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Abstract. This paper defines a new class of L-fuzzy sets called r-L-fuzzy biconvex sets in (L,M)-fuzzy
convex structures (X,C), where C is an (L,M)-fuzzy convexity on X, and some of their properties were
studied. In addition, we introduce (L,M)-fuzzy topological convexity space and study some of its properties.
Finally, we introduce locally (L,M)-fuzzy topology (L,M)-fuzzy convexity space and study some of its
properties.

1. Introduction and Preliminaries

Abstract convexity theory in [26] plays an important role in various branches of mathematics. It deals
with set-theoretic structures which satisfies axioms similar to that usual convex sets fulfill. Here, by ”usual
convex sets”, we mean convex sets in real linear spaces. Also, abstract convexity theory has been applied to
many different mathematical research fields, such as topological spaces, lattices, metric spaces and graphs
(see, for example, [7, 11, 12, 24, 27, 29, 35]). The concept of convex structures as a topology-like structure, it
can be also treated as a special kind of spatial structures and some topology-like properties.

For a generalization of a convex structure, Rosa in 1994 introduced the notion of fuzzy convex structure
in [20, 21] which is called I-convex structure. Also, he studied a fuzzy topology together with a fuzzy
convexity on the same underlying set X, and introduced fuzzy topology fuzzy convexity spaces and the
notion of fuzzy local convexity. By framework, which proposed in [23], Li [9] presented a categorical
approach to enrich (L,M)-fuzzy convex structures, Xiu et al [32] presented a degree approach to study the
relationship between (L,M)-fuzzy convex structures and (L,M)-fuzzy closure systems and Wu and Li [31]
introduced (L,M)-fuzzy domain finiteness, (L,M)-fuzzy restricted hull spaces and several characterizations
of the category (L,M)-CS of (L,M)-fuzzy convex spaces. Recently, there has been significant research on
fuzzy convex structures ( [8, 13–17, 22, 28, 33, 34]).

The main contributions of the present paper are to give some further investigations on (L,M)-fuzzy
convex structures, mainly including fuzzy hull operators and fuzzy topological convexity structures with
respect to (L,M)-fuzzy convex structures. The transformation method between L-fuzzy hull operators and
(L,M)-fuzzy convex structures were introduced. The continuous image of the locally (L,M)-fuzzy topology
(L,M)-fuzzy convexity space was given. A characterization of the product of the L-fuzzy hull operator and
the locally fuzzy convex space was obtained.
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Throughout this paper, let X be a non-empty set, both L and M be completely distributive lattices with
order reversing involution ′ where ⊥M (⊥L) and >M(>L) denote the least and the greatest elements in M(L)
respectively, and M⊥M = M − {⊥M}(L⊥L = L − {⊥L}). An L-fuzzy subset of X is a mapping µ : X −→ L and
the family LX denoted the set of all fuzzy subsets of a given X [3]. The least and the greatest elements in LX

are denoted by χ∅ and χX, respectively. For each α ∈ L, let α denote the constant L-fuzzy subset of X with
the value α. The complementation of a fuzzy subset are defined as µ′(x) = (µ(x))′ for all x ∈ X, (e.g. µ′(x) =
1 − µ(x) in the case of L = [0, 1]). Let X =

∏
i∈Γ Xi and µi ∈ LXi , then µ ∈ LX denote the product of all µi ∈ LXi

is defined as follows: µ(x) = ∧i∈Γµi(xi) for all x ∈ X [25].

Definition 1.1. ([5]) Let ∅ , Y ⊆ X and µ ∈ LX; the restriction of µ on Y, is denoted by µ|Y. The extension of
µ ∈ LY on X, denoted by µX, is defined by

µX(x) =

{
µ(x), if x ∈ Y,
⊥L, if x ∈ X − Y.

Definition 1.2. ([4, 18]) A fuzzy point xt for t ∈ L⊥L is an element of LX such that

xt(y) =

{
t, if y = x,
⊥L, if y , x.

The set of all fuzzy points in X is denoted by Pt(X).

Definition 1.3. ([36]) Let f : X −→ Y. Then the image f→(µ) of µ ∈ LX and the preimage f←(ν) of ν ∈ LY are
defined by:

f→(µ)(y) =
∨
{µ(x) : x ∈ X, f (x) = y} and f←(ν) = ν ◦ f , respectively.

Definition 1.4. ([23]) The pair (X,C) is called an (L,M)-fuzzy convex structure, where C : LX
−→M satisfies

the following axioms:
(LMC1) C(χ∅) = C(χX) = >M.
(LMC2) If {µi : i ∈ Γ} ⊆ LX is nonempty, then C(

∧
i∈Γ µi) ≥

∧
i∈Γ C(µi).

(LMC3) If {µi : i ∈ Γ} ⊆ LX is nonempty and totally ordered by inclusion, then C(
∨

i∈Γ µi) ≥
∧

i∈Γ C(µi).
The mapping C is called an (L,M)-fuzzy convexity on X and C(µ) can be regarded as the degree to which µ
is an L-convex fuzzy set.

