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Well-Posedness Results for a Sixth-Order
Logarithmic Boussinesq Equation

Erhan Piskin?, Nazli Irkil?

Dicle University, Department of Mathematics, 21280 Diyarbakir, Turkey

Abstract. The main goal of this paper is to study for a sixth-order logarithmic Boussinesq equation. We
obtain several results: Firstly, by using Feado-Galerkin method and a logaritmic Sobolev inequality, we
proved global existence of solutions. Later, we proved blow up property in infinity time of solutions.
Finally, we showed the decay estimates result of the solutions.

1. Introduction

In this work, we consider the following sixth-order logarithmic Boussinesq equation

Upp — Uxx — Unextt + Uxxxatt + Uxrex + U + (ux 10g |ux|k)x = 0/ xXe Q/ t>0
u (.X', 0) = Up (x)/ Uy (x/ 0) = U (x)/ X € Q/ (1)
u (X, t) =u (l/ t) =0, Uy (x/ t) = Uxx (Z/ t) =0, Uyax (X, t) = Uxxx (l/ t) =0, t=0

where Q = (0,1), k > 1, u(x,t) denotes the unknown function.
In 1872, Boussinesq [1] derived the following classical Boussinesq equations (BE)

_ 2
Ut — Uxx + Ulyxxx = (u )xx ’

Ut — Uxx — Uxatt = (uz)xx .
The Boussinesq equation to describe the propagation of small amplitude long waves on the surface of
shallow water. In [3] Daripa derived the higher-order Boussinesq equation

Ut — Uyx — 0‘(”2)363( F Alyxxy — Ezauxxxxxx =0 )

for two-way propagation of shallow water waves. For contributions related to (2), we refer to [4, 5, 10-14].
Wazwaz [15] studied the logarithmic Boussinesq equation (log-BE) the following form

k
Uy — Uyy + Uyyrx + (u log |u| ) =0.

XX
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Zhang et al. [16] looked into the following equation
Uy — Uxx — Uxxpt + Uyxxx + (ux 10g |ux|k)x =0,

and proved global existence, growth and decay results. Also, some authors interested logarithmic Boussi-
nesq equation (see [8, 9]).

Motivated by the above studies, in this paper we consider global existence, blow up property in infinity
time and decay estimates of solutions for (1).

In our paper we orginazed as follows: In Section 2 we give some notations and lemmas which are
essential for our proofs. In Section 3, we prove global existence of problems by using Faedo-Galerkin
methods. In Section 4, we study growth of solutions. In Section 5, we add linear damping terms and we
consider the decay estimates of the energy.

2. Preliminaries

In this section, we will give some notations and lemmas needed for the proof of our results.
We denote

Il = Ml - M= 1z

and

(u,v) = fu(x)v(x)dx.

Q

Now, to obtain the energy equation of the problem (1), we multiply the equation by u; and integrate it
in the Q) region

futtu,dx—fuxxutdx+fuxxxxutdx—fuxmutdx

Q Q Q Q
k
+fuxxxxttutdx+fuxxxxxxutdx+f(loglu| ux)xutdx
Q Q Q
= 0,

N~

d k

S 5 s sl 5 P+ e~ [ ol | =0
Q

so, the energy functional associated with problem (1) is

1 2 2 2 2 2 2
Et) = E(uutn o otz + Vet P + Nt P + ot + Nkl )

1 2 k ko=
2fuxloglul dx + 7 [l 3)
0

and differentiation of (3), using (1), leads to
E() <E(0), forallt€[0,T). 4)

Lemma 2.1. [7] (Logarithmic Sobolev inequality). Let u be any function u € Hy(Q) and a > 0 be any number. Then,

2
2f|u|210g %dxs %flux|2dx—(1+loga)||u||2. 5)
Q Q
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Lemma 2.2. [2](Logarithmic Gronwall Inequality). Assume that ¢ (t) is nonnegative function, ¢ (t) € L*(0,T), ¢ (0) >
0, and it satisfies

t
¢ms¢wyunf¢®bgh+¢wﬂﬁjemﬂm
0

where a > 1 is a positive constant. Then we have

o) < (a+d(0)e”, te[0,T].

