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Available at: http://www.pmf.ni.ac.rs/filomat

Recovery of Dipolar Sources and Stability Estimates

Ridha Mdimagha,b

aUniversity of Jeddah, College of Science and Arts at Khulis, Department of Mathematics, Jeddah, Saudi Arabia.
bENIT-LAMSIN, BP 37, 1002 Tunis belvédère, University of Tunis El Manar, Tunisia.

Abstract. The inverse problem of identifying dipolar sources with time-dependent moments, located in a
bounded domain, via the heat equation is investigated, by applying a heat flux, and from a single lateral
boundary measurement of temperature. An uniqueness, and local Lipschitz stability results for this inverse
problem are established which are the main contributions of this work. A non-iterative algebraic algorithm
based on the reciprocity gap concept is proposed, which permits to determine the number, the spatial
locations, and the time-dependent moments of the dipolar sources, Some numerical experiments are given
in order to test the efficiency and the robustness of this method.

1. Introduction

The time-dependent heat source identification problem is a classic inverse problem, it has been studied
by several authors. In general, this problems is known to be ill-posed, this ill-posedeness is mainly the
consequence of the absence of continuity and stability, but also of the non-uniqueness [24, 38]. Many
theoretical and numerical results concerning the time-dependent heat source identification problems have
been established by several authors by using different techniques. Homogenized function technique, to
include the initial condition/boundary conditions and supplementary condition, to simplify the governing
equations for the recovery of time/space-dependent heat sources was proposed in [30]. Coupled bound-
ary integral equation method was developed to recover a time-dependent heat source under additional
measures of temperature at interior points [31, 32]. In [39] a Dirichlet series representation for the bound-
ary observation, and a finite difference approximation method in conjunction with the truncated singular
value decomposition was used for the problem inverse of determining the diffusion coefficient, spacewise
dependent source term. The reciprocity gap principle [5] was used in many works for the study of the
point sources identification problem via elliptic equations [10, 16–19, 23, 33, 34], and was extended in [22]
for the monopolar sources identification from fractional diffusion equation. Kang et al in [27] considered
the problem of identifying simple poles of a meromorphic function by means of the value of the function
measured on a circle enclosing those poles, they proposed an algebraic algorithm for this problem with a
stability estimate and they applyed the method to an electrical impedance tomography problem to detect
small inclusions of disk shape via boundary measurements using the asymptotic behavior of the voltage
potential in the presence of inclusions satisfying the Laplace equation. Nara et al proposed in [35] an
algebraic method to reconstruct the positions of multiple poles in meromorphic function field from partial
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measurements without an iterative optimization or an estimation of the missing data and applied their
algorithm to a 2D electric impedance tomography problem. Ben Abda et al [7] formulated the inverse
source problem as that of locating the singularities of a meromorphic function from its values on the whole
boundary using best rational approximation problems. Clerc et al presented in [15] a method, used for
EEG source localization via Laplace equation in 3D case by analyzing the sets of planar singularities on
the plane sections, based on rational approximation techniques in the complex plane and offered stability.
Diverse iterative inversion methods have been applied to heat source identification, see [8, 12, 25]. Their
main inconveniences are, as usual for this sort of procedure, the reliance of the result on the choice of initial
guess and the elevated computational times derived from repeated forward solutions.
This problem is important in many engineering science disciplines, particularly in the areas of medical
imaging and non-destructive testing of materials. The problem of detection of pollution sources on water
surfaces is an important motivation to discuss this type of problems, it was studied by El Badia et al [17], by
using the concept of reciprocity gap that formalizes the comparison of the response of a body containing
point sources to the response of safety one of the same physical characteristics, and with an appropriate
choice of test function they reduced this problem to the source problem identification from elliptic equation,
where the term source was modeled as a linear combination of Dirac distribution at the point sources with
L2 time-varying intensities, and gave an algebraic algorithm to solve the inverse problem.
In this paper, we are interested in the detection of m dipolar sources with L2(0,T)d time-dependent moments,
located in an open bounded domain of Rd (d = 2, 3) with sufficiently regular boundary Γ := ∂Ω via the
heat equation, where T > 0 is an arbitrary positive number which denotes the measurement duration. This
problem is governed by the following equation:

ut − ∆u = F in ΩT := (0, T) ×Ω, (1.1)

where u := u(t, ξ) represents the state variable, and F the unknown term, which has to be determined, and
has the following expression:

F(t, ξ) =

m∑
j=1

M j(t) · ∇δC j (ξ).

In the above equation, m ∈N, C j ∈ Ω, and M j(t) ∈ Rd
\ {0}, j = 1, . . . ,m, represent respectively the number,

the locations, and the time-dependent moments of the dipolar sources which are all unknown, and δC j

represents the Dirac distribution at C j.
We suppose that the dipolar sources C j are distinct (i.e. Cn , C j for n , j), inactive after the finite time
T∗ < T (M j(t) = 0 for t > T∗), we suppose that M j ∈ (L2(0, T))d, and∫ T∗

0
M j(t) dt , 0, j = 1, . . . ,m. (1.2)

Equation (1.1) is supplemented by the initial condition

u(0, ξ) = 0, for all ξ ∈ Ω, (1.3)

and the boundary condition which models the heat transfer with external environment,

∂u
∂ν

= ϕ, on ΓT := (0, T) × Γ (1.4)

where ν represents the outward unit normal vector to Γ andϕ ∈ L2(ΓT) which matches with the compatibility
condition:

ϕ(0, ξ) = 0, for all ξ ∈ Γ.