Definition 1.5. ([23]) Let (X,C) and (Y,D) be (L,M)-fuzzy convex structures. A function f : X −→ Y is
called:

(1) An (L,M)-fuzzy convexity preserving function if C( f←(µ)) ≥ D(µ) for all µ ∈ LY.
(2) An (L,M)-fuzzy convex-to-convex function ifD( f→(µ)) ≥ C(µ) for all µ ∈ LX.

Theorem 1.6. ([23]) Let (X,C) be an (L,M)-fuzzy convex structure, ∅ , Y ⊆ X. Then (Y,C|Y) is an (L,M)-fuzzy
convex structure on Y, where

(C|Y)(µ) =
∨
{C(ν) : ν ∈ LX, ν|Y = µ},

for each µ ∈ LY. The pair (Y,C|Y) is called an (L,M)-fuzzy convex sub-structure of (X,C).

Definition 1.7. ([23]) Let {(Xi,Ci) : i ∈ Γ} be a set of (L,M)-fuzzy convex structures, X be the product of the
sets Xi for i ∈ Γ and πi : X −→ Xi be the projection for each i ∈ Γ. Define a mapping ϕ : LX

−→M by

ϕ(µ) =
∨
i∈Γ

∨
π←i (ν)=µ

Ci(ν), for each µ, ν ∈ LX.

Then the product convexity C of X is the one generated by subbase ϕ. The resulting (L,M)-fuzzy convex
structure (X,C) is called the product of {(Xi,Ci) : i ∈ Γ} and is denoted by

∏
i∈Γ(Xi,Ci).
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Definition 1.8. ([6], [25]) An (L,M)-fuzzy topology on X is a map T : LX
−→ M with the following

conditions:
(1) T (χ∅) = T (χX) = >M.
(2) T (µ ∧ ν) ≥ T (µ) ∧ T (ν), ∀µ, ν ∈ LX

(3) T (
∨

i∈Γ µi) ≥
∧

i∈Γ T (µi), ∀µi ∈ LX, i ∈ Γ.
The pair (X,T ) is called an (L,M)-fuzzy topological space.

Definition 1.9. ([25]) Let f : (X,T 1) −→ (Y,T 2) be a mapping. Then, f is called
(1) An (L,M)-fuzzy continuous if T 1( f←(µ)) ≥ T 2(µ) for all µ ∈ LY;
(2) An (L,M)-fuzzy open if T 2( f→(µ)) ≥ T 1(µ) for all µ ∈ LX.

Proposition 1.10. ([2, 19]) Let (X,T ) be an (L,M)-fuzzy topological space and A ⊆ X. Define a mapping TA :
LX
−→M by

TA(µ) =
∨
{T (ν) : ν ∈ LX, ν|A = µ}.

(
∨

being the supremum operation on M). Then TA is an (L,M)-fuzzy topology A.

Theorem 1.11. ([1, 30]) Let f : X −→ Y. Then, for all µ, µi ∈ LY and ν, νi ∈ LX

(1) µ ≥ f→( f←(µ)) with equality if f is surjective.
(2) ν ≤ f←( f→(ν)) with equality if f is injective.
(3) f←(µ′) = ( f←(µ))′.
(4) f←(

∨
i∈Γ µi) =

∨
i∈Γ f←(µi).

(5) f←(
∧

i∈Γ µi) =
∧

i∈Γ f←(µi).
(6) f→(

∨
i∈Γ νi) =

∨
i∈Γ f→(νi).

(7) f→(
∧

i∈Γ νi) ≤
∧

i∈Γ f→(νi) with equality if f is injective.

2. r-L-Fuzzy Biconvex Sets

Definition 2.1. Let (X,C) be an (L,M)-fuzzy convex structure, r ∈M⊥M andµ ∈ LX.Thenµ is called r-L-fuzzy
biconvex set if C(µ) ≥ r and C(µ′) ≥ r.

Note: χ∅ and χX are r-L-fuzzy biconvex sets.

Proposition 2.2. Let (X,C) and (Y,D) be an (L,M)-fuzzy convex structures, f : X −→ Y be (L,M)-fuzzy convexity
preserving function and µ be r-L-fuzzy biconvex set in Y. Then f←(µ) is r-L-fuzzy biconvex set in X.

Proof. Let µ be r-L-fuzzy biconvex set in Y. Then D(µ) ≥ r and D(µ′) ≥ r. Therefore, by assumption we
obtain C( f←(µ)) ≥ r and C( f←(µ′)) ≥ r. By the equality, f←(µ′) = ( f←(µ))′ we have C(( f←(µ))′) ≥ r. So, f←(µ)
is r-L-fuzzy biconvex set in X is obtained.

Proposition 2.3. Let (X,C) be an (L,M)-fuzzy convex structure, ∅ , Y ⊆ X and µ is an r-L-fuzzy biconvex set in
(X,C). Then µ|Y is an r-L-fuzzy biconvex set in (Y,C|Y).

Proof. Let µ be an r-L-fuzzy biconvex set in (X,C). On one hand, C(µ) ≥ r. Then,

(C|Y)(µ|Y) =
∨
{C(ν) : ν ∈ LX, ν|Y = µ|Y}.