Now we define two functionals [ () and I (1) ;

Jw) = %(nuxn2 + Nt + kel ?) = % f TN ’i el P, (6)
Q
I(w) = ”ux”2 + ”uxx”2 + ”uxxxuz - f”i 10g |ux|k dx. (7)
Q

From the above definitions, it is clear that

J (u)

E()

1 k
S 1)+ 5 s, ®)

1

= (el + Vot + Vet ) + T (1) ©)
2

According the Logarithmic Sobolev inequality , I () and ] (1) are well defined on Hj.

Lemma 2.3. Forany u € H} (Q) / {0}, then

i) I(Au) = AL ] (Au) and limao ] (Au) = 0, imy e ] (Ar) = —o0.

ii) There exists a unique A* = A* (u) such that %] (Au) [a=p-= Oand | (Au) is increasing on 0 < A < A*, decreasing
on A* £ A < oo and takes maksimum at A* = A. On the other hands, there exists a unigue A* € (0, o) such that

>0, 0<A< A
I(Au)=4{ =0, A*=A (10)
<0, A>A"
where
Nl + litsll® + izl — [ 12 log fux|* dx
A =exp = (11)

2
kel

Proof. By the defination of ] (1), we obtain

J (Au)

1 k
5 A el * + [[A sl + A bt = f (Aux)zlog|)\ux|kdx+EnAuxuz],
Q

A? kA2 kA2
- 7(||ux||2+||uxx||2+||uxxx||2)—7[ f u} log luy|dx + f logAuidx]+Tnux||2,

Q Q

A? kA2 kA2 kA?
= 5 (sl + Nl oaasl ) + == el = =~ f 3 Jog ute| dx — = log A [l
Q
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Since ||u|| # 0, %ir%g ) =0, }im g (A) = —co. Now, differentiating g (1) with respect to A, we have

dJ (Au)
dA

kA
2 2 2 2
A (Ul + Mool + el ) + == Nl

kA kA
-5 f i log il dx — kA log Allull® = =l
Q

A
= Al + Nl + el ) = 5 f u;log il dx — kA log Al
Q

and

2
1) = 22 (el + e + Il ) = 5 f u} log u|*dx — kA% log A [
Q
We can see clearly that
dJ (Au)
dA

We can derive I (Au) = 0, when

A =I1(\u).

2 2 2 k
72 o {729 o 74 [ f”% 10g|”x| dx
Q

A" =ex
P Kl

Thus, we have

>0, 0<A<AY,
I(Au)=3 =0, A=A
<0, A<A"<oo.

|
The potential well depth is defined as
0<d=inf {sup] (Au):ue Hg (Q)/ {0}} (12)
ol Az0
and the well-known Nehari manifold
N ={u:ueH(Q)/{0},1(u) =0},
0<d=inf](u). (13)
ueN
Then, we define two subset of HS’ related to (1). We introduce,
W = {ueH: ] <dI@u>0lui0}, (14)
Vv = {ueHg:](u)<d,1(u)<o}. (15)

=

Lemma 2.4. Assume that u € H and define r = (27) ez,
D) If0 <|luyll <, thenI(u) >0,
ii) If I (u) < 0, then |juy|| >,
ii1) If [ (1) = 0, and |luy|| # r, i.e. u & N, then |juy|| > r.
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Proof. If we use the Logarithmic Sobolev inequality to the last term of (7) for any « > 0, we have

I(u)

sl + el + ezl — & f 2 (tog || e+ Tog ) dx

il
Q

a? (1+1loga)
il + sl + Netyel? — k([ﬁ il P+ —— 8%

2

\%

21

If we take a = ,/ 27” in (16), we have

2 +log 2&
() > k(% - lognuxn] [N

i) If 0 < ||uy]| < 7, we have
+log 2
1 < log [luyll < i,
4
so that from (17) we gain I (1) > 0.
ii) If we take I (1) < 0 from (16) we can write;

