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Abstract. Under the assumptions that p and q are regularly varying functions satisfying conditions∫
∞

a

t

p(t) 1
α

dt < ∞ and
∫
∞

a

( t
p(t)

) 1
α

dt = ∞

existence and asymptotic form of regularly varying intermediate solutions are studied for a fourth-order
quasilinear differential equation(

p(t)|x′′(t)|α−1 x′′(t)
)′′

+ q(t)|x(t)|β−1 x(t) = 0, α > β > 0.

It is shown that under certain integral conditions there exist two types of intermediate solutions which
according to their asymptotic behavior is to be divided into six mutual distinctive classes, while asymptotic
behavior of each member of any of these classes is governed by a unique explicit law.

1. Introduction

This paper is concerned with positive solutions of fourth-order quasilinear differential equ-
ations of the form

(E)
(
p(t)Φα(x′′(t))

)′′ + q(t)Φβ(x(t)) = 0, t ≥ a,

where Φγ(x) = |x|γ sgn x, with γ > 0, α, β are positive constants such that α > β and p, q are positive
continuous functions on [a,∞), a > 0 satisfying

(P1)
∫
∞

a

t

p(t)
1
α

dt < ∞, (P2)
∫
∞

a

( t
p(t)

) 1
α

dt = ∞. (1.1)

We emphasize that if (1.1) holds, then 0 < α < 1.

2010 Mathematics Subject Classification. Primary 34A34; Secondary 26A12
Keywords. fourth order differential equation, nonoscillatory solutions, asymptotic behavior, generalized regularly varying

functions
Received: 01 February 2019; Revised: 23 May 2019; Accepted: 26 June 2019
Communicated by Dragan S. Djordjević
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By a solution of (E) we mean a twice continuously differentiable function x on [T,∞), T ≥ a, such that
pΦα(x′′) is twice continuously differentiable on [T,∞) and satisfies the equation (E) at every point of [T,∞).
A solution x of (E) is said to be nonoscillatory if x(t) , 0 for all large t. In other words, a solution x of (E) is
nonoscollatory if it is eventually positive or eventually negative. If x is a solution of (E), then so does −x and
thus, there is no loss of generality in assuming that a nonoscillatory solution of (E) is eventually positive.

Throughout this paper use is made of the symbol∼ to denote the asymptotic equivalence of two positive
functions, i.e.,

f (t) ∼ 1(t), t→∞ ⇐⇒ lim
t→∞

1(t)
f (t)

= 1,

and the symbol ≺ to denote the dominance relation between two positive functions in the sense that

f (t) ≺ 1(t), t→∞ ⇐⇒ lim
t→∞

1(t)
f (t)

= ∞.

The oscillatory and asymptotic behavior of nonoscillatory solutions of (E) were considered by Kamo and
Usami [5], Kusano and Tanigawa [12], Kusano, Manojlović and Tanigawa [10], Manojlović and Milošević
[15], Naito and Wu [16, 17], Wu [21, 22]. The qualitative behavior of solutions of (E) are described by means
of the integrals

P1 =

∫
∞

a

t

p(t)
1
α

dt, P2 =

∫
∞

a

( t
p(t)

) 1
α

dt, P3 =

∫
∞

a
t
( t

p(t)

) 1
α

dt .

In [16, 17, 21, 22] it is assumed that p satisfies P1 = ∞, P2 = ∞, while in [5] it is assumed that p satisfies
P1 < ∞, P2 = ∞, and in [15] it is assumed that p satisfies P1 < ∞, P2 < ∞. On the other hand, Kusano,
Manojlović and Tanigawa [10, 12] have considered the case P3 < ∞.

The equation (E) under conditions (P1) and (P2) has been already considered in [5], where the main
objective was to establish necessary and sufficient conditions for oscillation of all solutions. For that cause,
necessary and sufficient conditions for the existence of positive solutions satisfying

(S1) x(t) ∼ cϕ(t), t→∞, with c > 0, ϕ(t) =

∫
∞

t

s − t

p(s)
1
α

ds;

(S4) x(t) ∼ cψ(t), t→∞, with c > 0, ψ(t) =

∫ t

a
(t − s)

( s
p(s)

) 1
α

ds

were given.

Theorem 1.1. (i) [5, Theorem 4.7] Equation (E) has an eventually positive solution x satis-
fying (S1) if and only if

J1 =

∫
∞

a
tq(t)ϕ(t)β dt < ∞. (1.2)

(ii) [5, Theorem 4.8] Equation (E) has an eventually positive solution x satisfying (S4) if and only if

J4 =

∫
∞

a
q(t)ψ(t)βdt < ∞. (1.3)

The aim of this paper is to proceed further and to obtain a more detailed information on the asymptotic
behavior of positive solutions of the equation (E) under conditions (1.1). First, detailed analysis is made
on the structure of positive solutions of (E) by showing that besides solutions with asymptotic behavior
described by (S1) and (S4), there exist two other types of positive solutions

(S2) x(t) ∼ c, t→∞; (S3) x(t) ∼ c t, t→∞ .
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Necessary and sufficient conditions for the existence of these two types of solutions will be established in
Section 2. Thus, in the classification of solutions of (E) under the condition (1.1), a crucial role is played by
the four functions

ϕ(t) =

∫
∞

t

s − t

p(s)
1
α

ds, 1, t, ψ(t) =

∫ t

a
(t − s)

( s
p(s)

) 1
α

ds, (1.4)

which are particular solutions of the unperturbed differential equation
(
p(t)Φα(x′′(t))

)′′ = 0 and satisfy the
dominance relation ϕ(t) ≺ 1 ≺ t ≺ ψ(t), t→∞. It is therefore expected that the equation (E) also possesses
intermediate type of solutions x satisfying either