Put ν = µ, we obtain (C|Y)(µ|Y) ≥ r. On the other hand C(µ′) ≥ r. Hence,

(C|Y)((µ|Y)′) =
∨
{C(λ) : λ ∈ LX, λ|Y = (µ|Y)′}

=
∨
{C(λ) : λ ∈ LX, λ|Y = µ′|Y}.

Put λ = µ′, we obtain (C|Y)((µ|Y)′) ≥ r. Therefor µ|Y is r-L-fuzzy biconvex set in (Y,C|Y).
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Theorem 2.4. Let (X,C) be an (L,M)-fuzzy convex structure. For each µ ∈ LX and r ∈ M⊥M a mapping CO :
LX
×M⊥M −→ LX is defined as follows:

CO(µ, r) =
∧
{ν ∈ LX : µ ≤ ν, C(ν) ≥ r}.

For µ, ν ∈ LX and r, s ∈M⊥M the operator CO satisfies the following conditions:

(1) CO(χ∅, r) = χ∅.
(2) µ ≤ CO(µ, r).
(3) If µ ≤ ν, then CO(µ, r) ≤ CO(ν, r).
(4) if r ≤ s, then CO(µ, r) ≤ CO(µ, s).
(5) CO(CO(µ, r), r) = CO(µ, r).
(6) For {µi : i ∈ Γ} ⊆ LX is nonempty and totally ordered by inclusion, CO(

∨
i∈Γ µi, r) =

∨
i∈Γ CO(µi, r).

A mapping CO is called an L-fuzzy hull operator.

Proof. (1) For all r ∈M⊥M , we have C(χ∅) ≥ r. So, we obtain CO(χ∅, r) = χ∅.
(2) and (3) are satisfied from the definition of CO.
(4) Suppose that r ≤ s. Then by (2) we have

CO(µ, r) ≤ CO(CO(µ, s), r).

By the definition of CO,we obtain C(CO(µ, s)) ≥ r. So, CO(CO(µ, s), r) = CO(µ, s).Hence CO(µ, r) ≤ CO(µ, s).
(5) It is enough to verify that CO(CO(µ, r), r) ≤ CO(µ, r). Suppose that there exists µ ∈ LX, r ∈ M⊥M and

x ∈ X such that

CO(CO(µ, r), r)(x) > CO(µ, r)(x).

By the definition of CO(µ, r), there exists ν ∈ LX with µ ≤ ν and C(ν) ≥ r such that

CO(CO(µ, r), r)(x) > ν(x) ≥ CO(µ, r)(x).

On the other hand, CO(µ, r) ≤ ν andC(ν) ≥ r.By the definition of CO(CO(µ, r), r),we have CO(CO(µ, r), r)(x) ≤
ν(x). It is a contradiction. Thus, CO(CO(µ, r), r) = CO(µ, r).

(6) For i ∈ Γ, we have

µi ≤
∨

µi. Therefore by (3) we have CO(µi, r) ≤ CO(
∨

µi, r).

Hence,∨
CO(µi, r) ≤ CO(

∨
µi, r). (1)

On the other hand, by (2), we have
∨
µi ≤

∨
CO(µi, r). Since CO(µi, r) are L-fuzzy convex sets totally ordered

by inclusion,
∨

CO(µi, r) is an r-L-fuzzy convex set containing
∨
µi. So, CO(

∨
µi, r) is the smallest fuzzy

convex set containing
∨
µi and hence,∨

µi ≤ CO(
∨

µi, r) ≤
∨

CO(µi, r). (2)

From equations (1) and (2), we have CO(
∨
µi, r) =

∨
CO(µi, r).

The triple (X,C1,C2) is called an (L,M)-fuzzy biconvex structure ((L,M)-fbcs, for short) where C1 and C2

are (L,M)-fuzzy convexities on X.

Proposition 2.5. Let (X,C1,C2) be an (L,M)-fbcs. For each r ∈M⊥M and µ ∈ LX, a mapping CO12 : LX
×M⊥M −→

LX is defined as follows:

CO12(µ, r) = CO1(µ, r) ∧ CO2(µ, r).

Then, CO12 is an L-fuzzy hull operator.
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Proof. (1) By Theorem 2.4 (1), we have CO1(χ∅, r) = χ∅ and CO2(χ∅, r) = χ∅ for all r ∈M⊥M . So,

CO12(χ∅, r) = CO1(χ∅, r) ∧ CO2(χ∅, r)
= χ∅ ∧ χ∅ = χ∅.

(2) Since, µ ≤ CO1(µ, r) and µ ≤ CO2(µ, r), we obtain

µ = µ ∧ µ ≤ CO1(µ, r) ∧ CO2(µ, r)
= CO12(µ, r).

(3) Let µ ≤ ν. Then by Theorem 2.4 (3) we obtain

CO1(µ, r) ≤ CO1(ν, r) and CO2(µ, r) ≤ CO2(ν, r).

