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Symmetrized GA-convexity and Related Some Integral Inequalities

Imdat Iscan?
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Abstract. In this paper, we introduce a new the concept called the symmetrized GA-convex function and
give Hermite-Hadamard’s inequalities for symmetrized GA-convex functions. Furthermore, we establish
Hermite-Hadamard type inequalites for the product of a GA-convex function with a symmetrized GA-
convex function and also for two symmetrized GA-convex functions.

1. Introduction

Let real function f be defined on some nonempty interval I of real line R. The function f is said to be
convex on [ if inequality

fltx+(1=hy) <tf(x)+ 1 =-1)f(y) 1)

holds forall x,y € I and t € [0,1].
The following definitions are well known in the literature.

Definition 1.1 ([9, 10]). A function f : I C (0, 00) — R is said to be GA-convex (geometric-arithmatically convex)

if
fEyT <t @)+ 1 -D f(y) )
forallx,y e land t € [0,1].

Since the condition (2) can be written as

(f o exp) (tlnx + (1~ ) Iny) < £ (f o exp) (Inx) + (1 - ) (f o exp) (iny),

then we observe that f : I C (0, 00) — Ris GA-convex on [ if and only if f o exp is convex on Inl := {Inz,z € I}
. If I = [a,b] then Inl = [Ina, Inb].

In [8], Latif et al. established the following inequality which is the weighted generalization of Hermite-
Hadamard inequality for GA-convex functions as follows:
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Theorem 1.2. Let f : I € (0,00) = R be a GA-convex function and a,b € [ witha < b. Let g : [a,b] — [0, o0) be

continuous positive mapping and geometrically symmetric with respect to Vab (i.e. gx) =g (%) forall x € [a,b]).
Then

f(«/%)fab%")dxsfubg(")f(")dngW);f(b) fab@dx‘

We will now give definitions of the right-sided and left-sided Hadamard fractional integrals which are
used throughout this paper.

Definition 1.3. Let f € L[a, b]. The left-sided and right-sided Hadamard fractional integrals J3, f and J;_f of oder
a > 0with b > a > 0 are defined by

1 r a-1 d
Joif(x) = @ f(ln %) f(t)?t, a<x<b

a

and

b
a-1
];’f(x)=$f(ln§) f(t)#,a<x<b

respectively, where I'() is the Gamma function defined by I'(at) = f e~'t7Ldt (see [7]).
0

Hermite-Hadamard'’s inequalities can be represented for GA-convex functions in fractional integral
forms as follows.

Theorem 1.4 ([5]). Let f : I C (0,00) — IR be a function such that f € L[a,b], where a,b € [ witha <b. If fisa
GA-convex function on [a, b, then the following inequalities for fractional integrals hold:

b
F(Vab) < ZOED e sy 4 g2 piwy) < LOESO N

2(int)’ 2

with a > 0.

In [6], the authors presented Hermite-Hadamard-Fejer inequalities for GA-convex functions in fractional
integral forms as follows:

Theorem 1.5. Let f : [a,b] € (0,00) — R be a GA-convex function on [a,b] with a < b and f € L[a,b]. If

g : [a,b] = R is nonnegative, integrable and geometrically symmetric with respect to Vab, then the following
inequalities for fractional integrals holds:

£ (V) [12,90) + J2_g@] < 12, Gy @)+ 12 (F9) @) < L2 1o 50 + i gt @

with a > 0.

For a function f : [4,b]— R we consider the symmetrical transform of f on the interval , denoted by

~

f (ap] OF simply f, when the interval [g, b] is implicit, which
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is defined by
Fx) = % [f() + f@a+b-x)], x € [a,b].
The anti symmetrical transform of f on the interval [g, b] is denoted by f[ﬂ,blor simply f as defined by
F) = % [f(x)— f@a+b-x)], x € [a,b].

It is obvious that for any function f we have f + f f.

If f is convex on [g, b], then f is also convex on [g, b]. But, when f is onvex on [4, b], f may not be convex
on [a, b] ([1]).

In [1], Dragomir introduced symmetrized convexity concept as follow:

Definition 1.6. A function f : [a,b]— R is said to be symmetrized convex (concave) on [a,b] if symmetrical

transform f is convex (concave) on [a, b].