(I1) ϕ(t) ≺ x(t) ≺ 1, t→∞, or (I2) t ≺ x(t) ≺ ψ(t), t→∞,

and the accuracy of this assertion will be also shown in Section 2.
Afterwards, the main goal is to establish the precise asymptotic formula for these two types of inter-

mediate solutions in the framework of regular variation. Asymptotic analysis of differential equations by
the means of regularly varying functions was initiated by the monograph of Marić [4]. Its recent develop-
ment has shown that with the help of theory of regular variation, introduced by Karamata in 1930., it is
possible to get a complete asymptotic analysis of nonlinear differential equations with regularly varying
coefficients or generalized regularly varying coefficients, introduced by Jaroš and Kusano in [2]; see [3, 6–
9, 11, 12, 14, 15, 18, 20]. We consider the equation (E) with generalized regularly varying p and q, showing
that each of two classes of its intermediate generalized regularly varying solutions of type (I1) and (I2)
can be divided into three disjoint subclasses according to their asymptotic behavior at infinity. Necessary
and sufficient conditions for the existence of solutions belonging to each of these six types of solution will
be established in Section 3. Moreover, the asymptotic behavior of solutions contained in each of the six
subclasses will be delivered explicitly and precisely in Section 3. In Section 4 it is shown that our main
results, when specialized to the case where p and q are regularly varying functions in the sense of Karamata,
provide thorough information about the existence and asymptotic behavior of regularly varying solutions
in the sense of Karamata.

2. Asymptotic analysis of solution of (E) with continuous coefficients

We begin by classification of the set of all possible positive solutions of (E) in terms of signs of their
derivatives. Let x be a positive solution of (E) and for any such solution x, denote by

x[3](t) =
(
p(t)Φα(x′′(t))

)′ , x[2](t) = p(t)Φα(x′′(t)) .

It is known (see [5]) that for a positive solution x one of the following three cases holds:

x′(t) > 0, x′′(t) > 0, x[3](t) > 0, t ≥ t0; (2.1)
x′(t) > 0, x′′(t) < 0, x[3](t) > 0, t ≥ t0; (2.2)
x′(t) < 0, x′′(t) > 0, x[3](t) > 0, t ≥ t0, (2.3)

for sufficiently large t0 ≥ a.
Next, we give necessary and sufficient conditions for the existence of positive solutions of type (S2) and

(S3), while otherwise the existence of intermediate type of positive solutions (I1) and (I2) will be characterized
by sufficient conditions.

2.1. Existence of positive solutions of type (S2)

Since a positive solution satisfying (2.2) as well as a positive solution satisfying (2.3) may have the
asymptotic behavior of type (S2), we establish necessary and sufficient conditions for the existence of both
types of solutions.
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Theorem 2.1. Necessary and sufficient condition for (E) to have a solution x which satisfies (S2) and (2.2) is∫
∞

a
tq(t) dt < ∞. (2.4)

Proof. Necessity: Suppose that there exists a positive solution x which satisfies (S2) and (2.2). We may
suppose that c/2 ≤ x(t) ≤ c for t ≥ t0 and some positive constant c. Multiplying (E) by t and integrating the
obtained equation on [t0, t], we get

( c
2

)β ∫ t

t0

sq(s) ds ≤
∫ t

t0

sq(s)x(s)β ds = C − t
(
p(t)Φα(x′′(t))

)′
− p(t)(−x′′(t))α ≤ C, t ≥ t0,

with C = t0 x[3](t0) − x[2](t0). Thus, letting t→∞, we obtain (2.4).
Sufficiency: We assume that (2.4) holds. Let a constant c > 0 be fixed arbitrarily. Choose t0 ≥ a such that∫

∞

t0

t

p(t)
1
α

dt < 1 and 2α
∫
∞

t0

tq(t) dt < cα−β(1 − 2α). (2.5)

Let C[t0,∞) be the set of all continuous functions defined on [t0,∞) with the topology of uniform convergence
on compact subintervals of [t0,∞). We defined the subset Ω1 of C[t0,∞) by

Ω1 =
{
x ∈ C[t0,∞) :

c
2
≤ x(t) ≤ c, t ≥ t0

}
.

Clearly, Ω1 is a closed convex subset of the space C[t0,∞). Let us define the mapping F1 : Ω→ C[t0,∞) by

(F1x)(t) = c −
∫
∞

t

s − t

p(s)
1
α

(
cα +

∫
∞

s
(r − s)q(r)x(r)β dr

) 1
α

ds, t ≥ t0. (2.6)

Because of (2.5) F1 maps Ω1 into itself. It can be shown that F1 is a continuous mapp-
ing by means of the Lebesgue dominated convergence theorem and that the set F1(Ω1) is
relatively compact subset of C[t0,∞), with the help of the Ascoli-Arzela theorem. Applying the Schauder-
Tychonoff fixed point theorem, there exists a solution x ∈ Ω1 of the integral equation x(t) = (F1x)(t), t ≥ t0.
Then it is easily verifed that x = x(t) is a positive solution of (E) satisfying (S2) and (2.2).

Theorem 2.2. Necessary and sufficient condition for (E) to have a solution x which satisfies (S2) and (2.3) is

J2 =

∫
∞

a

t

p(t)
1
α

(∫ t

a

∫
∞

s
q(r) dr ds

) 1
α

dt < ∞. (2.7)

Proof. Necessity: Suppose that there exists a positive solution x which satisfies (S2) and (2.3). If limt→∞ x(t) =
c > 0, then there exists t0 ≥ a such that c ≤ x(t) ≤ 2c, for t ≥ t0.By [5, Lemma 3.1], for a solution of type (2.3) we
have limt→∞ x[3](t) = 0. Moreover, since x′ is negative and increasing there exists limt→∞ x′(t) = ω1 ∈ (−∞, 0].
We claim thatω1 = 0. If we assume thatω1 < 0, then x′(t) ≤ ω1 for t ≥ t1 implying that x(t) ≤ x(t1)+ω1(t− t1),
t ≥ t1 and letting t→∞ leads to the contradiction with positivity of x.