The inverse problem consists in identifying the source distribution F in the parabolic problem (1.1)-(1.4)
from the space-time boundary data f :

u = f , on ΓT. (1.5)
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In the present work, in order to study the identifiability, we show that our inverse problem is well posed
from the Cauchy data measurements (in the sense where these measurements are generated by a unique
source term). The main contributions of this paper concerning the result of stability obtained for the
heat dipolar sources identification problem with time-dependent moments. This stability result, which
is valid for two and three dimension, is derived from the Gâteaux differentiability, and by showing that
the Gâteaux derivative is not null we obtain a local Lipschitz stability result for this inverse problem.
An algebraic method is proposed for the identification of the positions of the dipolar sources and their
time-dependent moments inspired from the algorithm given in [17, 18] which is extended by Mdimagh
et al in [22] for the problem of identification of points sources via time fractional diffusion equation. The
moments of the sources will be recovered via their Fourier transforms. Numerical tests are given to prove
the efficiency of the algorithm and evaluate its resolution and robustness with respect to the measurement
noise.
The paper is organized as follows:
In section 2, we discuss the question of existence and uniqueness of the direct problem, we state the inverse
problem, and we present the reciprocity gap functional associated with the present aim. In section 3, an
identifiability result is established. Local Lipschitz stability result is given in section 4. Finally, in section
5, an explicit identification procedure is proposed, numerical experiments are reported using numerically
computed synthetic noisy data.

2. Setting problem

A direct variational formulation of problem (1.1)-(1.3) is not possible since the source term F is a
distribution with support in Ω which belongs to the Sobolev space L2((0, T),Hs(Rd)) for s < −( d

2 + 1).
However, one can consider the function u0 defined by:

u0 :=
m∑

j=1

∫ t

0
M j(τ).∇G(t − τ, ξ − C j) dτ

where G represents the fundamental solution of (∂t − ∆) in [0,∞) ×Rd:

G(t, ξ) =


e−
|ξ|2
4t

(4πt)
d
2

for t > 0.

0 for t = 0.

we set w = u − u0, since the support of F is a subset of ΩT, u0 is analytic out of ΩT, and we have:
wt − ∆w = 0 in ΩT,
∂νw = ϕ − ∂νu0 on ΓT,
w(0, ·) = 0 in Ω.

(2.1)

The existence and the uniqueness of the problem’s solution of (1.1)-(1.3) are deduced from the following
result given in [2]:

Theorem 2.1. If ϕ belongs to L2((0,T),L2(Γ)), then the problem (2.1) has a unique solution which belongs to
L2((0,T),H1(Ω)) ∩ C((0,T),L2(Ω)).

3. Identifiability

3.1. Recovering of the dipolar sources
In this section, the uniqueness of the source term from boundary measurements will be proved which is

one of difficulties of the inverse problem. In what follows, we introduce the reciprocity gap (RG) functional,
and we state the inverse problem. Let v an adjoint field of the equation (1.1), it is solution of

vt + ∆v = 0, in ΩT.
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Multiplying equation (1.1) by v, applying a part integration in time over the interval [0,T], and using initial
condition (1.3), the below equation is found∫

ΓT

(
∂v
∂ν

f − vϕ)(s, ξ) +

∫
Ω

u(T, ξ)v(T, ξ) dξ =

∫
ΩT

F v, (3.1)

To give the identification procedure of the dipolar sources we need the following lemma

Lemma 3.1. lim
T→∞

∫
Ω

u(T, ξ)v(T, ξ) dξ = 0

Proof. From [2] Prop 8.4.1, we have, for ξ ∈ Ω, lim
T→∞

u(T, ξ) = 0, then

for ε > 0, it exists T0 > 0 such that for T > T0 |u(T, ξ)| < ε.
From Cauchy-Schwartz inequality we obtain

for T > T0, |

∫
Ω

u(T, ξ)v(T, ξ) dξ| ≤ cε‖v(T, ·)‖L2(Ω),

and if v(T, ·) ∈ L2(Ω), then

lim
T→∞

∫
Ω

u(T, ξ)v(T, ξ) dξ = 0.

Remark 3.2. There is at least two different ways to remove, or minimize, the non-observable contribution∫
Ω

u(T, ξ)v(T, ξ) dξ to the equation (3.1):

• Using adjoint fields v(x, t) that vanish at final time t = T. Such adjoint fields are available in analytical form
involving Fourier-Bessel series.

• Exploiting the measurements made over a duration T sufficiently large to make the non-observable component
negligible. This approach is followed here as it permits more flexibility in choosing adjoint fields. In particular,
harmonic time-independent adjoint fields can be used, allowing a natural extension of previously-proposed
algebraic treatments. This essentially requires making measurements until much later than the extinction time
T∗ of the last active source. For more details see [6].