Dragomir extended the Hermite-Hadamard inequality to the class of symmetrized convex functions as
follow:

Theorem 1.7 ([1]). Assume that f : [a,b]— R is symmetrized convex on the interval [a,b], then we have the
Hermite-Hadamard inequalities

b b
S

Theorem 1.8 ([1]). Assume that f : [a,b]— R is symmetrized convex on the interval [a, b]. Then for any x € [a, b]
we have the bounds

f b
f(%)sf(xF%[f(x)+f(a+b_x)]gw o

Corollary 1.9 ([1]). If f : [a, b]— R is symmetrized convex on the interval [a, b] and g : [a, b] — [0, oo) is integrable
on [a,b], then

b b D
f(“;b) [ awar< [ gef wax< LD [ g

a+h

Moreover, if g is symmetric with respect to B2 on [a, b], i.e. g(x) = g(a + b — x) for almost every x € [a, b], then

b b b b
f(“;b) [ awar< [ georax< D [

Theorem 1.10 ([1]). Assume that f : [a,b] C (0, 00) — R is symmetrized convex on the interval [a, b]. Then for any
x,y € [a,b] with x # y we have the Hermite-Hadamard inequalities

%[f(x+y)+f(a+b—x+7y)] z(y U f(t)dt+ﬂt f(t)dt] )

;1[f(x)+f(y)+f(ﬂ+b—X)+f(a+b—y)]-

IA
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In [2], Dragomir establish some Hermite-Hadamard type inequalities for the product of a convex
function with a symmetrized convex function and also for two convex functions. In [3], the author also we
obtain some Hermite-Hadamard type inequalities for product of symmetrized convex functions.

Motivated by the above results, in this paper we introduces the concept of the symmetrized GA-convex
function and establish some Hermite-Hadamard type inequalities for product of symmetrized GA-convex
functions. Some examples of interest are provided as well. Furthermore, we establish Hermite-Hadamard
type inequalites for the product of a GA-convex function with a symmetrized GA-convex function and also
for two symmetrized GA-convex functions.

2. Symmetrized GA-Convexity

For a function f : [4,b] € (0,00) = R we consider the geometric symmetrical transform of f on the
interval , denoted by Gy, or simply G, when the interval [a, b] is implicit, which
is defined by

Gf(x) = %[f(x) +f(%b)], X € [a,b].

The anti-geometric symmetrical transform of f on the interval [, b] is denoted by G flab) OF Simply G £ as
defined by

Grl) = [f( f(”b)], xelabl.

It is obvious that for any function f we have Gs + G = f.

If f is GA-convex on [g, b], then G £ is also GA-convex on [a, b]. Indeed, for any x,y € [a,b] and t € [0, 1]
we have

Gi'y'™) = [f(x y t)+f(x = t)]

o2 (5)
= e (#)]ra-0 (2]

= 1G4(x) + (1 - HG(y).

1
2
1
2

Remark 2.1. Consider the real numbers a < 0 < b with (a+1b) /2 > 0 and define the function f. : [e“ eb] -
R, f.(x) = In’x. Since the function (f.oexp)(x) = x° is not convex on [a,b], f. is not GA-convex on
[e",eb]. On the other hand, since the function (Gﬁ o exp) (x) =3 [x +(@+b- x)3] is convex on [a,b], Gﬁ (x) =

3 [ln3 x+@+b—-1In x)3] is GA-convex on [e“, e”] :

Definition 2.2. A function f : [a,b] C (0,00) = R is said to be symmetrized GA-convex (GA-concave)on [a, b] if
geometric symmetrical transform Gy is GA-convex (GA-concave) on [a, b].

Example 2.3. Let a,b € Rwith 0 < a < band o > 2. Then the function f : [a,b] - R, f(x) = (ln g)a—l s
GA-convex on [a,b]. Indeed, for any u,v € [a,b] and t € [0,1] by convexity of the function g(c) = ¢*1,C > 0, we
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have

f(ufvlff) _ (ln utvlt)a—l

a

a-1
(tlnE +(1-fHIn 2)
a a

¢ (ln g)“_l -1 (ln g)“_l
() + (1 - DF (o).

Thus Gy is also GA-convex on [a, b]. Therefore f is symmetrized GA-convex function.