Therefore, integration of (E) first on [t,∞), then on [t0, t] and afterwards on [t,∞) gives

−x′(t) =

∫
∞

t

1

p(s)
1
α

(
ω2 +

∫ s

t0

∫
∞

r
q(u)x(u)β du dr

) 1
α

ds,

≥ c
β
α

∫
∞

t

1

p(s)
1
α

(∫ s

t0

∫
∞

r
q(u) du dr

) 1
α

ds, t ≥ t0, (2.8)
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where ω2 = p(t0)Φα(x′′(t0)) > 0. Integrating the last inequality from t0 to∞we find

x(t0) − c ≥ c
β
α

∫
∞

t0

s − t0

p(s)
1
α

(∫ s

t0

∫
∞

r
q(u) du dr

) 1
α

ds, t ≥ t0. (2.9)

Since, (2.8) implies ∫
∞

t0

1

p(s)
1
α

(∫ s

t0

∫
∞

r
q(u) du dr

) 1
α

ds < ∞ ,

(2.7) follows from (2.9).
Sufficiency: We assume that (2.7) holds. Let a constant c > 0 be fixed arbitrarily and choose t0 ≥ a such

that

(2c)
β
α

∫
∞

t0

t

p(t)
1
α

(∫ t

t0

∫
∞

s
q(r) dr ds

) 1
α

dt ≤ c.

Consider the subset Ω2 = {x ∈ C[t0,∞) : c ≤ x(t) ≤ 2c, t ≥ t0} of C[t0,∞) and define the mapping F2 : Ω2 →

C[t0,∞) by

(F2x)(t) = c +

∫
∞

t

s − t

p(s)
1
α

(∫ s

t0

∫
∞

r
q(v)x(v)β dv dr

) 1
α

ds, t ≥ t0.

Then, by the Schauder-Tychonoff fixed point theorem, F2 has a fixed element x2 in the set Ω2. Since, the
fixed element x2 = x2(t) satisfies the integral equation x(t) = (F2x)(t), t ≥ t0, it provides a positive solution
of (E) satisfying (2.3) and (S2).

Noting that (2.4)⇒ (2.7), we have the following theorem.

Theorem 2.3. Equation (E) has a solution x satisfying (S2) if and only if (2.7) holds.

2.2. Existence of positive solutions of type (S3)

Since solutions with asymptotic behavior of type (S3) may satisfy condition (2.1) or (2.2), we consider
both cases.

Theorem 2.4. Necessary and sufficient condition for (E) to have a solution x which satisfies (S3) and (2.1) is

J3 =

∫
∞

a

1

p(t)
1
α

(∫ t

a

∫
∞

s
q(r)rβ dr ds

) 1
α

dt < ∞. (2.10)

Proof. See the proof of Theorem 3.3. in [16].

Theorem 2.5. Necessary and sufficient condition for (E) to have a solution x which satisfies (S3) and (2.2) is∫
∞

a
tβ+1q(t)dt < ∞. (2.11)

Proof. See the proof of Theorem 3.4. in [16].

Noting that (2.11)⇒ (2.10), we have the following theorem.

Theorem 2.6. Equation (E) has a solution x satisfying (S3) if and only if (2.10) holds.
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2.3. Existence of positive solutions of type (I1)

Theorem 2.7. If (2.7) holds and if J1 = ∞, then the equation (E) has a positive solution which satisfies (I1).

Proof. Choose t0 ≥ a such that

∫
∞

t0

t

p(t)
1
α

(∫ t

t0

∫
∞

s
q(r) dr ds

) 1
α

dt ≤
1

2
1
α

and
∫
∞

t0

t

p(t)
1
α

dt ≤
1

2
1
α

, (2.12)

for t ≥ t0. Define the set Q3 = {x ∈ C[t0,∞) : ϕ(t) ≤ x(t) ≤ 1, t ≥ t0}, and the operator F3 : Q3 → C[t0,∞)

(F3x)(t) =

∫
∞

t

s − t

p(s)
1
α

(
1 +

∫ s

t0

∫
∞

r
q(v)x(v)β dv dr

) 1
α

ds , t ≥ t0. (2.13)

It is clear that Q3 is a closed convex subset of the locally convex space C[t0,∞) equipped with the topology
of uniform convergence on compact subintervals of [t0,∞). Using inequality

(X + Y)
1
α ≤ 2

1−α
α

(
X

1
α + Y

1
α

)
,

holding for α ∈ (0, 1) and (2.12), (2.13), x ∈ Q3 implies

ϕ(t) ≤ (F3x)(t)(t) ≤ 2
1−α
α

∫
∞

t

s − t

p(s)
1
α

1 +

(∫ s

t0

∫
∞

r
q(v) dv dr

) 1
α


≤ 2

1−α
α

(∫ ∞

t0

s

p(s)
1
α

ds +

∫
∞

t0

s

p(s)
1
α

(∫ s

t0

∫
∞

r
q(v) dv dr

) 1
α

ds
)
≤ 1,

for all t ≥ t0. This means that F3 maps Q3 into itself. Furthermore, it can be shown that F3 is a continuous
map such that F3(Q3) is relatively compact in C[t0,∞). Therefore, by the Schauder-Tychonoff fixed point
theorem there exists a function x3 ∈ Q3 satisfying the integral equation x(t) = (F3x)(t)(t) for t ≥ t0. It follows
that x3 is a solution of (E) on [t0,∞). It is easy to see that x3 has the following asymptotic properties:
limt→∞ x3(t) = 0 and

lim
t→∞

x3(t)
ϕ(t)

= lim
t→∞

(
1 +

∫ t

t0

∫
∞

s
q(r)x3(r)β dr ds

) 1
α

≥

(
lim
t→∞

∫ t

t0

∫
∞

s
q(r)ϕ(r)β dr ds

) 1
α

= ∞,

as a consequence of J1 = ∞, which means that x3 satisfies ϕ(t) ≺ x3(t) ≺ 1, t→∞.