For a large T, we can neglect
∫

Ω

u(T, ξ)v(T, ξ) dξ of the equation (3.1), and we obtain

R(u, v) =

m∑
j=1

P j · ∇v(C j), (3.2)

where

R(u, v) :=
∫

ΓT

ϕv −
∂v
∂ν

f ,

and

P j :=
∫
∞

0
M j(t) dt, j = 1, . . . ,m,

which are all well defined since all sources are assumed to be inactive for t ≥ T∗.
In the reciprocity gap (equality (3.2)), when v is given, then the reciprocity gap function R(u, v) is known

while
m∑

j=1

P j · ∇v(C j) is not. Based on this remark, equality (3.2) represents the link between the known

quantity and the apparent source function. The inverse problem purposes to find the number, the locations
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and the moments of the dipolar sources from equation (3.2) using particular test functions v.
By exploiting the (RG) values for long time to identify the source term, we set:

Θ(ξ) :=
∫
∞

0
u(t, ξ) dt,

F (ξ) :=
∫
∞

0
F(t, ξ) dt =

m∑
j=1

P j · ∇δC j (ξ),

Integrating equation (1.1) between 0 and ∞, have recourse to the initial condition (1.3) and the boundary
conditions (1.4)-(1.5), the function Θ satisfies the following Poisson problem:

−∆Θ = F in Ω,
∂νΘ = ϕ̂ on Γ,
Θ = f̂ on Γ,

where

ϕ̂(ξ) =

∫
∞

0
ϕ(t, ξ) dt and f̂ (ξ) =

∫
∞

0
f (t, ξ) dt.

The problem (1.1)-(1.5) can now be reduced to the problem of identifying dipolar sources C j with moments
P j , 0 (see equation (1.2)) via Laplace equation and from the Cauchy data ( f̂ , ϕ̂). This inverse problem
can be solved by using the algebraic method introduced by El Badia in [14, 18]. Based on a complex
variable formulation of the adjoint field, this approach assumes a spatially two-dimensional setting and
proposes a way to extend this approach to three-dimensional configuration by projections of the source
points on different planes going down to 2D case. From now on, a spatially two-dimensional configuration
is assumed to be complex polynomials used for adjoint fields. Such functions being holomorphic (have
harmonic real and imaginary parts). The following test functions are defined by:

vn(z) = zn, n ∈N

where z = x + i y denotes the affix of ξ = (x, y) ∈ R2.
The components of the RG equality are then given by:

R(u, vn) =

m∑
j=1

np j σ
n−1
j (3.3)

where σ j := C j,1 + i C j,2 denotes the affix of the jth dipolar sources C j := (C j,1,C j,2) and p j = P j,1 + i P j,2 is the
affix of the moment P j := (P j,1,P j,2) of C j. The reconstruction of the dipolar sources consists in finding σ j
and p j from the equality (3.3).
Let M̃ be an upper bound of the exact number m of the unknown dipolar sources (M̃ ≥ m), let:

αn :=
R(u, vn)

n
=

m∑
j=1

p j σ
n−1
j ,

µn =


αn
αn+1
...

αM̃+n−1

 ∈ CM̃, Λ =


p1
p2
...

pm

 ∈ Cm, (3.4)

and the matrix

An,M̃ =


σn

1 σn
2 . . . σn

m
σn+1

1 σn+1
2 . . . σn+1

m
...

...
...

...

σM̃+n−1
1 σM̃+n−1

2 . . . σM̃+n−1
m

 ∈ MM̃×m(C).
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Following the line of the algorithm given in [18], the unknown m, σ j, and p j can then be deduced from the
following lemma:

Lemma 3.3. [18]

1. The rank of the family (µ1 µ2 . . . µM̃) is r = m, and the vectors µ1 µ2 . . . µm are independent.
2. The affixes σ j of the dipolar sources C j are the eigenvalues of the matrix T which is defined by Tµ j = µ j+1, for

j = 1, . . . ,m.
3. p1, . . . , pm are solutions of the linear system A1,mΛ = µ1 where A1,m is the Vandermonde matrix of σ j.

Remark 3.4. 1. In the case where Ω contains a unique dipolar source C1, then:

p1 = α1 and σ1 =
α2

α1
.

2. In the case where Ω contains two monopolar sources C1, C2, and if (a,b) are the components of the vector µ3 in

the basis (µ1, µ2), then the eigenvalues of the matrix T =

(
0 a
1 b

)
are

σ1 =
b +
√

b2 + 4a
2

, σ2 =
b −
√

b2 + 4a
2

,

with moments
p1 =

σ2α1 − α2

σ1(σ2 − σ1)
and p2 =

α2 − α1σ1

σ2(σ2 − σ1)
.

3.2. Recovering of the moments

The goal of this section is to identify the moments M j of the dipolar sources C j. First, we look for test
functionsψn with separated variables and with exponentially dependent time parts solution of the equation
ψt + ∆ψ = 0 in ΩT, we take ψn on the following form:

ψn(t, ξ) = e−iwtvn(ξ),

where w ∈ R and vn is a solution of the Helmholtz equation

∆vn + K2vn = 0 in Ω,

where K =
√
−iw. We take vn as the fundamental outgoing solution of the Helmholtz equation originated

at some points bn belonging to R2
\ Ω̄.

∆vn + K2vn = −δbn in R2,

vn is given explicitly by vn(ξ) =
−i
4

H(1)
0 (K|ξ− bn|), where H(1)

0 is the Hankel function of first kind and order 0
see [1], and the imaginary part of K is positive.
Multiplying equation (1.1) by ψn, integrating with respect t and ξ over [0,∞) × Ω, and by using Green’s
formula, we have

m∑
j=1

M̂ j(w) · ∇vn(C j) = R(u, ψn). (3.5)

where M̂ j(w) =

∫
∞

0
M j(t) e−iwt dt is the Fourier transform of M j extended out of (0,T) by 0. Now, the

reconstructions of the moments is obtained from the knowing of the Fourier transform M̂ j for sufficiently
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many values of w and then use an appropriate algorithm to invert the transform and compute M j.
Let M̂ j(w) := (̂λ j,1(w), λ̂ j,2(w)), the equality (3.5) is given by

m∑
j=1

λ̂ j,1(w)
∂vn

∂x
(C j) + λ̂ j,2(w)

∂vn

∂y
(C j) = R(u, ψn).

