

I K(1—t
= fllp, VK(1 = [2]) fo mdt

Noted that K satisfies (1.2), by [13, Lemma 2.2], there exists a small ¢ > 0 such that
pxt) S, t> 1.

<Ifloe f (12l

Hence, we obtain

Iz| —
1£2) = FO) Sl flloy VK = ) f K(l—t)_t)gdf

K1 -1z)(

Iz|
1- 1
<||f||D1< VK(l - |Z f \/ | (1 _ t)Sdt

ZI

K1 =1zP)
Slfllo \| oy
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That is

@ O+ Wy [ S < Il | ea

The proof is completed. [

Let us recall a useful theorem.
Lemma 3. ([39, Lemma 3.10]) Suppose that a > 0, then we have

-y 1
f =A@ S T

Lemma 4. Let (1.1) and (1.2) hold for K. Then

fw(z) = M( w(z) — w) € Dx
and
Py = RO VRORD o
(1 —wz)>

where z, w € D.

Proof. With an easy computation, by Lemma 3, we have

s 1-kP
[ 1m@r s 4w
_ [ K=o o) 17
b M-wh K1)
o [ Km0 1-kF
“hT oo kAP

Since K is nondecreasing and the fact that

dA®z)

dA(z)

px(t) S, t>1,

combined with Lemma 3, it follows that

1 -z
[ 1rer g4
(1 @)1~ )

<1 - wP —
A=lh) ) A=t —wp

dA(z) < 1.

That is f,, € Dg. By similar calculation as above, we can deduce that

;o 1= P
fD Pl = @

- 2o [ (A=K - [wP)
=(1 = [wl) f ( 1~ w2FK( = 12P) )dA(z)

a2 (= |z|2)1<(|1—wz|2))
S(1 = fwl) f( () dA(z)

S(l _ |w|2)2 L ((1 - |Z_|2)(|1 - %Z|2)1_C)dA(Z) < 1

11— wzP(1 - |z]2)'~*

Thus, F,, € Dk. The proof is completed. O
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Let S(I) be the Carleson box based on the interval I C JID with

S ={zeC:1-I <z <1 andéel}.

If I =JD, let S(I) = ID. For 0 < p < oo, we say that a non-negative measure p on D is a p-Carleson measure
if
I
psm) _
rcop P

When p = 1, it gives the classical Carleson measure.

The following two lemmas which can be founded in [14] and [33, Theorem 4.1.1] respectively.
Lemma 5. Suppose that u is a non-negative measure on ID. Then p is a Carleson measure if and only if the following
inequality

f If@Pdy < IIfIE,
D

holds for all f € H?. Moreover,

sd
sup Llf(z)lzdy X sup e )).

Ifll,2=1 icop M

Lemma 6. Suppose that f € H(D), then f € BMOA if and only if the measure s = |f'(2)*(1 — |21)dA(z) is a
Carleson measure. Moreover,

pr(S(D)
o ~ LFOI + sup Z=.
eop M
3. Boundedness of I, and T, operators
For any g € H(D), the Volterra type operator T, is defined as
T4 = [ flly e,
on the space of f € H(ID). Another similar integral operator I, is defined as

I,f(z) = fo F(@)g(w)daw.

There are many papers related to these operators, we refer to [3, 4, 10, 17, 27, 33].
Theorem 1. Let (1.1) and (1.2) hold for K. Suppose that g € H(D), then I, is bounded on H%, if and only if g € H™.
Moreover, the operator norm satisfies ||I,|| = sup, ., 19(z)|.

Proof. Since g € H(ID), then g o ¢,, € H(ID). By sub-mean value property of |7 o ¢,,[*, we get

9P < fD 7 0 ) @R — ERAG).



L. Yang / Filomat 33:12 (2019), 3723-3736 3728

If I, is bounded from Dy to Hi, using the function f;,, as in Lemma 4, combine with Lemma 1 and
subharmonic property of |g o ¢,,|*, we easy to calculate that

2
& >”Igfw”H12<

Iul2 ,
2?;5 K(l P fD F2@Plg@P (1 - lpa@)P) dA()
le2 o .

zﬁﬁ@%m%@ww@mww
= f}D (7 © pu)(MP(1 = InP)dA®M) 2 lg@w)l*.

Since w € D is arbitrary, we have
00 > ||Igfw||12qi 2 ||9||ﬁm
On the other hand. If g € H*, by [13, Lemma 2.2], using
px(t) St > 1.