IA

a-1
Example 2.4. Let « > 2. Then the function f : [a,b] € (0,00) = R, f(x) = (ln %) , 1s GA-convex on

[a, b] .Therefore f is symmetrized GA-convex function.

a-1 a—1
Example 2.5. Let a > 2. Then the function f : [a,b] € (0,00) = R, f(x) = (ln ;—‘) + (ln f) , is symmetrized

GA-convex function.

Now if GACla, b] is the class of GA-convex functions defined on I and SGAC][a, b] is the class of sym-
metrized GA-convex functions on [g, b] then

GACla,b] € SGACla, b].
Also, if [c,d] C [a,b] and f € SGAC]a, b], then this does not imply in general that f € SGACIc, d].

Proposition 2.6. Let f : [a,b] C (0, 00) = R be a function. f is symmetrized GA-convex on the interval [a, b] if and
only if f o exp is symmetrized convex on the interval [Ina, In b].

Proof. Let f be a symmetrized GA-convex function on the interval [, b]. If we take arbitrary x, y € [Ina,Inb],
then there exist u,v € [a,b] such thatx =lnu and y = Inv

(f o exp)(tx + (1= ) ®)
= % [(foexp)(tx+ (1 -ty)+ (foexp)(Ina+1Inb—tx — (1 -t)y)]

[(f o exp) (tx + (1 = )y) + (f o exp) ([In(ab) — x] + (1 — ) [In(ab) — y])]
t 1-t
-2 [(f o exp) (Inu'v™™) + (f o exp) [ln(%) (%) ]]

= N =

v
1 _ ab
- e
= Gyu'v'™).
Since f is a symmetrized GA-convex function on the interval [a, b], we have

Gru'v'™) < tGs(u) + (1 - HG(v) 9)
3o (2)| + a-og oA (%))

EF) + (1= ) f(0) = EF(e) + (1 — D £(e)
E(f 0 exp)(x) + (1 — D(f o exp)(y)

By (8) and (9), we obtain that f o exp is symmetrized convex on the interval [Ina, In b].
Conversely, if f o exp is symmetrized convex on the interval [Ina, Inb] then it is easily seen that f is
symmetrized GA-convex on the interval [g, b] by a similar procedure. The details are omitted. [
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Theorem 2.7. If f : [a,b] C (0, 00) = R is symmetrized GA-convex on the interval [a, b], then we have the Hermite-
Hadamard inequalities

F(Vab) < —1 fub@ xsf—(”);f(b). (10)

<
" Inb-Ina X

Proof. Since f : [a,b] € (0,00) = R is symmetri%ed GA-convex on the interval [g, ], then by writing the
Hermite-Hadamard inequality for the function G we have

) y ;
& (Va) 1 f Gf(x)dx < Gy(a) + G¢(b)

< 7
" Inb-1Ina x 2

(11)

where, it is easily seen that

Gf(‘/a_b):f(\/a_b), Gf(“);Gf(b) _ f(ﬂ);rf(b)’

and

b (% b
1 fo(x)d_ 1 f@

Inb—1Ina x “Inb-Ina J, «x
Then by (11) we get required inequalities. [

Remark 2.8. By helping Theorem 1.7 and Proposition 2.6, the proof of Theorem 2.7 can also be given as follows :
Since f : [a,b] € (0, 00) = R is symmetrized GA-convex on the interval [a, b], f o exp is symmetrized convex on
the interval [Ina,Inb]. So, by Theorem 1.7 we have

Ina +Inb 1 inb o 1 o Inb
(foeXP)(na; d )Slnb—lnaf (foexp)(x)dxg(f exp)(n“);(f exp) (In ),

Ina

ie.
1 "fx) . fl@)+ f(b)
f(\/%)slnb—lna\fa‘deS 2 '

Theorem 2.9. If f : [a,b] C (0, o) = R is symmetrized GA-convex on the interval [a, b]. Then for any x € [a, b] we
have the bounds

f0+ 1) W)

f(Vab) < Gy (x) <
Proof. SinceG 7 is GA-convex on [g, b] then for any x € [4, b] we have

Gr(x) + GA(2)

F(Vab) = & (Vab) < L0

=Gf(x).