2.4. Existence of positive solutions of type (I2)

Theorem 2.8. If (1.3) holds and if J3 = ∞, then the equation (E) has a positive solution which satisfies (I2).

Proof. Choose t0 ≥ max{ 12 , a} such that

2β
∫
∞

t0

q(t)ψ(t)β dt ≤ 1 and t ≤ ψ(t), t ≥ t0. (2.14)

Define the set Q4 = {x ∈ C[t0,∞) : t ≤ x(t) ≤ 2ψ(t), t ≥ t0}, and the integral operator F4 : Q4 → C[t0,∞)

(F4x)(t) = t +

∫ t

t0

t − s

p(s)
1
α

(∫ s

t0

∫
∞

r
q(v)x(v)β dv dr

) 1
α

ds, t ≥ t0. (2.15)
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It is clear that Q4 is a closed convex subset of the locally convex space C[t0,∞) equipped with the topology
of uniform convergence on compact subintervals of [t0,∞). Using (2.14), (2.15), we see that x ∈ Q4 implies

t ≤ (F4x)(t) ≤ t + 2β/α
∫ t

t0

t − s

p(s)
1
α

(∫ s

t0

∫
∞

r
q(v)ψ(v)β dv dr

) 1
α

ds ≤ t + ψ(t) ≤ 2ψ(t) ,

for all t ≥ t0. This means that F4 maps Q4 into itself. Furthermore, it can be shown that F4 is a continuous
map such that F4(Q4) is relatively compact in C[t0,∞). Therefore, by the Schauder-Tychonoff fixed point
theorem there exists a function x4 ∈ Q4 satisfying the integral equation x(t) = (F4x)(t) for t ≥ t0. It follows
that x4 is a solution of (E) on [t0,∞). It is easy to see that x4 has the following asymptotic properties:

lim
t→∞

x4(t)
t
≥ lim

t→∞

∫ t

t0

1

p(s)
1
α

(∫ t

a

∫
∞

s
q(r)rβ dr ds

) 1
α

ds = ∞,

and

lim
t→∞

x4(t)
ψ(t)

=

lim
t→∞

∫ t

t0

∫
∞

s q(r)x(r)β dr ds

t


1
α

=

(
lim
t→∞

∫
∞

t
q(s)x(s)β ds

) 1
α

≤

(
lim
t→∞

2β
∫
∞

t
q(s)ψ(s)β ds

) 1
α

= 0,

which means that x4 satisfies t ≺ x4(t) ≺ ψ(t), t→∞.

3. Asymptotic behavior of intermediate solutions of (E) with generalized regularly varying coefficients

In what follows it is always assumed that functions p and q are generalized regularly varying of index
η and σ with respect to R, which is defined with

R(t) =

∫ t

a

(
s

p(s)

) 1
α

ds, t ≥ a . (3.1)

We express functions p and q with

p(t) = R(t)ηlp(t), q(t) = R(t)σlq(t), lp, lq ∈ SVR. (3.2)

We begin with determining index of regularity of functions in (1.4) what is a fundamental part in the
asymptotic analysis. From (3.1) and (3.2) we have that

t
1
α = R′(t)R(t)

η
α lp(t)

1
α , (3.3)

which by integration from a to t implies

t(α+1)/α
∼
α + 1
α

∫ t

a
R′(s)R(s)η/αlp(s)

1
α ds, t→∞ . (3.4)

Thus, we must have that η + α ≥ 0, but in what follows we limit ourselves to the case where η + α > 0.
Application of generalized Karamata integration theorem (Proposition 5.4) then gives

t ∼
(
α + 1
η + α

) α
α+1

R(t)
α+η
α+1 lp(t)

1
α+1 , t→∞, (3.5)

implying that ψ1 ∈ RVR

(
α+η
α+1

)
, with ψ1(t) = t. It is clear that ϕ1 ∈ SVR, with ϕ1(t) = 1. From (3.3) and (3.5)

we have

R′(t) ∼
(
α + 1
η + α

) 1
α+1

R(t)
1−η
α+1 lp(t)−

1
α+1 , t→∞,
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which can be rewritten in the form

1 ∼ R′(t)
(η + α

α + 1

) 1
α+1

R(t)
η−1
α+1 lp(t)

1
α+1 , t→∞. (3.6)

For furher discussion, to simplify formulation of our main results, we introduce the notation:

m1(α, η) =
2α2
− η + αη

α(α + 1)
, m2(α, η) =

α + η

α + 1
and m3(α, η) =

2α + η + 1
α + 1

, (3.7)

and frequently use the abbreviated notation mi for mi(α, η), i = 1, 2, 3. In view of (3.6), we may state the next
lemma following directly from the generalized Karamata integration theorem.

Lemma 3.1. Let f (t) = R(t)µ l f (t), l f ∈ SVR, µ ∈ R. Then,

(i) If µ + m2 > 0, ∫ t

a
f (s) ds ∼

m
1
α+1
2

µ + m2
R(t)µ+m2 l f (t)lp(t)

1
α+1 , t→∞.

(ii) If µ + m2 < 0, ∫
∞

t
f (s) ds ∼ −

m
1
α+1
2

µ + m2
R(t)µ+m2 l f (t)lp(t)

1
α+1 , t→∞.

(iii) If µ + m2 = 0, then ∫ t

a
f (s) ds ∼ m

1
α+1
2

∫ t

a
R′(s)R(s)−1l f (s)lp(s)

1
α+1 ds ∈ SVR, t→∞;

∫
∞

t
f (s) ds ∼ m

1
α+1
2

∫
∞

t
R′(s)R(s)−1l f (s)lp(s)

1
α+1 ds ∈ SVR, t→∞.