2n
[M%—lognuxu] <o
1Jr(z—")l < log llusll
2 k X7
2n i 1
(F) et <
ro< gl

iii) If I (u) = 0 and and ||uy|| # 7, i.e. u € N, then |luy|| = r. O

1
Lemma 2.5. i)d > & (7")2 = %52 and 2me? > k,
) <

ii) If u € H3 and I (u , we can obtain

I(w)<2(J W) —4d).

Proof. i) If I(u) = 0 and [[uy|| # 0, then by Lemma 2.4, we have |ju,|| > 7 = (27“)

J (1), we obtain

1k,
J@ = 3160+
1 k,
> EI(H)-FA—LT

1 k 21 1
= i 4( k ) ¢
because of (12), we have

k(2m\y:  k,
az3(F) =7

~

2 2
lleaxll” = [loax|l” log [luaxl|

ka2 1+Iloga
(1 - —) (“”xx”z + ||”xxx||2) + k((z—g) - log ”uX”) ”uxuz .

e

3989

(16)

(17)

(18)

. From the definition of
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and

r > 1,

1

e
B =

2
%ez > 1,
2ne® > k.

ii) Ifu e HS’ and I (1) < 0, then from Lemma 2.2 it follows that there exists a A* such that 0 < A* <1 and
I(A*u) = 0. From the (12), we have

PN ko v 2
d < Jaw =100+ L IR,
= O,
< S, (19)

By the (6) and (7), we get

k 2 1
d< 1 [[exll” = T () EI(”),
so that

I(w)<2(J(u)—4d).

Lemma 2.6. Let ug € H3,u1 € H' such that
0<E(0)<d,

then
i)u e Wifl(ug) >0,
i) u € Vifl(ug) <O0.

Proof. By the definition of weak solution and (4), we get

1 1
5 (el + el + el ) + 7 o) < 5 (1haa P+ lutael® + Nl ) + T at0) <, V2 €10, T). (20)

i) Then, we claim that u(t) € W for all t € [0, T). If it is not true, then there exists a g € [0, T) such that
u (o) € W, so we have

(a) either I (u (tp)) = 0 and ||y ()l # 0, or (b) J (u (ty)) = d.

By (20), (b) is impossible, thus we have I (u (fp)) > 0 and ||uy (fo)|| # 0. So, at least one J (u (fy)) > d exists
if0<d= ;gl\f] J (1) . Because of this contradiction, u(t) € W is found for Yt € [0, T).

ii) If there is a ty € [0, T) such that u(x,t) € W for 0 <t < ty, and u(x, to) € dW, thus

(a) either I (u (ty)) = 0, or (b) [ (u (fy)) = d.

By (20), (b) is false. If I (u(tp)) = 0 and I (u(t)) < 0 for 0 < t < to, then [juy|| > r for 0 <t <ty by Lemma
2.4 (ii). However, at least one [ (u (t9)) > d exists if 0 < d = 111215 J (1) . Because of this contradiction, u(t) € V' is

found for Vt € [0, T). O
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3. Existence of global solution

In this section, we investigated the global existence result for problem (1). The proof is based Faedo-
Galerkin method. Also, we used Logarithmic Sobolev inequality and Logarithmic Gronwall inequality.
Theorem 3.1. Let ug € H3(Q), uy € H' (Q), then the problem (1) has a global weak solution u € L™ (0, 0, Hg)
with u € L (0, 00, H').

be an

(e8]
i1

Proof. We will use the Faedo-Galerkin method to construct approximate solutions. Let {wj}]
orthogonal basis of the “separable” space Hj (€2) which is orthonormal in L? (Q2) . Let
Vi = span{wy, wy, ..., Wy}

and let the projections of the initial data on the finite dimensional subspace V, be given by

m

() = w0 (¥) = ) ajutw; (x) = g in H3 (Q),
j=1
i 0) =t (9) = ) bjuoj (¥) = in H' (Q),