This give us the first inequality in (12).
Also, for any x € [a, D] there exist a number ¢ty € [0, 1] such that x = atopl—h, By the GA-convexity of Gy
we have
Cf x) < toéf (@) +(1- to)éf (b)

- G- 10O

which gives the second inequality in (12). O
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Remark 2.10. By helping Theorem 1.8 and Proposition 2.6, the proof of Theorem 2.9 can also be given as follows :
Since f : [a,b] C (0, 00) = R is symmetrized GA-convex on the interval [a, b], f o exp is symmetrized convex on
the interval [Ina,Inb]. So, by Theorem 1.8 we have

(Foex) (@) < (f o exp)(lnx) < (f o exp) (Ina) *2' (f oexp) (In b)

f(\/cz_b)séf(x)s f(ﬂ);f(b)

forany x € [a, b].

Remark 2.11. If f : [a,b] C (0, o0) = R is symmetrized GA-convex on the interval [a, b], then we have the bounds

inf Gf (x) = f( \/E)

x€[a,b]

and

f@+ f0)

sup Cif (x) = >

x€la,b]

Corollary 2.12. If f : [a,b] C (0, 00) = R is symmetrized GA-convex on the interval [a,b] and g : [a,b] — [0, o0)
is integrable on [a, b], then

f(af“’ fmwm mwwfw> -
Moreover, if g is geometrically symmetric with respect to Nab on [a,b], i.e. g(x) = g(ab/x) for all every x € [a, b],
then
b b B [t
\/_b)f %x)dx < f g(x)j;(x)dx 1@ - /® f @dx. (14)

Proof. The inequality (13) follows by (12) multiplying by g(x)/x > 0 and integrating over x on [a, b].
By changing the variable, we have

j~<wd%) j*m%v@>
— dx
a a X

Since g is geometrically symmetric with respect to Vab, then

f !J(”b)f 9ENf @) f gOfF ()

gamﬂx 1]t g00f @ b gf (%)
f E{L . dx+£—x dx

b
f gOf @)
. x

and by (13) we get (14). O
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Remark 2.13. The inequality (14) is known as weighted generalization of Hermite-Hadamard inequality for GA-
convex functions. It has been shown now that this inequality remains valid for the larger class of symmetrized
GA-convex functions f on the interval [a, b].

Remark 2.14. We note that by helping Corollary 1.9 and Proposition 2.6, the proof of Corollary 2.12 can also be
given. The details is omitted.

-1
Remark 2.15. Let a,b,a € Rwith 0 < a < band a > 2. Then the function f : [a,b] - R, f(x) = (ln ;—‘)a is
symmetrized GA-convex on [a, b], then

i.) If we consider the function

jo-(n3)

which is symmetrized GA-convex on [a, b] in the inequality (13), then we have

1 (Y9 Ta+1) ., X L
Fjav %dxsﬁ[lmg(b)"']b_g(a)]gzl %dx

forany g : [a,b] — [0, o) is integrable on [a, b]
ii.) If we consider the function

g(x) = (ln ;—C)a_l + (ln g)“—l

which is geometrically symmetric with respect to Vab in the inequality (14), then we have the following inequalities

£(Va) = D e ey feoy] < LSO

"2ty
which are the same of inequalities in (3).
iii.) Let w be geometrically symmetric with respect to Vab. If we consider the function

a— a—1
g(x) = [(ln g) 1 + (1n z) ]w(x)

which is geometrically symmetric with respect to Vab in the inequality (14), then we have the following inequalities

£ (Vab) [0 + e w@)] < 12 fw®) + I fo@)]
< w[;ﬁw(b)+ Jiw(@)]

which are the same of inequalities in (4).