Before we proceed further in obtaining index of regularity of ϕ and ψ we give an interpretation of our
assumptions (1.1) in terms of index of regularity of coefficients and parameters α, β. Using (3.2) and (3.5)
we have∫

∞

t

s

p(s)
1
α

ds ∼ m−
α
α+1

2

∫
∞

t
R(s)m2−

η
α lp(s)−

1
α(α+1) ds, t→∞,

which in view of (P1), by Lemma 3.1 implies 2m2 − η/α ≤ 0, but in what follows we only assu-
me that strict inequality holds. Thus, if (P1) holds, the following inequalities hold

2m2 −
η

α
= m1 < 0 < m2 < m3 = m2 + 1, (3.8)

what will be used later.
Applying Lemma 3.1 twice, which is possible in view of (3.8), we get

ϕ(t) =

∫
∞

t

∫
∞

s

1

p(r)
1
α

dr ds ∼
m

2
α+1
2

m1 (m1 −m2)
R(t)m1 lp(t)

α−1
α(α+1) , t→∞, (3.9)

and

ψ(t) =

∫ t

a
R(s) ds ∼

m
1
α+1
2

m3
R(t)m3 lp(t)

1
α+1 , t→∞ , (3.10)

which shows that ϕ ∈ RVR(m1) and ψ ∈ RVR(m3).
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3.1. Regularly varying solutions of type (I1)

The first subsection is devoted to the study of the existence and asymptotic behavior of generalized
regularly varying solutions of type (I1) of the equation (E) with p and q satisfying (3.2). We seek such
solutions x of (E) expressed in the form

x(t) = R(t)ρlx(t), lx ∈ SVR. (3.11)

Since ϕ(t) ≺ x(t) ≺ 1, t → ∞, the regularity index ρ of x must satisfy m1 ≤ ρ ≤ 0. If ρ = 0, then since
x(t) = lx(t)→ ∞, t→ ∞, x is a member of ntr − SVR, while if ρ = m1, then since x(t)/ϕ(t) ∼ lx(t)lp(t)

1−α
α(α+1) →

∞, t → ∞, x is a member of RV(m1), with x/ϕ ∈ ntr − SVR. Thus, the set of all generalized regularly
varying solutions of type (I1) is naturally divided into the three disjoint classes

RVR (m1) or RVR(ρ) with ρ ∈ (m1, 0) or ntr − SVR.

Our aim is to establish necessary and sufficient conditions for each of the above classes to be nonempty and
to show that the asymptotic behavior of all members of each class is governed by a unique explicit formula.

3.1.1. Main results
Theorem 3.2. Let p ∈ RVR(η), q ∈ RVR(σ). Equation (E) has intermediate solutions x ∈ RVR(ρ) withρ ∈ (m1, 0)
if and only if

m1(α − β) − η − 2α < σ < −η − 2α. (3.12)

in which case ρ is given by

ρ =
σ + 2α + η

α − β
(3.13)

and the asymptotic behavior of any such solution x is governed by the unique formula

x(t) ∼ X1(t) =

((m2

α

)2 R(t)2αp(t)q(t)
(ρ(ρ −m2))α(ρ −m1)(m3 − ρ)

) 1
α−β

, t→∞. (3.14)

Theorem 3.3. Let p ∈ RVR(η), q ∈ RVR(σ). Equation (E) has intermediate solutions x ∈ RVR(m1) satisfying (I1)
if and only if

J1 = ∞ and σ = m1(α − β) − η − 2α. (3.15)

The asymptotic behavior of any such solution x is governed by the unique formula

x(t) ∼ X2(t) = ϕ(t)
(
α − β

α

∫ t

a
sq(s)ϕ(s)β ds

) 1
α−β

, t→∞. (3.16)

Theorem 3.4. Let p ∈ RVR(η), q ∈ RVR(σ). Equation (E) has intermediate solutions x ∈ ntr − SVR satisfying
(I1) if and only if

J2 < ∞ and σ = −η − 2α. (3.17)

The asymptotic behavior of any such solution x is governed by the unique formula

x(t) ∼ X3(t) =

α − βα
∫
∞

t

s

p(s)
1
α

(∫ s

a

∫
∞

r
q(u) du dr

) 1
α

ds


α
α−β

, t→∞. (3.18)
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3.1.2. Preparatory results
Let x be a solution of (E) on [t0,∞) such that ϕ(t) ≺ x(t) ≺ 1 as t→∞. For such a solution (2.3) holds and

lim
t→∞

x[3](t) = 0, lim
t→∞

x[2](t) = ∞, lim
t→∞

x′(t) = lim
t→∞

x(t) = 0. (3.19)

The three types of intermediate solutions of type (I1) in the above theorems will be constructed by solving
the integral equation

x(t) =

∫
∞

t

s − t

p(s)
1
α

(
c +

∫ s

T0

∫
∞

r
q(r)x(r)β dr

) 1
α

ds, t ≥ T0, (3.20)

for some constants T0 ≥ a and c > 0. To proceed this, Schauder-Tychonoff fixed point theorem is used as our
main tool. Denoting by Gx(t) the right-hand side of (3.20), in order to find a fixed point of G, it is important
to choose an appropriate closed convex subset X ⊂ C[t0,∞) on which G is a self-map. It will be shown that
such a choice of X is possible by solving the integral asymptotic relation

x(t) ∼
∫
∞

t

s − t

p(s)
1
α

(∫ s

a

∫
∞

r
q(u)x(u)β du dr

) 1
α

ds, t→∞ , (3.21)

which can be considered as an approximation (at infinity) of (3.20) in the sense that it is satisfied by all
possible solutions of type (I1) of (E).

As a preparatory steps toward the proofs of Theorems 3.2-3.4 we show that the generalized regularly
varying functions Xi, i = 1, 2, 3 defined in (3.14), (3.16), (3.18) satisfy the asymptotic relation (3.21). To
simplify the notation, we put

J(t; a,X) =

∫
∞

t

s − t

p(s)
1
α

(∫ s

a

∫
∞

r
q(u)X(u)β du dr

) 1
α

ds, t ≥ a.