Therefore,

CO12(µ, r) = CO1(µ, r) ∧ CO2(µ, r)
≤ CO1(ν, r) ∧ CO2(ν, r)
= CO12(ν, r).

(4) Let r ≤ s. Then we have from Theorem 2.4 (4)

CO1(µ, r) ≤ CO1(µ, s) and CO2(µ, r) ≤ CO2(µ, s).

Therefore,

CO12(µ, r) = CO1(µ, r) ∧ CO2(µ, r)
≤ CO1(µ, s) ∧ CO2(µ, s)
= CO12(µ, s).

(5) For all µ ∈ LX, r ∈M⊥M .

CO12(CO12(µ, r), r) = CO1(CO12(µ, r), r) ∧ CO2(CO12(µ, r), r)
≤ CO1(CO1(µ, r), r) ∧ CO2(CO2(µ, r), r)
= CO1(µ, r) ∧ CO2(µ, r) = CO12(µ, r).

(6) Let {µi : i ∈ Γ} ⊂ LX be nonempty and totally ordered by inclusion. Then, for r ∈ M⊥M , by applying
Theorem 2.4 (6) we have

CO12(
∨

i∈Γ µi, r) = CO1(
∨
i∈Γ

µi, r) ∧ CO2(
∨
i∈Γ

µi, r)

=
∨
i∈Γ

CO1(µi, r) ∧
∨
i∈Γ

CO2(µi, r)

=
∨
i∈Γ

(CO1(µi, r) ∧ CO2(µi, r)) Since L is distributive lattices

=
∨
i∈Γ

CO12(µi, r).

So we obtain CO12(
∨

i∈Γ µi, r) =
∨

i∈Γ CO12(µi, r).

Proposition 2.6. For an (L,M)-fuzzy hull operator CO12, µ ∈ LX and r ∈ M⊥M a mapping CCO12
: LX

−→ M is
defined as follows

C
CO12

(µ) =
∨
{r ∈M⊥M : µ = CO12(µ, r)}.

Then:
(1) CCO12 is an (L,M)-fuzzy convexity on X.
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(2) (CO12)C
CO12

= CO12.

Proof. (1) (LMC1) Since for all r ∈ M⊥M , CO12(χ∅, r) = χ∅ and χX ≤ CO12(χX, r) we have CCO12
(χ∅) =

C
CO12

(χX) = >M.
(LMC2) Let µ =

∧
i∈Γ µi and CCO12

(
∧

i∈Γ µi) �
∧

i∈Γ C
CO12

(µi). Then there exists r0 ∈M⊥M such that

CO12(µ, r0) ≤ CO12(µi, r0) for all i ∈ Γ.

and

C
CO12

(
∧
i∈Γ

µi) < r0 <
∧
i∈Γ

C
CO12

(µi).

So, CO12(µ, r0) ≤
∧

i∈Γ CO12(µi, r0). For all i ∈ Γ, there exists ri ∈ M⊥M with CO12(µi, ri) = µi such that
r0 < ri ≤ C

CO12
(µi). On the other hand,

µi ≤ CO12(µi, r0) ≤ CO12(µi, ri) = µi.

Implies that CO12(µi, r0) = µi. Therefore,

CO12(µ, r0) ≤
∧
i∈Γ

CO12(µi, r0) =
∧
i∈Γ

µi = µ.

Hence CO12(µ, r0) = µ. So, CCO12
(
∧

i∈Γ µi) ≥ r0. It is a contradiction.
(LMC3) Let {µi : i ∈ Γ} ⊆ LX is nonempty and totally ordered by inclusion and suppose thatCCO12

(
∨

i∈Γ µi) �∧
i∈Γ C

CO12
(µi). Then there exists r0 ∈M⊥M such that

C
CO12

(
∨
i∈Γ

µi) < r0 <
∧
i∈Γ

C
CO12

(µi).

For all i ∈ Γ, there exist ri ∈M⊥M with CO12(µi, ri) = µi such that r0 < ri ≤ C
CO12

(µi). On the other hand,

µi ≤ CO12(µi, r0) ≤ CO12(µi, ri) = µi.

Implies that CO12(µi, r0) = µi. Since CO12(
∨

i∈Γ µi, r0) =
∨

i∈Γ CO12(µi, r0) =
∨

i∈Γ µi, then CCO12
(
∨

i∈Γ µi) ≥ r0. It
is a contradiction.

(2) Let µ, ν ∈ LX and r ∈M⊥M . Then,

(CO12)C
CO12

(µ, r) = (CO)C
CO12
1 (µ, r) ∧ (CO)C

CO12
2 (µ, r)

= (∧{ν ∈ LX : µ ≤ ν, CCO12

1 (ν) ≥ r})∧
(∧{ν ∈ LX : µ ≤ ν, CCO12

2 (ν) ≥ r})

= (∧{ν ∈ LX : µ ≤ ν = CO12(ν, r)})∧
(∧{ν ∈ LX : µ ≤ ν = CO12(ν, r)})

= ∧{ν ∈ LX : µ ≤ ν = CO12(ν, r)}.