=

forj=1,2,..,m.
We look for the approximate solutions

(6, 0) = ) I (D0} ()
j=1

of the approximate problem in V,,

(Wt Ws) + Uz, Wex) + (UpnxtrWsx) + (Upnxx, W) + (Umxxtt, W)
+ (Umxxx, Wsxxx) — (”mx 10g |umx|k ’ wsx) =0,
weV,,s=12,.m, (21)
ug (¥) = Lty ajw; (x) — up in H3(Q),
up' (x) = LiLy bjw; (x) — uy in H'(Q).

This leads to a system of ordinary differantial equations for unknown functions h}ﬂ (). Based on standard
existence theory for ordinary differantial equation, one can obtain functions

hj:[0,ty) >R, j=1,2,..,m,

which satisfy (21) in a maximal interval [0, ¢,), 0 < t,, < T. Next, we show that t,, = T and that the local
solution is uniformly bounded independent of m and t. For this purpose, let us replace w by u,,; in (21) and
integrate by parts we obtain

d

ZEn() =0 (22)

where

2 2 2 2 2 2
En(t) = (”umt” + [ttt + Wit l” + 2l ™ + el +||umxxx||)

N~

N =

)
k
fugnx 10g |umx|k dx + 4_1 ||1/lmx||2 . (23)
0
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Integrating (22) with respect to ¢ from 0 to ¢, we obtain
E(t) = En(0). (24)
Since u,, (0) — 1o in the space H3, we obtain that the sequence u,, (0) is bounded in Hg By the following
inequality

|t210gt| < C(1+t3),t> 0,

and the Sobolev embedding H} < L, we have

f 108 ol dx < C (14 tonlF) < C 1+ luonlfy ) < C1
Q

where C; = C (||M0||Hg , ||u1||) is a positive constant. Subsequently, from (24) we can write

I
”uml‘”2 + ||met”2 + ”umxm‘”2 + ||me||2 + ”umxxllz + ||7/lrmocx||2 <C+ quﬁlx 10g |umx|k dx. (25)
0
The last term on the righthand side of (25) inequality and the Logarithmic Sobolev Inequality leads to
! !

2 f 12 logluml dx = 2k f u;x(log 42 +log||umx||)dx

[l
0 0

1
2

[24
S [ = (14 105 0) il + 10 sl i | (26)
0

IA

By combining of (26) and (25), we obtain

ka?
2 2 2 2 2 2
””mt” + “”mxt” + ””mxxt” + “”mx” + (1 - ? ””mxx” + ””mxxx”

1
2
< crk| S f 2, dx — (1 + 108 @) sl P + 10g el el |, 27)
0

From (27), we have

2 2 2 2
Nttml|” + Ntgell” + |ttt |l” + (1 +k+ klOg 05) [l
2

ka 5 2
+(1 - 7 [tmaxll” + 2l

< Co+ (1 +10g el el P) (28)
By taking
a = 1
- V2k

in (28), we obtain

2 2 5 ) ) )
{8 s 7o 7| A s 7 [ e |
2
< C(1+ log el s ). ”
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Noting that

t

U (1) = U (0) + fumxt (s)ds.

0

We make use of the following Cauchy-Schwarz inequality

(a+D) <2(a®+1?),

we obtain
! 2
e (B = um@+fﬁuwh
0
t
< mmme+zjfm%m%9@
0
<

t
1+C
2 e OFF + max (1,21 25 [ il 9 s
0

So if we write inequality (30) instead of inequality (29), and If we put

X = 2l O + max{1,2T}(1+O)T,
Y = max{1,2T}(1+0O),
(30) leads to

t
2 2
2l SX+Yf10g||me||||umx|| ds.
0

Taking B > 1, then by the Logarithmic Gronwall inequality, we get
sl < X + Ye' < C.
Hence, from inequality (31) and (29), it follows that

2 2 2 2 2 2
etmell” + Netnell” + Netmoxxell™ + ttmxll” + Netmaell” + lttpanxll” < C.