Lemma 3.5. Suppose that (3.12) holds and let ρ be defined by (3.13). Then, X1 given in (3.14) satisfies the asymptotic
relation (3.21) and X1 ∈ RVR(ρ).

Proof. Let (3.12) holds. Using (3.2) and (3.13), function X1 given in (3.14) can be expressed in the form
X1(t) = R(t)ρL1(t), where

L1(t) =

((m2

α

)2 lp(t)lq(t)
(ρ(ρ −m2))α(ρ −m1)(m3 − ρ)

) 1
α−β

, L1 ∈ SVR, (3.22)

implying that X1 ∈ RVR(ρ).
By assumption (3.12), from (3.13) we have that m1 < ρ < 0 and using (3.7) and (3.8), we get

σ + ρβ + m2 = −α(m3 − ρ) < 0, σ + ρβ + 2m2 = α(ρ −m1) > 0. (3.23)

Thus, application of Lemma 3.1 gives

1

p(t)
1
α

(∫ t

a

∫
∞

s
q(r)X1(r)β dr ds

) 1
α

∼
m

2
α(α+1)

2(
α2(m3 − ρ)(ρ −m1)

) 1
α

R(t)ρ−m1−
η
α

(
lq(t)lp(t)

1−α
1+α

) 1
α L1(t)

β
α , t→∞. (3.24)

Using that ρ −m1 −
η
α + m2 = ρ −m2 < 0, integration of (3.24) twice over [t,∞), by Lemma 3.1, gives∫

∞

t

1

p(s)
1
α

(∫ s

a

∫
∞

r
q(u)X1(u)β du dr

) 1
α

ds ∼

m
2+α
α(α+1)

2(
α2(ρ −m1)(m3 − ρ)

) 1
α (m2 − ρ)

R(t)ρ−m2
(
lq(t)lp(t)

1
1+α

) 1
α L1(t)

β
α , t→∞,
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and

J(t; a,X1) =

∫
∞

t

s − t

p(s)
1
α

(∫ s

a

∫
∞

r
q(u)X1(u)β du dr

) 1
α

ds ∼ R(t)ρL1(t) = X1(t), t→∞.

Lemma 3.6. Suppose that (3.15) holds. Then, X2 given in (3.16) satisfies the asymptotic relation (3.21) and
X2 ∈ RVR(m1), such that X2/ϕ ∈ ntr − SVR.

Proof. Let (3.15) holds. From (3.9) we have

ϕ(t) ∼ R(t)m1 lϕ(t), t→∞, where lϕ(t) =
m

2
α+1
2

m1 (m1 −m2)
lp(t)

α−1
α(α+1) , lϕ ∈ SVR , (3.25)

implying that X2(t) ∼ R(t)m1 lϕ(t)L2(t), t→∞, with

L2(t) =

α − βα m
2β−α
α+1

2

(m1(m1 −m2))β

∫ t

a
R(s)−m2 lq(s)lp(s)

α+β(α−1)
α(α+1) ds


1
α−β

, L2 ∈ SVR.

Consequently, X2 ∈ RVR(m1) and first assumption of (3.15) implies X2/ϕ ∈ ntr − SVR. Since the second
assumption of (3.15) combined with (3.8) implies σ + m1β + m2 = −m2 < 0, application of Lemma 3.1 gives(

1
p(t)

∫ t

a

∫
∞

s
q(r)X2(r)β dr ds

) 1
α

∼ m−
1
α+1

2 R(t)−
η
α łp(t)−

1
α W(t)

1
α , t→∞,

where

W(t) =

∫ t

a
R(s)−m2 lq(s)lp(s)

1
α+1

(
lϕ(s)L2(s)

)β
ds, W ∈ SVR. (3.26)

Integrating the relation above twice over [t,∞), repeated application of Lemma 3.1, with use of (3.25) and
(3.26), yields

J(t; a,X2) ∼
m

2β−α
α(α+1)

2

(m1(m1 −m2))
β
α

ϕ(t)
(∫ t

a
R(s)−m2 lq(s)lp(s)

α+β(α−1)
α(α+1) L2(s)β ds

) 1
α

, t→∞.

Integration by substitution in the last integral gives the asymptotic relation (3.21).

Lemma 3.7. Suppose that (3.17) holds. Then, function X3 given by (3.18) satisfies the asymptotic relation (3.21)
and X3 ∈ ntr − SVR.

Proof. Let (3.17) holds, implying that

σ + m2 = −m3α, σ + 2m2 = −m1α. (3.27)

From (3.18), using (3.2), (3.5), (3.8), equalities (3.27), with repeated application of Lemma 3.1, we obtain

∫
∞

t

s

p(s)
1
α

(∫ s

a

∫
∞

r
q(u) du dr

) 1
α

ds ∼
m

2−α2
α(α+1)

2

(−α2m1m3)
1
α

∫
∞

t
R(s)−m2

(
lq(s)lp(s)

1
α+1

) 1
α ds ,
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so that

X3(t) ∼

α − βα m
2−α2
α(α+1)

2

(−α2m1m3)
1
α

∫
∞

t
R(s)−m2

(
lq(s)lp(s)

1
α+1

) 1
α ds


α
α−β

= Y3(t), (3.28)

as t→ ∞. Therefore, by Lemma 3.1 we conclude that X3 ∈ SVR. Due to J2 < ∞, we have that X3(t)→ 0 as
t→∞, which gives that X3 ∈ ntr − SVR.

To prove that X3 satisfies the desired asymptotic relation, we apply Lemma 3.1 and use (3.27) to obtain

1

p(t)
1
α

(∫ t

a

∫
∞

s
q(r)X3(r)β dr ds

) 1
α

∼
m

2
α(α+1)

2

(−α2m1m3)
1
α

R(t)−m1−
η
α

(
lq(t)lp(t)

1−α
α+1

) 1
α X3(t)

β
α ,

as t→∞, implying with (3.28) that

J(t; a,X3) ∼
m

2−α2
α(α+1)

2

(−α2m1m3)
1
α

∫
∞

t
R(s)−m2

(
lq(s)lp(s)

1
α+1

) 1
α Y3(s)

β
α ds, t→∞.