We can deduce that
1R
s [ ERIGR (1= o) dAG)

(PP P) 1=
sgl. [ 17 P e e aae

L (1= aPYK(1 ~7zl) 1 - 2P
4wwfv”' “@PK(L—laP) K= )@

o= la)?(1 —az))' ¢ 1- |z
Sl [ 17 @ e e T dAG)
<lglB- I3,

The proof is completed. [

Theorem 2. Let (1.1) and (1.2) hold for K. Suppose that g € H(ID), then T, is bounded from Dy to HZ if and only if
g € BMOA. Moreover, the operator norm satisfies ||T,|| = ||gllzpoa-

Proof. For any I € dD, letw = (1 — |I|)C € D, where C is the center of I. Then
—|wl ~ [1 —wz| = |ll, zeS().

Thus, we also have
K(1 = [wl) = K(II), z € S(I).

If T, is bounded from Dx to HIZ< and F,, is defined as in Lemma 4. By Lemma 1, we have
1 ,
[ wera- s
I Jsay
1 f 2 2 2
S— [Fo(@)IFlg’' @)I(1 = |2I°)dA(z
Rl Jy, PPl QP = zP)MAR)

L e
SK(I fsm (T,Fw) @)1~ |21°)dA(2)

2
$”Tng”le< < 00,
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Thus, g € BMOA.
On the other hand, suppose that g € BMOA and f € Dk, we have

1 o
K(l11) fs(l) I(Tyf) @I - |zI7)dA(z)

__L o
- K(I) js.a) lf @I lg’ @)1 = |zI*)dA(z)
SA+B,
where 1
= —— 2| 201 1512
=R fsu) [f@)Plg’' )P - |zP)dA(z)
and 1
=TT — 2| 201 1.2

By Lemma 3, it follows that

fllpe VKA =~ T0) fllo \/K(II

If (@)l < T N

w € S(I).

Combine with Lemma 7, it easy to have

2 2
A < IflIp, N9llzp04-

Since
1—|z2

|I| S 1 - |(Pw(z)|2/ zZ € S(I)/

then

W
SR oy 1O~ SR @F (L~ lpuPAG)

1
K|(||I|)f |f (Pw(n) fw)|2|(g0(pw) (n)| (1_|n| )dA(n)

1 - |wl?

- - o _ 2 o ’ 201 _ |12 .
s [ 1o pat) = FEfig o ) @ - InPAG)

Since g € BMOA, then g o ¢, € BMOA and |(7 o ¢,)'()I*(1 — [n*)dA(n) is a Carleson measure by Lemma
6. Since f € Dx C H?, then (f o ¢,)(1)) — f(w) € H2. Combining this with Lemma 5 and Littlewood-Paley
identity (see [14, page 236]) gives

1 - |w)? 2 ;
B 10°9ulbuos [ 1o pule®) =~ fwPdo

2
<K(1—||l2)llg ol f @R - lpu@PAR)
2(1 RPKO ) 1P
Sotbuon [, T s oy K1
2(1 PR (L -T2 1
<"g"BMOAf & —=pra —fwp) KA=ED)

(1 (1 —az)' ™ 1- |z
<”.q||BMOAf|f )|2 "2 (1 = ) K(1—|z|2)dA(Z)

dA(z)

dA@)

<IIgI|BMOAIIfIIDz,
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Hence,
2 2 2
Ty fll5, <A+ B < 9lzpoall fID, -
Hy K

The proof is completed. [

For g € H(ID), the multiplication operator M, is defined by M, f(z) = f(z)g(z). It is easy to see that M, is
related with I, and T, by

M;f(z) = f(0)g(0) + I f(z) + T, f(2).
Corollary 1. Let (1.1) and (1.2) hold for K. Suppose that g € H(ID), then M, is bounded from D to Hz if and only
ifge H®.

Proof. Suppose M, is bounded from Dy to HZ, consider the function F, is defined as in Lemma 4. Using
Lemma 2, it gives

(1 - [w]) VK1 = [w]) IMgFollyz VK1 = [zP)
1 -7} QIRS N
- M|l VK(1 = [2]?)

Let z = w. We have
lg()] < IMy]l.

Since w € D is arbitrary, we deduce that g € H*. The other side is obvious. The proof is completed. [

4. Essential Norm

Let X be a Banach space and T is a bounded linear operator on X. The essential norm of T is defined as
follows,
IT|le = inf{lIT — Sl : S are compact operator on X}.