3993

(30)

(31)

(32)

From the guess of (32) we Trax = T and we have that u,, is uniformly bounded in L (O, T; H‘Z) by the

standart way. It follows that there exists a subsequence of {u,,}, denote by {u,,}, such that

Uy — u, weakly* in L (O, T; Hg) ,
Ut — U, weakly* in L™ (O, T; HZ) ,
Uty — Uy, weakly in L (O, T; H‘Z) )

Then by using Aubin-Lions’ lemma and Lebesgue dominated convergence theorem as [6], we have

Uy log Iumxlk - uylog |ux|k in L% (O, T; Lz) weakly star.
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We integrate (21) over (0, ) and letting m — oo for the fixed s, we get

t

(ut/ ws) + (uxt/ wsx) + (uxxt/ wsxx) + f[(ustx) + (uxm wsxx) + (uxxxz wsxxx)] dS

0
t

- f(ux log qu|k , wsx) ds

0
= (1, ws) + U1y, Wex) + (U1xx, Werx)

and (1) in definition of the solution. On the other hand, (21) give u (x,0) = uo (x), u; (x,0) = u; (x). From
(24), we know that the above u satisfies (4). So that u (x, t) is a global weak solution of problem (1). This
comleted the proof of the theorem. O

Theorem 3.2. Let uj € H(3), uy € HY, assume that E(0) < d, and I(ug) > 0 or ||ug|| = 0, then we accept the problem
(1) has a global weak solution u € L (0, o0, Hg) withu € L™ (0, 0, Hl) and u(t) € W for 0 < t < co.

Proof. By the Theorem we know that the problem (1) admits a global weak solution. From Lemma 2.6 we
getu(tf)e W for0<t<T. O

4. Blow up property in infinity time

In this section, we proved blow up property in infinity time of problem (1). In fact, we try to show H3
norm of the solution will grow up as an exponential function when time goes to infinity for suitable initial
data conditions.

Theorem 4.1. Let ug € H3, uy € H', assume that ug € V, 0 < E(0) < d and
(MOI ul) + (uOXI ulx) + (MOXX/ ulxx) > 0/

then the solution of (1) goes to the co.

Proof. Let u (t,x) is a weak solution of problem (1) with [ (1) < E(0) < d, I(19) < 0. Then we take the
function ¢ (t) : [0, 00) — R* defined by

& () = [l + el + el (33)

Now, we take derivative of (33), we have

qb’(t):qu ut+2fux uxt+2fuxx Usxt, (34)
Q Q Q
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then from the derivative of (34), because of (1), and (7) and using of partial integral formulas; we have

¢~(t) = 2fu“tt+2f“x“xtt+2f”xx“xxtt+2fut2+2fuazct+2f”32cxt/
Q Q Q Q Q

Q

k
= +2 f” (uxx + Usextt — Uxxxatt — Uxoxx — Usxrrrex — (ux 10g |ux| )x)
Q

2 2 2
+2 |ttty +2 f e thte + 2 (|1l + sl + il ),

Q Q

2 2 2 2
= 2l sl ) = 2 = 2 [ =2 [ st

Q Q

2 2 2 k
2l = 2tz +2 f W2 log ik +2 f g +2 f ettt

Q Q Q

= 2( Il + loaal® + lagsel ) - 2 [nuxnz Nkl + Ntk * = f 13 log |ux|"],
Q

= 2(lluel® + Nt + loeel?) = 21 (u1) (35)

We make use of the following Cauchy-Schwarz inequality
(ax + by + cz)* < 2(112 + b +c2)(x2 + 12 +zz),
it follows from (34) that for f € [0, o)
, 2