On one hand, take each µ ∈ LX such that µ ≤ ν = CO12(ν, r). Then it follows that

CO12(µ, r) ≤ CO12(CO12(ν, r), r) = CO12(ν, r) = ν.

This implies

CO12(µ, r) ≤ (CO12)C
CO12

(µ, r). (3)

On the other hand, since µ ≤ CO12(µ, r) = CO12(CO12(µ, r), r), it follows that

(CO12)C
CO12

(µ, r) ≤ CO12(µ, r). (4)
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From equations (3) and (4) we have (CO12)C
CO12

(µ, r) = CO12(µ, r).

Corollary 2.7. For a nonempty set X, there is a one-to-one correspondence between an L-fuzzy hull operators and an
(L,M)-fuzzy convex structures.

Proposition 2.8. Let (X,C) and (Y,D) be (L,M)-fuzzy convex structures. Then, f : X −→ Y is
(1) An (L,M)-fuzzy convexity preserving function if and only if f→(COC(µ, r)) ≤ COD( f→(µ), r) for all µ ∈ LX.
(2) An (L,M)-fuzzy convex-to-convex function if and only if COD( f→(µ), r) ≤ f→(COC(µ, r)) for all µ ∈ LX.

Proof. (1) (=⇒) Suppose there exist µ ∈ LX and r ∈ M⊥M such that f→(COC(µ, r)) � COD( f→(µ), r). There
exists y ∈ Y and t ∈M⊥M such that

f→(COC(µ, r))(y) > t > COD( f→(µ), r)(y).

If f←{y} = ∅, it is a contradiction because f (COC(µ, r)) =⊥M. If f←{y} , ∅, there exists x ∈ f←{y} such that

f→(COC(µ, r))(y) > COC(µ, r)(x) > t > COD( f→(µ), r)( f→(x)). (5)

Since COD( f→(µ), r)( f→(x)) < t, there exists ν ∈ LY,D(ν) ≥ r with f→(µ) ≤ ν such that
COD( f→(µ), r)( f→(x)) ≤ ν( f→(x)) < t. Moreover, f→(µ) ≤ ν implies that µ ≤ f←(ν). Since C( f←(ν)) ≥
r,COC(µ, r)(x) ≤ COC( f←(ν), r)(x) = f←(ν)(x) = ν( f (x)) < t. It is a contradiction for (5).

(⇐=) Let µ ∈ LY such thatD(µ) ≥ r. Then

f→(COC( f←(µ), r)) ≤ COD( f→( f←(µ)), r) ≤ COD(µ, r) = µ.

Therefore COC( f←(µ), r) ≤ f←(µ). By Theorem 2.4 (2), we obtain COC( f←(µ), r) = f←(µ).HenceC( f←(µ)) ≥ r
and f is an (L,M)-fuzzy convexity preserving function.

(2) (=⇒) Let µ ∈ LX and suppose f : X −→ Y is an (L,M)-fuzzy convex-to-convex function. Then,
C(COC(µ, r)) ≥ r andµ ≤ COC(µ, r).Since f is an (L,M)-fuzzy convex-to-convex function,D( f→(COC(µ, r))) ≥
r and f→(µ) ≤ f→(COC(µ, r)). Hence

COD( f→(µ), r) ≤ COD( f→(COC(µ, r))) = f→(COC(µ, r)).

(⇐=) Let µ ∈ LX such that C(µ) ≥ r. Then, COC(µ, r) = µ and hence f→(COC(µ, r)) = f→(µ). Therefore,

COD( f→(µ), r) ≤ f→(COC(µ, r)) = f→(µ).

By Theorem 2.4 (2), we have COD( f→(µ), r) = f→(µ). HenceD( f→(µ)) ≥ r and f is an (L,M)-fuzzy convex-
to-convex function.

3. (L, M)-Fuzzy Topology (L, M)-Fuzzy Convexity Spaces

In this section we introduce the concept of an (L,M)-fuzzy topology (L,M)-fuzzy convexity space, (L,M)-
fuzzy topological convexity space and define a locally (L,M)-fuzzy topology (L,M)-fuzzy convex space and
their properties were studied. Also, the relationships between these concepts were investigated.

Definition 3.1. A triple (X,C,T ) consisting of a set X, an (L,M)-fuzzy convexity, and an (L,M)-fuzzy
topology is called an (L,M)-fuzzy topology (L,M)-fuzzy convexity space ( (L,M)-ftfcs for short ).

Definition 3.2. Let (X,C,T ) be an (L,M)-ftfcs and ∅ , Y ⊆ X. Then, the corresponding triple (Y,C|Y,TY) is
an (L,M)-fuzzy subspace of (X,C,T ) such that TY is an (L,M)-fuzzy topology on Y.

Definition 3.3. Let C,T be an (L,M)-fuzzy convexity and an (L,M)-fuzzy topology respectively. Then, T
is said to be compatible with C, if T ((COC(µ, r))′) ≥ r for each µ ∈ LX and the triple (X,C,T ) is called an
(L,M)-fuzzy topological convexity space ((L,M)-ftcs for short ).