To determine λ̂ j,1(w) and λ̂ j,2(w), it is sufficient to find 2m points b1, . . . , b2m in R2
\ Ω̄ such that the matrix B

is invertible, where

B =



∂v1

∂x
(C1)

∂v1

∂y
(C1) . . .

∂v1

∂x
(Cm)

∂v1

∂y
(Cm)

∂v2

∂x
(C1)

∂v2

∂y
(C1) . . .

∂v2

∂x
(Cm)

∂v2

∂y
(Cm)

...
...

...
...

∂v2m

∂x
(C1)

∂v2m

∂y
(C1) . . .

∂v2m

∂x
(Cm)

∂v2m

∂y
(Cm)


.

Lemma 3.5. Let b1, b2, . . . , b2m points of R2
\ Ω̄ assumed to be distinct (b j , bn if j , n). Then, the matrix B is

invertible.

Proof. Let us denote by G(b1, . . . , b2m) := det(B). Suppose that

G(b1, . . . , b2m) = 0, for all bn ∈ R
2
\ Ω̄, n = 1, . . . , 2m.

We fix for example b2, . . . , b2m and consider G as a function of b1, this function is an analytic function when
extended to the connected domain R2

\ ∪{C j} and

G(b1, . . . , b2m) = 0, for all bn ∈ R
2
\ ∪{C j}

Let b1 = (x,C1,2) ∈ R2
\ ∪{C j}, when x tends to C1,1, we obtain a contradiction by pointing out the presence

of the singularity C1 , all the terms of G tend to some finite numbers except

B1,1 =
iK
4

x − C1,1

|x − C1,1|
H(1)

1 (K|x − C1,1|)

and
lim

x→C1,1

|B1,1| = ∞.

Then, the matrix B is invertible.

Remark 3.6. M̂ j(w) := (̂λ j,1(w), λ̂ j,2(w)), j = 1, . . . ,m are solutions of the linear system BΛ̃ = R̃, where

Λ̃ =



λ̂1,1(w)
λ̂1,2(w)
...

λ̂m,1(w)
λ̂m,2(w)


and R̃ =


R(u, ψ1)
R(u, ψ2)

...
R(u, ψ2m)

 .

We can now give our main identifiability result

Theorem 3.7. Under assumption (1.2), the source F is uniquely determined by the observation data (1.4)-(1.5).
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4. Stability Estimates

In this section, the study concerns the continuity of the unknown source term with respect to the
boundary measurements which usually tainted with errors, affect the numerical reconstruction, and make
the inverse problem unstable. The question of stability has been the matter of interest of several authors
in different contexts. A logarithm-type stability estimate for the 2D case problem of identifying dense
masses in the earth from gravimetry data taken at the surface or in the air, assuming that the poles are
well separated and their respective strengths are large enough was establshed in [11]. Hölder-type stability
estimate, for the same problem for 3D case problem, was given in [38], and in [20] for time-harmonic
Maxwell dipolar-source problem. The notion of local Lipschitz was introduced in [9], and has been used
repeatedly by several authors [5, 13], particularly for cracks, boundary recovery and Robin’s coefficient.
In many works, local Lipschitz stability results was obtained, derived from algebraic relations for elliptic
sources identification problems [6, 10, 16, 19, 21, 33, 34]. A local Lipschitz stability estimate, derived from
the Gâteaux differentiability, was established in [22] for the fractional monopolar source identification. A
conditional stability for the problem of determining a non linear heat source term was established in [28]
using an integral identity.
Our main contribution in this work is to establish a local Lipschitz stability result inspired from the stability
result given in [34] for the problem of identification of sources via the Helmholtz equation, which is derived
from the Gâteaux differentiability, by establishing that the Gâteaux derivative is not zero.
In the following we recall this result:
We suppose that Ω contains m dipolar sources located at C j with respectively moments p j, j = 1, . . . ,m. We
define the perturbed source term Fh by:

Fh = −

m∑
j=1

ph
j · ∇δCh

j
,

where
(ph

j , Ch
j ) := (p j + h q j,C j + h R j), 1 ≤ j ≤ m,

{(q j, R j), 1 ≤ j ≤ m} ⊂ R2
× R2,

such that ‖q j‖ ≤ 1 and ‖R j‖ ≤ 1, h being sufficiently small to insure that C j + h R j remain in Ω. We denote
by u0 and uh the solutions of (4.1) with respectively source terms F = F0 and F = Fh. ∆u + k2u = F in Ω

∂u
∂ν

= ϕ on Γ,
(4.1)

ϕ ∈ H−
1
2 (Γ) being the flux on Γ (ϕ , 0 on Γ), k is the wave number on Ω. We set u0|Γ = f , uh|Γ = f h.

Theorem 4.1. [34] (Local Lipschitz stability). Assume that k2 is not an eigenvalue of−∆ with Neumann condition
in the boundary. Then,

lim
h→0

| f h
− f |L2(Γ)

|h|
exists and is strictly positive.