¢ O < Al + Nt + NetalP) 2 (el + el P + ot ),
4.6 (8) (Itell® + latal P + Nt (36)
Then we have for each f € [0, o) that, by (33), (35), (36) and using of (4), (9)

&' Op® [0/ O = 20l + el + sl = 10) 6 ()
~4 ) (8) (el + sl + 1tz )
= =20 (&) (Il + sl + el * + 1 (1)
> =26t [E0)~ ] @) +1(w)]. (37)

Because of ug € V, 0 < E(0) < d, it follows from Lemma 2.6 that I (1) < 0. Thus, using Lemma 2.4, we obtain
that

A

\%

EQ-J+I(w) < d=Jw)+2(w)—-4d),
= J(u)—-d,
< 0.

if we use that for (37), we have
o o ®) [ ®] >o. (38)

In other words, by using rule of derivate, we can write

(loglp ®)]) = % (39)
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By (39) and (38) we have
(logo 1)) = ¥ 000 [¢r 0] (40)
Og ¢ - (Pz (t)
From (40), we can say that
fosto ) = 555
is increasing with respect to ¢, using this fact, integrating (39) from t, to ¢, we obtain
t
log |6 (8] — log ¢ (t0)] = f (log |¢ () de
to
: f Ay
¢ (T)
(Zv @
where 0 <ty < t. Then
p®l 9w
g 6 (1) z & (ko) (t = to)
] > |6t 7). (41)

If we choose t sufficiently small such that ¢’ ({y) > 0, ¢ (tp) > 0, then, from (41), we have
tlim ¢ () =00

so that we can say the solution of (1) have a exponential grow up. [

5. Energy decay for the problem (1) with linear damping terms

In this section, we will prove decay estimates of solutions to problem (1). That is to say, we will add
linear damping terms to equation (1). So that we can write problem as

Up — Uxx — Uxxt + Upext — Unextt + Ut + Uperr T Uprrxxx + (ux 10g |ux|k)x = O, X € Q, t>0
u(x,0) = up (x), us (x,0) = uy (x), xeQ, (42)
u(,t)=ul,t) =0uw (1) = tun (1) =0, thex (X, 1) = Ure (I, 1) =0, t>0.

Then all the results in Section 2 and Section 3 hold and we have
E'(H) = — lluxll® = llutauel® (43)
hence we can say that E () is nonincreasing.

Theorem 5.1. Let ug € W,uy € H'. Assume further that 0 < E(0) < Ojlkrz < d, where « is a positive constant

satisfying 0 < k*a*2%e? < 1, then there exists two positive constants M and 1 independent of t such that:

0<E(f)<Me™, t>0.
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Proof. Let u (¢, x) be a weak solution of problem (42). Since up € W, u; € H, by Theorem 3.2, we have u € W
for Yt € [0,0) and then 0 < E (t) < d and I (1) > 0.
For this purpose, we use the Lyapunov functional

OH)=E@)+e¢ lfuutdx + fuxuxtdx + fuxxuxxtdx (44)
Q Q

Q

where € is a positive constant. We will show the @ (f) and E (f) are equivalent. For € > 0 small enough, the
relation

719 (£) < E(f) < 2@ (1) (45)

holds for two positive constants y; and y,. We can choose ¢ small enough such that @ ~ E.
By taking the time derivative of the function ® (¢), using (42) and performing several integration by

parts, we get
E'(t)+e¢ [f uugdx + futzdx + fuxuxttdx + fuitdx + f”xxuxxttdx + fu?cxtdx
Q Q

D (1)

Q Q Q Q

2 2 2 2 2
= el = el + € |l + Yol + Nt + f Witadx + f ity
Q Q

_fuuxxxxtdx+fuuxxttdx_fuuxxxxdx_fuuxxxxxxdx
Q Q Q Q
_fuuxxxde—fu(ux10g|ux|k)xdx+fuxuxtth+fuxxuxxttdx
Q