Remark 3.4. It is obvious that an (L,M)-ftcs is always an (L,M)-ftfcs and the converse is not true.
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Example 3.5. Let L = M = [0, 1] and µi be fuzzy subsets of X = {a, b, c} where i = {1, 2, 3} is defined as
follows:

µ1(a) = 1.0, µ1(b) = 1.0, µ1(c) = 0.0,
µ2(a) = 0.2, µ2(b) = 0.2, µ2(c) = 1.0,
µ3(a) = 0.0, µ3(b) = 0.0, µ3(c) = 1.0.

Define an (L,M)-fuzzy topology in [[6], [25]] T 1,T 2 : [0, 1]X
−→ [0, 1] on X as follows:

T
1(ν) =



1, if ν ∈ {0, 1},

1
4 , if ν = µ1,

1
4 , if ν = µ2,

1
4 , if ν = µ3,

1
2 , if ν = µ1 ∧ µ2,

0, otherwise.

T
2(ν) =



1, if ν ∈ {0, 1},

1
4 , if ν = µ2,

1
2 , if ν = µ3,

0, otherwise.

Define an (L,M)-fuzzy convexity C : [0, 1]X
−→ [0, 1] on X as follows:

C(ν) =



1, if ν ∈ {0, 1},

1
4 , if ν = µ1,

1
4 , if ν = 1 − µ2,

1
3 , if ν = µ3,

0, otherwise.

Then (X,C,T 1) is an (L,M)-ftcs. On the other hand, (X,C,T 2) is an (L,M)-ftfcs but it is not (L,M)-ftcs
because 0 = T 2(1 − COC(µ3, 1

4 )) � 1
4 .

Theorem 3.6. An (L,M)-fuzzy subspace of (L,M)-ftcs is an (L,M)-ftcs.

Proof. Let (X,C,T ) be an (L,M)-ftcs and (Y,C|Y,TY) be an (L,M)-fuzzy subspace of (X,C,T ). Then by
Theorem 1.6, (Y,C|Y,TY) is an (L,M)-ftfcs. To show that it is an (L,M)-ftcs, let λ = CO(C|Y)(µ, r) for each
λ, µ ∈ LY. Then, (C|Y)(λ) ≥ r, λ = ν|Y and C(ν) ≥ r for each ν ∈ LX. Put ν = COC(µ, r). Since (X,C,T ) is an
(L,M)-ftcs, T (ν′) ≥ r and hence TY(λ′) ≥ r. Hence, (Y,C|Y,TY) be an (L,M)-ftcs.

Remark 3.7. An (L,M)-fuzzy convexity preserving and an (L,M)-fuzzy continuous image of an (L,M)-ftcs
need not be an (L,M)-ftcs.

Example 3.8. Let L = M = [0, 1] and νi be fuzzy subsets of X = {a, b, c} where i = {1, 2, 3, 4, 5} are defined as
follows:

ν1(a) = 1.0, ν1(b) = 0.0, ν1(c) = 0.0,

ν2(a) =
1
3
, ν2(b) = 0.0, ν2(c) = 0.0,

ν3(a) = 0.0, ν3(b) = 1.0, ν3(c) = 1.0,

ν4(a) =
4
5
, ν4(b) = 0.0, ν4(c) = 0.0,

ν5(a) =
1
5
, ν5(b) = 0.0, ν5(c) = 0.0.
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Define an (L,M)-fuzzy topology in [[6], [25]] T 1 : IX
−→ I and (L,M)-fuzzy convexity C : IX

−→ I on X as
follows:

T
1(λ) =



1, if ν ∈ {0, 1},

1
4 , if λ = ν1,

1
4 , if λ = ν2,

1
4 , if λ = ν3,

1
4 , if λ = ν4,

1
2 , if λ = ν2 ∨ ν3,

1
2 , if λ = ν3 ∨ ν4,

0, otherwise.

C(λ) =



1, if λ ∈ {0, 1},

1
6 , if λ = ν1,

1
5 , if λ = ν3,

1
5 , if λ = ν5,

0, otherwise.

Let µi be fuzzy subsets of Y = {y1, y2}where i = {1, 2, 3, 4} is defined as follows:

µ1(y1) = 0.0, µ1(y2) = 1.0,

µ2(y1) = 0.0, µ2(y2) =
1
3
,

µ3(y1) = 1.0, µ3(y2) = 0.0,

µ4(y1) = 0.0, µ4(y2) =
1
5
.

Define an (L,M)-fuzzy topology in [[6], [25]] T 2 : IY
−→ I and (L,M)-fuzzy convexity D : IY

−→ I on Y as
follows:

T
2(ν) =



1, if ν ∈ {0, 1},

1
4 , if ν = µ1,

1
4 , if ν = µ2,

1
4 , if ν = µ3,

1
2 , if ν = µ2 ∨ µ3,

0, otherwise.

D(ν) =



1, if ν ∈ {0, 1},

1
6 , if ν = µ1,

1
5 , if ν = µ3,

1
5 , if ν = µ4,

0, otherwise.

Let f : (X,C,T 1) −→ (Y,D,T 2) be defined as follows:

f (a) = y2 and f (b) = f (c) = y1.