Now, we are ready to give the main result of this section.
Assuming that the domain Ω contains m dipolar sources C1, . . . ,Cm with respectively moments M1, . . . ,Mm
where M j ∈ (L2(0,T))2, let (µ j,R j) ∈ (L2(0,T))2

×R2 such that µ j(t) = 0 for t ≥ T, and ‖R j‖ ≤ 1 for j = 1, . . . ,m,
we set Φ := (M j,C j),

Φh := (Mh
j ,C

h
j ) := (M j + hµ j,C j + hR j),

and

Fh :=
m∑

j=1

Mh
j · ∇δCh

j
,
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h , 0 being sufficiently small to insure that Ch
j ∈ Ω. Let u0 and uh be the solutions of problems (1.1)-(1.4)

with respectively sources F0 and Fh, we set u0 = f and uh = f h on ΓT. Then, we give the local Lipschitz
stability result

Theorem 4.2. (Local Lipschitz stability)
If µ j(t) , 0, for 0 < t < T, then

lim
h→0

| f h
− f |L2(ΓT)

h
, 0.

Proof. Extending the function ϕ, f and M j, j = 1, . . . ,m by 0 outside the interval [0, T], let s ∈ C with
Re(s) > 0 and Im(is

1
2 ) > 0, consider the time-integrated quantities

Θh(s, ξ) :=
∫
∞

0
e−stuh(t, ξ) dt,

and

Θ0(s, ξ) :=
∫
∞

0
e−stu0(t, ξ) dt,

which are well-defined since all sources are assumed inactive for t ≥ T, and we assume that

M̃ j(s) :=
∫
∞

0
e−stM j(t) dt , 0, j = 1, . . . ,m.

Applying the Laplace transform to the problems (1.1)-(1.4) corresponding respectively to the sources Fh and
F0, the function Θh is solution of the Helmholz equation with the wave number k = is

1
2 :

∆Θh + k2Θh = −F̃h in Ω
∂νΘh = ϕ̃ on Σ

Θh = f̃ h on Σ

(4.2)

where

f̃ h(s, ξ) =

∫
∞

0
e−st f h(t, ξ) dt, f̃ (s, ξ) =

∫
∞

0
e−st f (t, ξ) dt,

F̃h(s, ξ) =

m∑
j=1

M̃h
j (s) · ∇δCh

j
(ξ), F̃0(s, ξ) =

m∑
j=1

M̃ j(s) · ∇δS j (ξ),

M̃h
j (s) = M̃ j(s) + hµ̃ j(s),

and

µ̃ j(s) =

∫
∞

0
e−stµ j(t) dt.

The source F̃h represents the linear perturbation of the source F̃0 in the direction Ψ = {(µ̃ j(s), R j)1≤ j≤m},
having the same number m of sources as {(M̃ j(s),C j)1≤ j≤m} for the problem of identifying dipolar sources C j,
located in Ω with respectively moments M̃ j(s), j = 1, . . . ,m via the Helmholtz equation with wave number
k = is

1
2 , which is not an eigenvalue of −∆ with Neumann condition in the boundary, from the given Cauchy

data ϕ̃ and f̃ on Σ. We have

(M̃h
j (s),Ch

j ) = (M̃ j(s) + h µ̃ j(s),C j + h R j).
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From Theorem 4.1, which its proof is also valid for the wave number k = is
1
2 where s ∈ Cwith Re(s) > 0 and

Im(is
1
2 ) > 0, we deduce the following result:

lim
h→0

| f̃ h
− f̃ |L2(Γ)

h
, 0.

From Cauchy-Schwartz inequality one has

| f̃ h
− f̃ |L2(Γ) ≤

1√
2Re(s)

| f h
− f |L2(ΣT),

then, we obtain the following local Lipschitz result:

lim
h→0

| f h
− f |L2(ΣT)

h
, 0.

Remark 4.3. If lim
h→0

| f h
− f |L2(ΣT)

|h|
= ` ∈ R∗+ ∪ {∞}, then there exists δ > 0 and c > 0 such that if |h| < δ, then

|h| < c | f h
− f |L2(ΣT), which implies that there exists c̃ > 0 such that for |h| < δ

m∑
j=1

‖Ch
j − C j‖ + ‖Mh

j −M j‖L2(0, T)2 ≤ c̃ | f h
− f |L2(ΣT)

which gives the local Lipschitz stability result for the identification of dipolar sources problem. The result of the
Theorem 4.2 means that we can identify the positions of the dipolar sources and their moments if the measurement
error made on the data u on the boundary is of the order o(h).

5. Numerical experiments

In this section, some numerical experiments regarding the detection of dipolar sources are presented.
In all numerical tests, the reconstructions of the dipolar sources are computed with noisy data by adding
uniformly distributed random variables to the synthetic transient data: u|ΓT := f synth + ε r, where r is a
random number in the interval [−1, 1] and ε is the noise level. f synth is defined from the fundamental
solution G of (1.1) defined by:

G(t, ξ) =


e−
|ξ|2
4t

(4πt)
d
2

for t > 0,

0 for t = 0.