It is the distance of T from the closed ideals of compact operators. Since T is compact if and only if [|T||. = 0,
the estimate of ||T||. indicates the condition for T to be compact. In this note, we estimate the norm of I, ],.
Let X and Y be two Banach spaces with X C Y. If f € Y, then the distance from f to X is defined as

disty(f, X) = infllf - glly.
geX

Theorem 3. Suppose g € H(ID) and K satisfy the conditions (1) and (2). If I, is bounded from Dy to Hz, then

lI4lle = sup |g(z)I.
zeD

Proof. For compact operators S, it follows from

glle = inflll; = SII < Il < suplg()I.
S zeD

On the other hand, we choose the sequence {w,} C ID such that |w,| — 1. we define

K(l - |wn|2)
1 = |w,|?

fu(2) = (Pw, () —wy), zeD.
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It follows from the proof of lemma 4 that || fullp, < 1. Itis easily to check that f, converges to zero uniformly
on any compact subsets of ID. Then ||S f””Hi — 0 as n — oo for any compact operator S on Dk to Hi Since

lIly = SIl 2 lim sup |[(I; = S) fullg2

n—o0

2 lim sup(|lly fullz = 1S fullg2)

n—oo

=1imsup||IgntIHIz<

n—o0

and

2 3
||1gfn||H;zsuﬂlg(K(1 e fD |f4<z>|2|g(z)|2(1—|<pa<z>|2)dA<z>)

L[, [ K= o)A = fwaP), )
-(K(1—|wn|2) e I AL Ul G )dA(Z))
= ( fD 190, OPlI@P (1~ 9, 2)P) dA(z))z

i (f]D 15°pu) @F (1~ ) dA(z));

Since w, € D is arbitrary, we have
Ille 2 sup g(z).

zeD
The proof is completed. [

Here and afterward we denote g,(z) = g(rz) with0 <r < 1.
Lemma 7. ([16, Lemma 3]) Suppose g € BMOA. Then

dist(g, VMOA) ~ limsup ||g — g,|lzmoa ~ limsup ||g o 0, — g(a)||g2.

la|l—>1 la|—>1

Lemma 8. Suppose g € BMOA and K satisfy the conditions (1) and (2). Then J,, : Dg — Hy is compact.

Proof. Let {f,} be function sequence such that ||f,|lp, <1 and f, — 0 uinformly on compact subsets of D as
n — oo. We need only to show that

lim 1]y, fullpz = 0
Since ||g;llBmoa < ll9llemoa ([37, Lemma 1]), for all z € ID

||!]||BMOA
— 72

7:(2)| <

Thus

o 1
||Jg,fn||Hpsup( s [ Z)|2|9r(2)|2(1—|(Pa(Z)|2)dA(Z))

acD |2)

llgllBmoA

1 — a2 3
1-r b (K(l P fD £@P (1~ lpat2)P) dA(Z’)

1—|zP 1 —[a?2K(1 - |z :
||9||BMOA (f £z )|2 |T| 5 (ig}g (K(l |a||;|2)|(1 _alillz))dA(Z))

||!7||BMOA (f i )|2 - ||2)dA( ))2
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The last inequality similar to Theorem 1 and 2. Note that ||f,|[p, < 1 and by lemma 2, the argument is then
finished by the Dominated Convergence Theorem. [J

Theorem 4. Suppose g € BMOA and K satisfy the conditions (1) and (2). Then ], : Dx — H2 satisfies
IJlle = dist(g, VMOA) ~ limsup [lg o 6, — g(@)llsz-

la]—1

Proof. Let {I,,} be the subarc sequence of JD, such that |I,| = 0 as n — oo, w, = (1 - |[,){, € D, where (, is
the centerof I,,. n =1,2,.... Then

1= |wnl = 1 —wpz| = |I;|, z€ S(Iy).
Thus, by double condition and nondecreasing of weighted function K, we know that
K(1 = fwyl) ~ K(|Lal), z € 5(L)-

Take
_ (1 - |wn|2) K(l - |wn|2)
(1 - Wy2)?

Then h, — 0 uniformly on the compact subsets of ID as n — oo and ||i,|lp, < 1 by the proof of Lemma 2.
Thus, for any compact operator S from Dy to H, we have

hn(z) , Z€ D.

lim [|Sh [l — 0.

Therefore

]y = Sll 2 lim sup (”]ghn”Hi - ||5hn||H§)

=lim sup “]ghn”HIZ(

n—oo

~Ti 1 ’ 201 _ -2 %
11msup(—K(|In|) fS(L,) [(Jghn) (@)1 — |zl )dA(z))

n—o0o

1 1 20 N2 o2 :
—h?ﬁsogp( o fs @Ry @R -1 )dA(z))

zlimsup(l f |g’(z)|2(1—|z|2)dA(z))2.

n—oo |In| S(I,)