Then, T 1( f←(µi)) ≥ T 2(µi) for each µi ∈ IY, i = {1, 2, 3, 4}. Therefore, f is an (L,M)-fuzzy continuous
map. Also, C( f←(µi)) ≥ D(µi) for each µi ∈ IY, i = {1, 3, 4}. Therefore, f is an (L,M)-fuzzy convexity
preserving map. On the other hand (X,C,T 1) is an (L,M)-ftcs but (Y,D,T 2) is not an (L,M)-ftcs because
T

2(1 − COD(µ4, r)) � r, r ∈ (0, 1].

Definition 3.9. Let xt be an L-fuzzy point of an (L,M)-ftfcs (X,C,T ). Then, µ ∈ LX is called r-fuzzy
neighbourhood of xt if there exists ν ∈ LX,T (ν) ≥ r such that xt ∈ ν ≤ µ.
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Definition 3.10. An (L,M)-ftfcs (X,C,T ) is said to be locally fuzzy convex at an L-fuzzy point xt if for every
r-fuzzy neighbourhood µ of xt there exists some r-convex fuzzy nieghbourhood ν of xt such that ν ≤ µ.

(X,C,T ) is locally fuzzy convex if it is locally fuzzy convex at each of its L-fuzzy points.

Proposition 3.11. An (L,M)-fuzzy convex-to-convex, (L,M)-fuzzy open and (L,M)-fuzzy continuous image of a
locally (L,M)-ftfcs is a locally (L,M)-ftfcs.

Proof. Let f : (X,C,T 1) −→ (Y,D,T 2) be an (L,M)-fuzzy convex-to-convex, (L,M)-fuzzy open and (L,M)-
fuzzy continuous onto map. Let ys be an L-fuzzy point in Y. Then there exists an L-fuzzy point xt in X such
that f→(xt) = ys. Let µ be r-fuzzy neighbourhood of ys in Y. Then f←(µ) is r-fuzzy neighbourhood of xt in
X. Since X is a locally (L,M)-ftfcs, there exists r-convex fuzzy neighbourhood ν of xt in X such that

xt ∈ ν ≤ f←(µ).

Therefore

f→(xt) ∈ f→(ν) ≤ µ, i.e. ys ∈ f→(ν) ≤ µ.

Since f is an (L,M)-fuzzy convex-to-convex and (L,M)-fuzzy open onto a map, f→(ν) is r-convex fuzzy
neighbourhood of ys in Y. Hence, Y is a locally (L,M)-ftfcs.

Proposition 3.12. An (L,M)-fuzzy convex subspaces of a locally (L,M)-ftfcs is a locally (L,M)-ftfcs.

Proof. Let (X,C,T ) be a locally (L,M)-ftfcs, ∅ , Y ⊆ X and (Y,C|Y,TY) be the corresponding an (L,M)-fuzzy
subspace of (X,C,T ). Let xt be an L-fuzzy point in Y and µ be r-fuzzy open neighborhood of xt in Y, i.e.,
xt ∈ µ such that TY(µ) ≥ r. Since TY(µ) ≥ r we have µ = ν|Y, where T (ν) ≥ r. Since X is locally fuzzy convex,
there exists r- convex fuzzy neighborhood λ of xt such that xt ∈ λ ≤ ν. So, xt ∈ λ|Y ≤ ν|Y. Since Y is an
(L,M)-fuzzy convex, λ|Y is r-convex fuzzy neighborhood in (Y,C|Y,TY) and hence (Y,C|Y,TY) is a locally
(L,M)-ftfcs.

Proposition 3.13. Let (X,C) be the product of {(Xi,Ci) : i ∈ Γ}. Then for πi : X −→ Xi, r ∈ M⊥M and µ ∈ LX, a
mapping COC : LX

×M⊥M −→ LX is defined as follows:

COC(µ, r) =
∏
i∈Γ

COCi (π
→

i (µ), r).

Then, COC is an L-fuzzy hull operator.

Proof. (1) From Theorem 2.4 (1), we have COCi (π
→

i (χ∅), r)(xi) =⊥M for all xi ∈ Xi, i ∈ Γ and r ∈M⊥M . Hence,

COC(χ∅, r)(x) =
∏
i∈Γ

COCi (π
→

i (χ∅), r)(xi)

=⊥M for all x ∈ X.

So, we obtain COC(χ∅, r) = χ∅.
(2) Let µ ∈ LX. Then by definition of product fuzzy sets,

µ(x) ≤ µi(xi) for all x ∈ X.

Therefore,

µ(x) = ∧i∈Γµ(x) ≤ ∧i∈Γµi(xi) =
∏

i∈Γ µi(xi) for all x ∈ X.

Put µi(xi) = π→i (µ)(xi) for all xi ∈ Xi where π→i : LX
−→ LXi is a projection and

π→i (µ)(xi) = ∨{µ(x) : x ∈ X, π→i (x) = xi}( Definition 1.3 [10]).