Theorem 2.16. Assume that f : [a,b] C (0, o0) — R is symmetrized GA-convex on the interval [a, b]. Then for any
x,y € [a,b] with x # y we have the Hermite-Hadamard inequalities

1 ab 1 Y f(t) P f()
oG < mamll e [, P "

s (%) (%)

IN
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Proof. Since G o] is GA-convex on [a, b], then G lab] is also GA-convex on any subinterval [x, y] (or [y, x])
where x, y € [a, b].
By Hermite-Hadamard inequalities for GA-convex functions we have

< 1 Y G o) () Grap(¥) + Grlap(y)
Crton (VFY) < 1= —Inx f ——dt < 5 (16)

for any x, y € [a,b] with x # .
By definition of Gy, we have

Grion (VFY) = % [f( v f(\j—i_y)]

Y Grlap(t) 1 (Y1 b
fx ”t“ it = zfx?[f(t)+f(a7)]dt

1R, 1 f(8)
- 5 [ BPaeg [ =P

1Y 1 M)
‘EfxT”E 5t

ab/y

and

Gron®) + Gran(y) 1 b b
e S s o+ (%) + (5|

Thus by (16) we obtain the desired result (15). O

Remark 2.17. We note that by helping Theorem 1.10 and Proposition 2.6, the proof of Theorem 2.16 can also be
given. The details is omitted.

Remark 2.18. If we take x = a and y = b in (15), then we get (10). If, for a given x € [a, b, we take y = ab/x, then
from (15) we get

1 R 1 ab
f( \/ﬂ_b) < W f: Tdt < E [f(x) + f(;)jl , 17)

where x # Vab, provided that f : [a,b] C (0, ) — R is symmetrized GA-convex on the interval [a, b].
Multiplying the inequalities (17) by 1/x, then integrating the resulting inequality over x we get the following
refinement of the first part of (10)

1 1 0 1 (" f®
f(‘@)szlnb/afa Lln(@/x)f Tdt]dxslnb/a R

provided that f : [a,b] C (0, 00) — R is symmetrized GA-convex on the interval [a, b].

When the function is GA-convex, we have the following inequalities as well:
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Remark 2.19. If f : [a,b] € (0, c0) — R is GA-convex, then from (15) we have the inequalities

f(Nab)

IA

) o

sl P [, Pl
<t s(2)s(2))

forany x,y € [a,b] with x # y.
If we multiply the inequalities(18) by 1/ (xy) and integrate (18) over (x,y) on the square [a,b)* and divide by
(Inb/a)* , then we get the following refinement of the first Hermite-Hadamard inequality for convex functions

2(lnb/u) [fff(\/_)dd ff ( )dXdy]
b/x
2(1nb/a)2fa f xyln(y/x) Uy ffft w f/y f(f)dt]d w0
b
lni/afa @dx

3. The Case of One GA-convex and the other Symmetrized GA-convex functions

3 v (-

IA

f(Vab)

IA

In this section, we analyze the case in which one function is GA-convex (concave) in the classical sense
and the other is symmetrized GA-convex (concave) on an interval [a, D].

Theorem 3.1. Assume that g : [a,b] € (0,00) = R is GA-convex (concave) and f : [a,b] € (0,00) — R is
symmetrized GA-convex (concave) and integrable on the interval [a, b]. Then we have

lni/a f e (J;) i (19)
SRS L Ny PN Sy o PO GRS LEUTYC)

and
lni/a f . (9;) i (20)
Sg(u);g(b)ﬁf;@derf(\/“_b)ﬁ ub@dx—f(%)g(a);g(b)-

Proof. Assume that g: [2,b] — Ris GA-convex and f : [4,b] — Ris symmetrized GA-convex on [4, b] , then
for any t € [0,1]

g@'b'™) < tg(a) + (1 - Hg(b) (21)
and by (12) we have
£(Vab) = Gy ater~r) < L2 22)
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By (21) and (22), we get
0 < [tg(@) +(1-Hgb) - g(@'b'™)] [M -G (afb“)]
= 1t9@+ 1 - g L2 gy [0S0

~[tg@ + (1 = )g(0)] Gy (a'b'™") + Gy (a'b'") gla'b' ™).

That is equivalent to

[tg(ﬂ) + (1 _ t) (b ] f(Cl + f(b) ( tbl t) (atbl—t)

> g IO gy - ngon e ().

Integrating over ¢ on [0, 1], we get

f@)+ fb) [ ' _ _
> fo [tg(a) + (1 — B)g(b)] dt + fo Gy (a'p') g(a'p" "yt
f(a) + f(b)

1 1
> > fo g(a'b"ydt + fo [tg@) + (1 = )g(0)] Gy (a'b'™) dt.