Integration by substitution u = Y3(s)
α−β
α in the last integral gives the asymptotic relation (3.21).

3.1.3. Proofs of main results
Suppose that (E) has (I1)-type of intermediate solution x ∈ RVR(ρ) on [t0,∞). Clearly, ρ ∈ [m1, 0]. Using

(3.2), (3.11) and (3.19), we obtain from (E)

(
p(t)Φα(x′′(t))

)′ =

∫
∞

t
q(s)x(s)β ds =

∫
∞

t
R(s)σ+ρβlq(s)lx(s)β ds, t ≥ t0. (3.29)

The integrability of x[3] on [t0,∞) implies that one of the following two cases can be valid

(a) σ + ρβ + m2 < 0, (b) σ + ρβ + m2 = 0.

Assume that (b) holds. Then,

(
p(t)Φα(x′′(t))

)′ =

∫
∞

t
R(s)−m2 lq(s)lx(s)β ds ∈ SVR, (3.30)

and integrating (3.30) on [t0, t], we find via Lemma 3.1 that

x′′(t) ∼ m−
1
α+1

2 R(t)
m2−η
α lp(t)−

1
α+1

(∫
∞

t
R(s)−m2 lq(s)lx(s)β ds

) 1
α

, t→∞. (3.31)

Integration of (3.31) on [t,∞), due to (3.19), yileds

−x′(t) ∼
∫
∞

t
m−

1
α+1

2 R(s)
m2−η
α lp(s)−

1
α+1

(∫
∞

s
R(r)−m2 lq(r)lx(r)β dr

) 1
α

ds, t→∞. (3.32)

Notice that convergence of the integral in (3.32) implies the contradiction

m2 − η

α
+ m2 ≤ 0 with 1 =

m2 − η

α
+ m2,
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concluding that (b) can not be valid. Proceeding further, under the only possible case (a), application of
Lemma 3.1 in (3.30) gives

(
p(t)Φα(x′′(t))

)′
∼ −

m
1
α+1
2

σ + ρβ + m2
R(t)σ+ρβ+m2 lq(t)lp(t)

1
α+1 lx(t)β, t→∞ . (3.33)

We integrate (3.33) on [t0, t] to obtain

p(t)Φα(x′′(t)) ∼ −
m

1
α+1
2

σ + ρβ + m2

∫ t

t0

R(s)σ+ρβ+m2 lq(s)lp(s)
1
α+1 lx(s)β ds, t→∞. (3.34)

Since lim
t→∞

p(t)Φα(x′′(t)) = ∞, divergence of the integral in (3.34) implies two possiblities

(a.1) σ + ρβ + 2m2 > 0, (a.2) σ + ρβ + 2m2 = 0.

Assume that (a.2) holds. Then, (3.34) with (3.2) gives

x′′(t) ∼ m−
1
α+1

2 R(t)−
η
α lp(t)−

1
α

(∫ t

t0

R(s)−m2 lq(s)lp(s)
1
α+1 lx(s)β ds

) 1
α

, t→∞. (3.35)

Integration of (3.35) twice on [t0, t] and application of Lemma 3.1 shows that

x(t) ∼
m

1
α+1
2

m1(m1 −m2)
R(t)m1 lp(t)

α−1
α(α+1)

(∫ t

t0

R(s)−m2 lq(s)lp(s)
1
α+1 lx(s)β ds

) 1
α

, (3.36)

as t→∞, which yileds x ∈ RVR(m1).

Assume that (a.1) holds. Then, application of Lemma 3.1 in (3.34), with (3.2), gives

x′′(t) ∼M1(ρ)
1
α R(t)

k1(ρ)−η
α

(
lq(t)lp(t)

1−α
α+1 lx(t)β

) 1
α , t→∞. (3.37)

where

M1(ρ) =
m

2
α+1
2

−(k1(ρ) −m2)k1(ρ)
and k1(ρ) = σ + ρβ + 2m2 . (3.38)

The integrability of x′′ on [t,∞) implies

−x′(t) ∼M1(ρ)
1
α

∫
∞

t
R(s)

k1(ρ)−η
α

(
lq(s)lp(s)

1−α
α+1 lx(s)β

) 1
α ds, t→∞, (3.39)

and k1(ρ) − η + m2α ≤ 0. But the equality is not allowed. In fact, if k1(ρ) − η + m2α = 0, by Lemma 3.1 it
follows that −x′ ∈ SVR,which is impossible because integration on [t0, t] and Lemma 3.1 would imply that
x ∈ RVR(m2), contradicting assumption that ρ ∈ [m1, 0]. Therefore, k1(ρ) − η + m2α < 0 and by Lemma 3.1
from (3.39) we obtain

−x′(t) ∼M1(ρ)
1
α m

1
α+1
2 α

R(t)
k1(ρ)−η+m2α

α

−(k1(ρ) − η + m2α)

(
lq(t)lp(t)

1
α+1 lx(t)β

) 1
α , t→∞. (3.40)

Since, −x′ is integrable on [t,∞), it follows that k1(ρ) − η + 2m2α ≤ 0 and integration of (3.40) on [t,∞) leads
to

x(t) ∼M1(ρ)
1
α m

1
α+1
2 α

∫
∞

t

R(s)
k1(ρ)−η+m2α

α

−(k1(ρ) − η + m2α)

(
lq(s)lp(s)

1
α+1 lx(s)β

) 1
α ds, (3.41)
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as t→∞. We distinguish the two cases:

(a.1.1) k1(ρ) − η + 2m2α < 0, (a.1.2) k1(ρ) − η + 2m2α = 0.