We have

µ(x) ≤
∏

i∈Γ µi(xi) =
∏

i∈Γ π
→

i (µ)(xi). (6)
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For all i ∈ Γ we have π→i (µ)(xi) ≤ COCi (π
→

i (µ), r)(xi) for each µ ∈ LX. So, by equation (6) we obtain,

µ(x) ≤

∏
i∈Γ

π→i (µ)(xi)

≤

∏
i∈Γ

COCi (π
→

i (µ), r)(xi)

= COC(µ, r)(x) for all x ∈ X.

Hence, µ ≤ COC(µ, r).
(3) Suppose that µ(xi) ≤ ν(xi) for all xi ∈ Xi. Then by Theorem 2.4 (3) it is obtained that

COCi (π
→

i (µ), r)(xi) ≤ COCi (π
→

i (ν), r)(xi).

Therefore,

COC(µ, r)(x) =
∏
i∈Γ

COCi (π
→

i (µ), r)(xi)

≤

∏
i∈Γ

COCi (π
→

i (ν), r)(xi)

= COC(ν, r)(x) for all x ∈ X.

(4) Let r ≤ s. Then from Theorem 2.4 (4), we have

COCi (π
→

i (µ), r)(xi) ≤ COCi (π
→

i (µ), s)(xi) for all xi ∈ Xi.

Therefore,

COC(µ, r)(x) =
∏
i∈Γ

COCi (π
→

i (µ), r)(xi)

≤

∏
i∈Γ

COCi (π
→

i (µ), s)(xi)

= COC(µ, s)(x) for all x ∈ X.

(5) It is enough to verify that COC(COC(µ, r), r) ≤ COC(µ, r). So taking any µ ∈ LX and r ∈M⊥M ,

COC(COC(µ, r), r) =
∏
i∈Γ

COCi (π
→

i (COC(µ, r)), r)

≤

∏
i∈Γ

COCi (COCi (π
→

i (µ), r), r)

=
∏
i∈Γ

COCi (π
→

i (µ), r) = COC(µ, r).

(6) Let {µα : α ∈ ∆} ⊂ LX be nonempty and totally ordered by inclusion. Then, for r ∈M⊥M , we have,

COC(
∨
α∈∆ µα, r) =

∏
i∈Γ

COCi (π
→

i (
∨
α∈∆

µα), r)

=
∏
i∈Γ

COCi (
∨
α∈∆

π→i (µα), r)

=
∏
i∈Γ

∨
α∈∆

COCi (π
→

i (µα), r) Theorem 2.4 (6)

=
∨
α∈∆

∏
i∈Γ

COCi (π
→

i (µα), r) Since L is distributive lattices

=
∨
α∈∆

COC(µα, r).
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Hence, COC(
∨
α∈∆ µα, r) =

∨
α∈∆ COC(µα, r).

Theorem 3.14. Let (X,C) be the product of {(Xi,Ci) : i ∈ Γ}. Then for each i ∈ Γ, πi : X −→ Xi is an (L,M)-fuzzy
convex-to-convex function.

Proof. By Proposition 3.13, we obtain π→i (µ) ≤ π→i (COC(µ, r)). Therefore,

COCi (π
→

i (µ), r) ≤ COCi (π
→

i (COC(µ, r)), r)
= π→i (COC(µ, r)) because Ci(π→i (COC(µ, r))) ≥ r.

Hence from Proposition 2.8 (2) we obtain πi is an (L,M)-fuzzy convex-to-convex function.

Theorem 3.15. The product space
∏

i∈Γ(Xi,Ci,T i) is locally fuzzy convex if and only if (Xi,Ci,T i) is locally fuzzy
convex.

Proof. Suppose that each Xi is locally fuzzy convex. Let xt be a fuzzy point in X =
∏

i∈Γ Xi and
∧
α π
←

iα
(µα)

be r-fuzzy neighborhood of xt where πi : X −→ Xi is the projection map, µα is r-fuzzy open neighbour-
hood of (xiα )t in Xiα for α = 1, 2, 3, ...,n. Since Xiα is locally fuzzy convex, then there exist r-convex fuzzy
neighbourhood να of (xiα )t such that

(xiα )t ∈ να ≤ µα.

Which implies that

xt ∈
∧
α

π←iα (να) ≤
∧
α

π←iα (µα).

Therefore,
∧
α π
←

iα
(να) is r-convex fuzzy neighbourhood of xt.Hence X is locally fuzzy convex. On the other

hand, let (xi)t be a fuzzy point in Xi. Then we can find a fuzzy point xt ∈ X such that π→i (xt) = (xi)t. Let
µi be r-fuzzy neighbourhood of (xi)t ∈ Xi. Then π←i (µi) is r-fuzzy neighbourhood of xt ∈ X. Since, X is
locally fuzzy convex, there exists r-convex fuzzy neighourhood ν of xt such that ν ≤ π←i (µi). Since, πi is an
(L,M)-fuzzy convex-to-convex function, π→i (ν) is r-convex fuzzy neighbourhood of (xi)t ∈ Xi such that

(xi)t ∈ π
→

i (ν) ≤ µi.

Hence, Xi is locally fuzzy convex.
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