We take

u(t, ξ) :=
m∑

j=1

∫ t

0
M j(τ).∇G(t − τ, ξ − C j) dτ + ε r. (5.1)

The domain Ω is the disk centered at the origin with unit radius. The simulated measurements of the
function (5.1) are evaluated at 240 × 960 points of [0,T] × C(0, 1), where C(0, 1) is the circle centered at the
origin with unit radius, T = 4 is the observation duration, and the values αk =

R(u,ψk)
k are computed for

k = 1, . . . , 2M̃ − 1 using trapezoidal quadrature rule, where M̃ is an upper bound of the exact number m of
the unknown dipolar sources. The Fourier transform and the inverse Fourier transform evaluations of the
exact and identified moments again use a trapezoidal quadrature rule.



R. Mdimagh / Filomat 33:13 (2019), 4095–4114 4105

For the numerical approach of the number m of the dipolar sources, we use the stopping criterion introduced
in [27], where the authors remark that for n = 1, . . . , M̃, the matrix:

(µ1 µ2 . . . µn) =


p1 p2 . . . pm

p1σ1 p2σ2 . . . pmσm
...

...
...

p1σn−1
1 p2σn−1

2 . . . pmσn−1
m




1 σ1 . . . σn−1
1

1 σ2 . . . σn−1
2

...
...

...
1 σm . . . σn−1

m

 ,
where µ j is defined by (3.4).
If m = n, then the determinantDn of (µ1, µ2, . . . , µn) is

Dn := det(µ1, µ2, . . . , µn) = p1p2 . . . pn

∏
k< j

(σk − σ j)2

If n > m we can reduce the matter to the case n = m by letting pm+1 = . . . = pn = 0 andDn = 0.
In particular

|Dn| ≥ β
nαn2

−n

Refereing to [27] the number of the dipolar sources is the smallest integer m for which

|Dm| >
1
2
βmαm2

−m (5.2)

and

|Di| ≤
1
2
βiαi2−i, i = m + 1, . . . , M̃. (5.3)

where α and β are given such that |σk − σ j| ≥ α, k , j and |p j| ≥ β, j = 1, . . . ,m.
In all subsequent figures, the circle with solid line represents the boundary Γ of Ω, i.e. the measurements
location. We, also, indicate in these figures the exact positions of the dipolar source which are represented
by ◦, and the reconstructed sources which are represented by ?. The vector which starts from the exact
dipolar source represents the Fourier transform at 0 of its moment, and the vector which starts from the
identified dipolar source represents the identified moment.

5.1. Identification of the dipolar sources

In the following numerical experiments, the reconstructions of the sources are computed with fix value
noise level ε = 1% except in one example where the value of the noise level is 20%, and this can show the
robustness of our method with respect to this type of noise. Regarding the estimation of the number m of
the dipolar sources, we use the stopping criterion (5.2)-(5.3) described in the beginning of this section or we
choose m as the smallest natural number k such thatDk is greater than a fixed small real number ε̃. In this
experiment, we shall vary ε̃ to test the sensitivity of the identification processing to the maximum number
M̃ of sources. The domain Ω contains four dipolar sources C1 = (0.4, 0.6), C2 = (0.5,−0.5), C3 = (−0.5,−0.5)
and C4 = (−0.5, 0.5) with respectively moments:

M1(t) =

{ (
3 cos(3t) e−t2

, π t cos(2πt)
)

if t ∈ (0, 1)
(0, 0) if t = 0 or t ∈ [1, 4),

M2(t) =

{ (
1
2 esin(πt) cos(πt), 1

4

)
if t ∈ (0, 2)

(0, 0) if t = 0 or t ∈ [2, 4),

M3(t) =

{ (
t
4 ,

1
4 e−t

)
if t ∈ (0, 2.5)

(0, 0) if t = 0 or t ∈ [2.5, 4),
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and

M4(t) =

{ (
1
2

1
t2+1 ,

1−cos(t)
4

)
if t ∈ (0, 3)

(0, 0) if t = 0 or t ∈ [3, 4).

The extinction time of the last active dipolar source is T∗ = 3. In the following numerical tests the exact
and the identified dipolar sources are presented with the Fourier transform at 0 of their corresponding
moments, the exact and the identifid moments of these dipolar sources will be illustrated in the numerical
tests of section 5.2. By the trapezoidal quadrature rule the Fourier transform at 0 of of the moments M j
of the dipolar sources C j are respectively P1(0.5010,−0, 0066), P2(−0.1038, 0.3734), P3(0.5010, 0.2147) and
P4(0.5923, 0.4473).
In the first numerical tests, we fix the value of the stopping criterion ε̃ = 10−2, and we choose two different
values of the upper bound of the unknown dipolar sources M̃ = 7 and M̃ = 10 which are represented
respectively in Figure 1 (Left) and in Figure 1 (Right), the identified dipolar sources in the two cases are
S1(0.3979, 0.6001), S2(0.5059,−0.5020), S3(−0.4999,−0.5058) and S4(−0.5032, 0.4995), with moments respec-
tively are q1(0.5198, 0.0210), q2(−0.1101, 0.3710), q3(0.5006, 0.2259) and q4(0.5873, 0.4834), we observe that
the number m, the locations, and the Fourier transform at 0 of the moments of the dipolar sources are well
reconstructed.
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Figure 1: Well reconstruction of the number, the locations and the Fourier transform of the moments at 0 of four dipolar sources for
level noise 1% and stopping criterion ε̃ = 10−2. Left: M̃ = 7. Right: M̃ = 10.