Observe that

g(a) + g(b)

f g(x)
lnb —Ina

"G
lnb —Ina f X

1
fo [tg(a) + (1 - t)g(b)]dt =

1
f g(a'b*)dt
0

1
f Gy (a'b™") g(a'b ")t
0

and
[ Jrgta) + (- g &y (a0
0
1 1
= 5 (b1t 0 (A1t
= g(a)fOth(ab )dt+g(b)f0(1 HGr (a'b')dt.

Since G r is geometrically symmetric with respect to Vab, we have

' Ye tpl-t _fl o ty1-t
fo(l HGs(a'b'")dt = | Gy (a'b')dt,

0

thus by (24), we get

l L0 + (1~ g1 G (@5t = [g@) + o) / 6 (0.
0 0

4131

(23)

(24)
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Further,

1 1 .
f téf (atbl—t> dt = 1 |:f tf(atbl—t)dt + f tf(al—tbt)dt]
0 2(Jo 0
1 1
= 1 [f tf(atblft)dt + f (1 _ f)f(atblt)dt]
2(Jo 0

O P ' f®)
= E]O‘ f(a bl )dt—mﬁ de

By the inequality (23), we get
f@+ fb) gl@) +9(b) 1 fb Gy ()9
+ dx
2 2 Inb—-1na J, X

f@+fb) 1 Ygtx)  g@+gb) 1 Y f(x)
= 2 1nb—1nafa7d“ 2 mb-mna), x ™

and the inequality (19) is proved.
By (21) and (22), we also have

[t9(6) + (1 - 1) — g(av')] [G () - £ (Vab)]
[tg(@) + (1 - Hg®)] G (a'b'") + g(a'b' ") f ( Vab)
~[tg(a) + (1 - )g®)] f ( Vab) - g(@'b' )Gy (a'b™™")
for any t € [0, 1],which is equivalent to
[t9(@) + (1 = gO)] £ (Nab) + g(a't™™)Gy (a'5")
< 0+ 1D (#8) gty (V)

0

IN

forany t € [0,1].
Taking the integral over ¢ € [0, 1], we get

\/_ ! ! t1 1=ty 2 t,1-t
f(Vab) fo [tg(a) + (1 — B)g(b)] dt + j; 9@ )Gy (a'b' ") dt

)
f(\/a—b) g(a) + g(b) L1 f Gr(x) g(x) i

2 Inb-1Ina X

IA

0 0

g +g) 1 Y f(x) 1 ? g(x)
2 (lnb—lna)fa Td“f(‘/“_b)lnb—lnafa 7

and the inequality (20) is proved. O

4. Inequalities for Product of Symmetrized GA-convex functions

Theorem 4.1. Assume that both f,g : [a,b] C (0,00) — R are symmetrized GA-convex and integrable on the
interval [a, b]. Then we have

b Gr(x) G
1 f £ (%) g(x)dx
Inb/a J, X

> {Smia(f, 9;4,b), Stra(f, 950, b)}, (25)
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and

ln}a _ fﬂb Gy (x)x Gy < A{Swix(f, 9:a,b), Smix(g, f;4,0)) 26)
where

Swia(F,g:0,b) = g(Vab lb/ ff(x)d x+ f(Vab lb/ fg(x)dx Vab) g(Vab),

St = L0 f @dxﬂ(ﬂ);g(b) 1 f [0, S0+ 1090+90)
and

f@+fb) 1 g(x) fx f(ﬂ)+fb)
Sixlf:9:8,0) = 57— lnb/af g (Vab lnb/af g(Vab).

Proof. By (12) we have
(60~ F(V) (640 -0 (ViT) 20

for any x € [a, b].
This is equivalent to

Gf(x)(v}g(x)+f(\/a_b)g(@) (x)g(\/_)+G (x)f(\/_) (27)

for any x € [a, b].
If we multiply the inequality (27) by 1/x and integrate over x on [4, b] and divide by Inb/a , then we get

1f“TMWﬂMHM>

Inb/a
Gf G (x
> g (Ve 1b/f e (G 1b/f
and since
LG, 1l e, 1 f()
1nb/afa X ax = E[lnb/aj; de+lnb/afa X ax