Since {1,} is arbitrary, we have

ol 2 limsup(+ [ 17 @R - P)AR) -
1 Jsay

-0
It follows from the proof of Lemma 3.4 [27], for g € BMOA,

. 1 , 2
limsup||g o g, — g(a)||sz11msup(m f lg (z)|2(1—|z|2)dA(z)) .
S(I)

la|l—>1 |I]—0

Hence
IJ5lle 2 limsup |g © 0, — g(@)l|z-

lal—1
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On the other hand, by Lemma 8, ], : Dx — Hz is compact operator. Combining this with Theorem 2
and the linearity of J, respect to g implies

Wolle < 1] = Jg !l = Wg-g,Il = llg — grllBmMOA-
Hence

IJ4lle < limsup |7 — g:llBmoa = limsup ||g o 0, — g(a)llp2
[r]—>1 la]—1

by Lemma 7. The proof is completed. [

5. Carleson measure for Dg
Let T}; be the spaces of function f € H(ID) for which
sup — f If z)Pdu(z) <
Igag KA Jsay H '

Theorem 5. Let K satisfied (1) and (2). Let u be a nonnegative Borel measure on ID.

(a) The inclusion mapping I : Dx — T{f is bounded if and only if u is a Carleson measure.
(b) The inclusion mapping I : Dx — Tff is compact if and only if u is a vanishing Carleson measure.

Proof. Suppose that the identity operator I : Dx — T{f is bounded. For any given arc I C JDD, set

11— P VK - [wP)

i) =~

where w = (1 — |I|)¢ and £ is the center point of I. We see that f; € Dx and ||ﬁ||2K < 1. In addition, it is easy
to see that
I1-wzl~1-|wP~ I, zeS{U).

So
K(|I])

Ifi(2)| ~ T

when z € 5(I). By the boundedness of I : Dx — Tff, we have

1
1A, = sup s [ 1@FduE) <o

IcD

ie.,

u(SM)

o

< 00
Hence p is a Carleson measure.

Conversely, assume that y is a Carleson measure. For any given I C JD, denote by w = (1 — [I|)&, where
& is the midpoint of I. For any f € Dk, Lemma 2 gives

)l < %”)ufnm-

Since u is a Carleson measure, combine with

191, ~ 1g(O)P + fD 17/ @R - ZP)AGR)
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and

f (!7|2 du(z) < lplPllgli?,,
5D

we deduce that

1 2
K1) fsa) f@ldutz)

1 _ ) )
s INCD), (fsa) @) - f@)Fdp) + |f @) M(S(I)))

(1-w)® [ |f@ = f@)] >
= K =) fs@ 1-wz Wl
1 2 712
< IIyIIZ(IIfIIZDK R — (f = _éf")) 1 - |z|2)dA(z>].
Notice the fact that
f@-f@\|_|d f(z)—f(w)) _ @I, 1@~ f@)
1-wz Cldz\ 1-wz )T 1 -wz 1 — 7wz
we obtain
1 2
T fs )
_ 2 —
< IIyIIZ(IIfIIéK el s e N <z)|2>dA<z>)
P f F @A - lou@PMAG)
< P (n IR, + 1<<1 f F @R - Iow(z)|2)dA(z))
< PR,

The last second inequality following the proof of [18, Lemma 1]. Hence I : Dx — Tﬁ is bounded.
(2) First we assume that the identity operator I : Dx — T{f is compact. Let {I,} be a sequence arcs with

limy e |[;] = 0. Denote by w,, = (1 — |[,)&,, where &, is the midpoint of arc I,,. Set
1 = w,* VK(1 = [w, )
f”(z = ——_\3/2 7
(1 = wy,z)3/

The estimate in the proof of (a) gives that f, € Dx and ||fullp, < 1. It is easy to see that {f,} converges to 0
uniformly on compact subsets of ID. Then

w(SIn)) < 1
(L K(IL.l) Jsq,

u@Pdu) 5 1fullfy =0

as n — oo. Since I, is arbitrary, we see that y is a vanishing Carleson measure.
Conversely, assume that p is a vanishing Carleson measure. We also assume that ||f,llp, < 1 and {f,}
converge to 0 uniformly on compact subsets of ID. Note that if y is a vanishing Carleson measure, then

from [18, Lemma 4],
u—Hr S(I
lims ( )( ( ))

=0
r—1 1CoD |I|
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ie.,
=l = 0,r =1,

where p,(z) = u(z) for |z| < r and u,(z) = 0 for r < |z| < 1. Then

L 2
R oy VO

1 2 1 s
S X fsm r@F @) + s fs ) fu@)Pd(u — p)(2)

L 2 B ) )
s K fS(I) fu@I dpr(2) + Il = ol “fn”DK
< Q) f;@ I @)Pdp(2) + Il — >

Letting 1 — oo and then ¥ — 1, we have lim, || ntITﬁ = 0. Therefore ] : Dx — Tff is compact. The proof is
completed. [
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