Q Q Q

2 2 2 2 2 2
= ot l” = Mot +€[|Iut|| i (7273 e | 22| i (7Y

2 2
_fuxuxtdx_fuxxuxxtdx_f”xuxttdx_”uxx” = |2l

Q Q Q
—fuxxuxmdx+fu§ logluxlkdx+fuxuxttdx+fumuxmdx
Q Q Q Q

2 2 2 2 2 2
(€ = 1) (lleatlI® + letael ) + & sl = & (el + Hotsal ® + lotcerl )

—€ fuxuxtdx+fuxxuxxtdx +€fu,%log|ux|kdx (46)
Q

Q Q
If we use Young Inequality for fifth term in the right hand side of (46) for 6 > 0; we can write

1
ttdx + | ettgde| < — (el + et l?) + 6 (il + llers), 47)
46
Q Q
Then we insert (47) into (46), we obtain

, &
() < (e+5—1)(||uxt||2+||uxxt||2)+e||ut||2—enumnz

e (5= 1) (Il + el ) + € f 12 log u[* dx. (48)
Q
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Adding and subtracting ¢0E (t) into (48) where 0 < 0 < 1 is a positive constant, we obtain

, eo e
¥ () < —e0EW+ (S +e= 1= = 1) (Inal? + el ?)

G) 0
e (1 N E)Hutuz + 5(5 - 1)||um||2

6
v (5 40— 1) (Il + o)

k
+€% sl + 5(1 - g)fui log x| dx. 49
Q

If we take 0 < 0 < 2 and using of (5) to the last term of the (49) and because of Sobolev embedding theorems;
we can edit (49)

¥ < —e0E@)+ (T +e— o= 1) (el + lel?)

2 46
0 0
v (14 2 ) llP + €5 = 1) Il
0
we(5 40— 1) (Il + o)
Ok 1+1o
rer llP + (1 - 2)k [— 2 - ¢ S D P + log il ||ux||2],
< —gQE(t)+[(—6 te- 2 -1)14Co+C ( 6)](|Iu 1+ Tkl ?)
< > 46 0 1 2 xt xxt
0 5 0 0 ka2 2
+& (E —1)”uxxx” +e€ (E +6—1)+(1 - E) g] (HMXX” )
[ 6\, (1+loga) e} , Ok 5
te [(E 46— 1) _ (1 _ E)kT + (1 _ E)klogIquH el [N (50)

Because of 0 < 6 <2 wenote 1 — g > 0 also we know from (8)

W > S,

4) ()
k

log > log|lulf. (51)

If we write (51) in (50) we have

eo €

@) < —0E®+ [ e -1)a+ o+ C (14 5)] (lual? + len?)

(5+6-1)+(1-3) "zin] (Ieel?)

(i) - P - G 2.

0
+e& (E - 1) “uxxx”2 +&

+&

[N (52)

Because of our accept in Theorem 5.1, we know 0 < 6 <2 and J(u) < E(0) < “k r? < d, taking of & according
k*a*2e? < a? < 2%, where a is suitable by the assumption in Theorem 5.1 and choose 6 > 0 small enough,
such that

0

- -1
> <0,
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6 0\ ka?
(3ro-1)+(1-2) < ©

6 ka?
(5‘9(“%) <0

ka?
1—- —
( Zn) > 0,

(g+6—1)—(1—Q)k(w—log4](u))+Q—k<0,

2 2 k 4

so that we have,

O (t) < —€OE () + [(? te- - -1)a+Co+Ci(1+ g)] (sl + Nt P) (53)

If we take ¢ > 0 small enough such that

€0 € 0
(7+e—B—1)(1+CO)+C1(1+§)<O,

1+Cy > O
CO > -1,

Consequently, inequlatiy (53) becomes

@' () < —£OE(1).

By (45), we write

D’ (t) < —e0y, @ (t) (54)

setting 1 = €0y, > 0 and integrating (54) between (0, t) gives the following estimate

D (t) < Me™

Consequently, by using (45) once again. This completes the proof. [
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