I S )
~ b/aj; =
the inequality

1 fh Gr (%) Gy (x)
Inb/a J, X

dx > Syia(f, g;a,b)

is easily obtained.
Also, by (12) we have

b 5 b 9
(M _cf(x))(w ~Gy)=0

for any x € [a, b], which by the same procedure produces the inequality

1 ! GVf () ég ()
Inb/a fa ¥ dx > Sy(f, g;a,b).
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Finally, if both of them are symmetrized convex, then by (12) we have

w - Gy (x)) (Gy (@)= g(Vab)) 2 0 (28)

for any x € [a, b], which is equivalent to

660 < L6, 0+ 650 (Vi) - L2 L (Vi)

for any x € [a,b]. If we multlply the last inequality by 1/x and integrate over x on [, ] and divide by Inb/a,
then we get the desired result

1 v Gy (%) Gy (x)
Inb/a f X

dx < Smix(f/ g,a, b)
The inequality

1 " G () Gy (v)
Inb/a f X

dx < Smix(g/f;al b)

follows from (28) by replacing f withg. O
Remark 4.2. Observe that

fb GG f[f(x)+f(“;)][ g(x) +g(2)]

X X

dx

ab

_ [ " fet fbf(x)ﬂx) . fbf@fx("z)dx+ f"f(%)g(%)dx]

X

ab

o e (R
= §|: } o dx+fa de

f "G 09
. X

fb Gf<x>c oF f f(x)G

From (25) and (26) we then have

and

b G G
(St 5:0,5), Soalf, G0 D)} < lnz/a f f (x) g(x f f (x (x)
< {sz‘x(f/!]}ﬂ/ b), Smlx(g/f/ar b)}

The following particular case when one of the functions is geometrically symmetric with respect to Vab
on [a,b] holds:

Corollary 4.3. Assume that both f : [a,b] C (0, 0) — R is GA-convex and geometrically symmetric with respect
to Vab. If g :[a,b] C (0, 00) — R is symmetrized GA-convex and integrable on the interval [a, b], then

1 b
{Smia(f, 9;8,b), Sua(f, g;0,b)} < o f f (xlg(x) p
{Smix(f/ g, 4, b), Smix(g,f,' a, b)} .

IA
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Theorem 4.4. Assume that both f, g : [a,b] € (0,00) — [0, ) are symmetrized GA-convex and integrable on the
interval [a, b]. Then we have

f(Nab)g (Vab)

IA

1 b
FO) s | @)

1 (PGgk)
lnb/afﬂ x>

b
fla)+f) 1 f@dx

IA

IA

2 Inb/a

fl@) + () g(a) + g(b)
2 2 ’

IA

and

IN

g(Vab) i (30)

Inb-Ina J, x
1 ("G
Inb/a fa X ax
b
9@+ 1 (U fE)

f(Nab)g (Vab)

IN

2 Inbja J, «x

f(a)+ £(b) g(a) + g(b)
2 2

IN

IA

Proof. If f,g : [a,b] C (0, 0) — R are symmetrized GA-convex, then by (12) we have

) b

0= F(Vab) = Gyt < LOZSO (31)
and

0 g(Va) < G, (0 < L2200 32)

for any x € [a, b]. 5
If we multiply (31) by G, (x), then we get

0< f(Vab) Gy () < Gr ()G, () < Jwégm

for any x € [a, b]. If we multiply the last inequality by 1/x and integrate over x on [4, b] and divide by Inb/a,
then we get

1 (PG 1 (GG R . f@+fb) 1 (PG
osf(%)lnb/aj; —dx < fa dx < fa dx,

b/a X 2 Inb/a X
namely
1 (T9W 1 (P6@e®  f@+fO) 1 (T gE)
0< f(\/a_b) lnb/afa X ax < lnb/afa X dx < 2 lnb/afa X ax, 33
Since, by (10) we have

g(VaB) < ! fab I g < 90290

<
" Inb-1Ina x
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then

(V)9 (VaE) < (V) st [ 22

and

f@+f@) 1 fb 9@, f@+fO) g@) + 90b)
2 Inb/a J, x 2 2

By utilising (33)-(35) we get (29).

4136

(34)

(35)

The inequality (30) follows in a similar way by making use of (32) and a similar procedure. The details

are omitted. [
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