In Figure 2, we take the stopping criterion ε̃ = 10−3, and two different values of the upper bound
of the unknown dipolar sources M̃ = 7 and M̃ = 10 which are represented respectively in Figure 2
(Left) and in Figure 2 (Right). The locations and the Fourier transforms of the moments at 0 of the
four dipolar sources are well reconstructed, the same dipolar sources are identified for the two cases:
S1(0.4013, 0.6020), S2(0.5071,−0.4997), S3(−0.4986,−0.5060), S4(−0.5046, 0.4993) with moments respectively
are q1(0.5139, 0.0251), q2(−0.1069, 0.3738), q3(0.5036, 0.2241), q4(0.5866, 0.4783), and an another point ap-
pears S5(1.1001, 0.5498) outside Ω with weak moment q5(0.0004,−0.0002).
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Figure 2: Well reconstruction of the four dipolar sources with their Fourier transform of the moments at 0, and a fifth point appears
S5(1.1001, 0.5498) with moment q5(0.0004,−0.0002), for level noise 1% and stopping criterion ε̃ = 10−3. Left: M̃ = 7. Right: M̃ = 10.

These numerical tests show that the identification process is sensitive to the stopping criterion, in
subsection 5.2 we show that the time-dependent moment of the fifth dipolar source is zero and this point
can be eliminated, and we can conclude the exact number of the dipolar sources.

5.2. Identification of the moments

Once the number m of the dipolar sources is known, their locations can be estimated, the reconstructions
of their moments is obtained by knowing the Fourier transform M̂ j(w) := (̂λ j,1(w), λ̂ j,2(w)) of M j extended
out of [0,T] by 0. Naturally, to compute the moments M j, we have to compute M̂ j(w) for sufficiently many
values of w and then use an appropriate algorithm to invert the transform.
Let bk = (2 cos( kπ

m ), 2 sin( kπ
m )), k = 1, . . . , 2 m, 2 m distinct points of the circle of center 0 and radius 2. Then,

from remark 3.6, Λ̃ is solution of the linear system B Λ̃ = R̃, where

B =



∂v1

∂x
(C1)

∂v1

∂y
(C1) . . .

∂v1

∂x
(Cm)

∂v1

∂y
(Cm)

∂v2

∂x
(C1)

∂v2

∂y
(C1) . . .

∂v2

∂x
(Cm)

∂v2

∂y
(Cm)

...
...

...
...

∂v2m

∂x
(C1)

∂v2m

∂y
(C1) . . .

∂v2m

∂x
(Cm)

∂v2m

∂y
(Cm)


,

Λ̃ =



λ̂1,1(w)
λ̂1,2(w)
...

λ̂m,1(w)
λ̂m,2(w)


,

and

R̃ =


R(u, ψ1)
R(u, ψ2)

...
R(u, ψ2m),

 ,
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vk(ξ) =
−i
4

H(1)
0 (K|ξ − bk|), H(1)

0 is the Hankel function of first kind and order 0, while the imaginary part of

K =
√
−iw is positive.

In all following experiments, we take 7185 equidistant points w ∈ [−30, 30] for the numerical evaluations
of λ̂ j,k, k = 1, 2 the components of M̂ j, which are solutions of the linear system BΛ̃ = R̃, and 240 equidistant

points t of the interval [0, 4] to evaluate λ j,k(t) :=
1

2π

∫
∞

−∞

λ̂ j,k(w) eiwt dw, the inverse Fourier transform of λ̂ j,k.

In the following figures, we give the curves of the real and imaginary parts of the moments of the exact
dipolar sources in red color and the curves of the real and imaginary parts of the moments of the identified
dipolar sources in blue color.
Figure 3 illustrates the reconstruction of the real and imaginary parts of the exact moments M j(t) and the
identified moments , of the exact and identified dipolar sources presented in Figure 1 (Left), with stopping
criterion ε̃ = 10−2, and an upper bound of the unknown dipolar sources M̃ = 7, in this numerical test we
obtain a well reconstruction of the four moments.
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Figure 3: Well reconstruction of the moments of the four dipolar sources with level noise 1%, stopping criterion ε̃ = 10−2 and M̃ = 7 .

Figure 4 illustrates the reconstruction of the real and imaginary parts of the exact moments and the identified
moments, of the exact and identified dipolar sources presented in Figure 2 (Left), with stopping criterion
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ε̃ = 10−3, and an upper bound of the unknown dipolar sources M̃ = 7. The moments of the four dipolar
sources are well reconstructed, we observe very low values of the real and imaginary parts of the moment
of the fifth dipolar source S5(1.1001, 0.5498), and this permit to eliminate this dipolar source.
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Figure 4: The moments of the four dipolar sources are well reconstructed, and the values of the moment of S5 is very low, with level
noise 1%, stopping criterion is ε̃ = 10−3 and M̃ = 7.

5.2.1. Sensitivity to the relative position of two dipolar sources
In the following numerical experiment (Figure 5), we test the reconstruction of two close dipolar sources

C1 = (0.49, 0.6) and C2 = (0.5, 0.6) where the distance between them is d(C1,C2) = 0.01, the Fourier transforms
of their moments at 0 are respectively M̂1(0) = (0.5010,−0.0066) and M̂2(0) = (0.2734, 0.3734), where the
exact moments M1 and M2 are defined by:

M1(t) =

{ (
3e−t2

cos(3t), πt cos(2πt)
)

if t ∈ (0, 1)
(0, 0) if t = 0 or t ∈ [1, 4),



R. Mdimagh / Filomat 33:13 (2019), 4095–4114 4110

M2(t) =

{ (
1
2 ecos(πt) sin(πt), 1

4

)
if t ∈ (0, 1.5)

(0, 0) if t = 0 or t ∈ [1.5, 3),

The numerical reconstructions of the sources are computed with the value noise level ε = 1%, the stopping
criterion ε̃ = 10−3, and the upper bound of the unknown dipolar sources M̃ = 5, we observe that two dipolar
sources are identified: S1 = (0.2327, 0.1368) with moment q1 = (0.0146, 0.0117), and S2 = (0.492, 0.6059) with
moment q2 = (0.7959, 0.3930). We remark that the identified dipolar source S2 represents the barycenter of

the weighted points (C1,
M̂1(0)

M̂1(0)+M̂2(0)
) and (C2,

M̂2(0)
M̂1(0)+M̂2(0)

) (S2 '
M̂1(0)C1+M̂2(0)C2

M̂1(0)+M̂2(0)
) with moment M̂1(0) + M̂2(0) .
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Figure 5: Detection of two close dipolar sources: the identified points are S1 = (0.2327, 0.1368) with moment q1 = (0.0146, 0.0117), and

S2 = (0.492, 0.6059) ' M̂1(0)
M̂1(0)+M̂2(0)

C1 +
M̂2(0)

M̂1(0)+M̂2(0)
C2 with moment q2 = (0.7959, 0.3930) ' M̂1(0) + M̂2(0).
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Figure 6: Graphs of the real and imaginary parts of the exact and identified moments of two close points distant by 0.01.

In Figure 6, we display the real and imaginary parts of the exact and identified moments of the exact and
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identified dipolar sources presented in Figure 5. This experiment shows that the values of the moment of the
identified dipolar source S1 are very low, and this point can be eliminated, the real and imaginary parts of
the exact dipolar source C2 and the identified dipolar source S2 are different, we remark that the identified

dipolar source S2 represents the barycenter of the weighted points (C1,
M̂1(0)

M̂1(0)+M̂2(0)
) and (C2,

M̂2(0)
M̂1(0)+M̂2(0)

)

(S2 '
M̂1(0)C1+M̂2(0)C2

M̂1(0)+M̂2(0)
), with moment M1(t) + M2(t) see Figure 7, in which we represent the graph of the real

and imaginary parts of M1 + M2 and the moment of S2.
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Figure 7: Reconstruction of the graphs of the real parts and imaginary parts of M1 + M2 and the the graphs of the real and imaginary
parts of the moment of S2, when the exact dipolar sources are distant by 0.01.

5.2.2. Robustness of the method
The following experiments illustrate the cases of identification of four dipolar sources with data cor-

rupted by 20% pointwise relative random noise, an upper bound of the unknown dipolar sources M̃ = 7,
and stopping criterion respectively ε̃ = 10−2 and ε̃ = 10−3 . In Figure 8 (Left), the stopping criterion
ε̃ = 10−2, we observe that the four dipolar sources with their moments are well reconstructed, and for
ε̃ = 10−3, see Figure 8 (Right), another point is identified in more outside Ω S5(1.0996, 0.5495) with moment
q5(0.0004,−0.0002).
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Figure 8: Identification of four dipolar sources with 20% level noise and an upper bound of the unknown dipolar sources M̃ = 7.
Left: ε̃ = 10−2, well identification of the dipolar sources. Right: ε̃ = 10−3, a fifth point appears S5(1.0996, 0.5495) with moment
q5(0.0004,−0.0002).
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In Figure 9, we draw the graphs of the real and imaginary parts of the moments of the exact and identified
dipolar sources for the case ε̃ = 10−3 illustrated in Figure 8 (Right). We remark that the moments of the
four dipolar sources are well reconstructed, and the moment of the fifth dipolar source S5 is M5 ' (0, 0),
which can be eliminated. One clearly observes that our method is very robust with respect to this type of
noise. This is due to the fact that this noise is filtered by the reciprocity gap functional. This has also been
observed in previous works on this type of method see [6, 10, 14, 23, 33, 34].
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Figure 9: Well reconstruction of the moments with level noise 20%, M̃ = 7, and ε̃ = 10−3. Another dipolar source appears
S5(1.0996, 0.5495) with moment M5(t) ' (0, 0) which can be eliminated.

6. Conclusion

In this work, an identifiability result was proved for the problem of identifying dipolar sources with
time-dependent moments. Local Lipschitz stability result was established derived from the Gâteaux differ-
entiability, by establishing that the Gâteaux derivative is not zero. An algebraic algorithm was proposed
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using the reciprocity gap concept to identify the locations and the time-dependent moments of the dipo-
lar sources. The proposed method has been verified numerically, it was fast, robust, and gave a good
reconstruction of the dipolar sources and their moments, without using an initial estimate or an iterative
calculation of any forward solution.
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[37] M. N. Özisik and H.R.B. Orlande. Inverse Heat Transfer: Fundamentals and Applications. Hemisphere Pub, (2000).
[38] S. Vessella. Locations and strengths of point sources: Stability estimates. Inverse Problems,8,911-917, (1992).
[39] Z. X. Zhao, M. K. Banda AND B. Z. Guo. Simultaneous identification of diffusion coefficient, spacewise dependent source and

initial value for one-dimensional heat equation. Math. Meth. Appl. Sci. DOI: 10.1002/mma.4245, (2016)