If we assume (a.1.2), (3.41) shows that x ∈ SVR. On the other hand, if we assume (a.1.1), applying Lemma
3.1 to the integral in (3.41), we get

x(t) ∼ H1(ρ)R(t)
k1(ρ)−η+2m2α

α

(
lq(t)lp(t)lx(t)β

) 1
α , t→∞, (3.42)

with

H1(ρ) = M1(ρ)
1
α

m
2
α+1
2 α2

(k1(ρ) − η + m2α)(k1(ρ) − η + 2m2α)
. (3.43)

This means that

x ∈ RVR

(
k1(ρ) − η + 2m2α

α

)
, with m1 = 2m2 −

η

α
<

k1(ρ) − η + 2m2α

α
< 0 .

Proof of the ”only if” part of Theorem 3.2: Suppose that x is a solution of (E) belonging to RVR(ρ), ρ ∈
(m1, 0). This is possible only when (a.1.1) holds, in which case x must satisfy the asymptotic relation (3.42).
Therefore,

k1(ρ) − η + 2m2α

α
= ρ ⇔ ρ =

σ + 2α + η

α − β
, (3.44)

which justifies (3.13). The assumption ρ ∈ (m1, 0) determines the range (3.12) of σ. Moreover, using (3.23),
we rewrite (3.42) as

x(t) = R(t)ρlx(t) ∼
(

m2
2

(ρ −m1)(m3 − ρ)α2

) 1
α R(t)ρ

(
lq(t)lp(t)lx(t)β

) 1
α

ρ(ρ −m2)
, t→∞, (3.45)

showing that for a slowly varying part of x we have the asymptotic relation

lx(t) ∼
((m2

α

)2 lp(t)lq(t)
(ρ(ρ −m2))α(ρ −m1)(m3 − ρ)

) 1
α−β

, t→∞.

Thus, we conclude that x enjoys the asymptotic behavior (3.14). This proves the ”only if” part of the
Theorem 3.2.
Proof of the ”only if” part of Theorem 3.3: Suppose that x is a (I1)−type of intermediate solution of (E)
belonging to RVR(m1). Then, the case (a.2) is the only possibility for x and (3.36) is satisfied by x. In view
of ρ = m1 this means that σ + m1β + 2m2 = 0, i.e. σ = m1(α − β) − η − 2α. Using x(t) = R(t)m1 lx(t) and (3.9),
from (3.36) we get(

x(t)
ϕ(t)

)α
∼ m−

α
α+1

2

∫ t

t0

R(s)−m2 lq(s)lp(s)
1
α+1 lx(s)β ds ∼

m
2β−α
α+1

2

(m1(m1 −m2))β

∫ t

t0

(
x(s)
ϕ(s)

)β
R(s)−m2 lp(s)

α+β(α−1)
α(α+1) lq(s) ds

=

∫ t

t0

(
x(s)
ϕ(s)

)β
sq(s)ϕ(s)β ds = ν(t), t→∞.

Next, for ν we obtain the following differential asymptotic relation ν(t)−
β
α ν′(t) ∼ tq(t)ϕ(t)β, t → ∞ and by

integration on [t0, t], we find that

x(t)
ϕ(t)

∼ ν(t)
1
α ∼

(
α − β

α

∫ t

t0

sq(s)ϕ(s)β ds
) 1
α−β

, t→∞, (3.46)
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implying the asymptotic relation x(t) ∼ X2(t), t → ∞. Moreover, since x(t)/ϕ(t) → ∞ as t → ∞, (3.46)
implies that J1 = ∞. This proves the ”only if” part of the proof of Theorem 3.3.
Proof of the ”only if” part ofTheorem 3.4: Let us now suppose that x is a type-(I1) solution of (E) belonging
to ntr − SVR. From the above observations this is possible only when the case (a.1.2) holds, in which case
ρ = 0 and x must satisfy the asymptotic behavior (3.41). In view of ρ = 0, (a.1.2) gives σ = −η − 2α. Using
(3.38) with ρ = 0, asymptotic relation (3.41) becomes

x(t) ≡ lx(t) ∼ Q
∫
∞

t
R(s)−m2

(
lq(s)lp(s)

1
α+1 lx(s)β

) 1
α ds = µ(t), t→∞, with Q = m

2−α2
α(α+1)

2

(
α2(−m1)m3

)− 1
α .

Noting that

−µ′(t) = Q R(t)−m2
(
lq(t)lp(t)

1
α+1 lx(t)β

) 1
α
∼ Q R(t)−m2

(
lq(t)lp(t)

1
α+1µ(t)β

) 1
α , t→∞,

we obtain the differential asymptotic relation

−µ(t)−
β
αµ′(t) ∼ QR(t)−m2

(
lq(t)lp(t)

1
α+1

) 1
α , t→∞.

Since the left-hand side of the previous relation is integrable on [t0,∞) (note that x(t)→ 0 as t→ ∞ and so
µ(t) → 0 as t → ∞), in view of (3.28) we conclude that J2 < ∞ and obtain the desired asymptotic relation
for x

x(t) ∼ µ(t) ∼
(
α − β

α
Q

∫
∞

t
R(s)−m2

(
lq(s)lp(s)

1
α+1

) 1
α ds

) α
α−β

= Y3(t) ∼ X3(t), t→∞.

This proves the ”only if” part of Theorem 3.4.
Proof of the ”if” part of theorems 3.2, 3.3 and 3.4: Suppose that (3.12) or (3.15) or (3.17) holds. From
Lemma 3.5, 3.6 and 3.7 it is known that Xi , i = 1, 2, 3, defined by (3.14), (3.16) and (3.18) satisfy the
asymptotic relation (3.21). Let c > 0 be arbitrary fixed. Then, since

J(t; a,X) ∼
∫
∞

t

s − t

p(s)
1
α

(
c +

∫ s

a

∫
∞

r
q(u)X(u)β du dr

) 1
α

ds, t→∞,

we have that these functions also satisfy the asymptotic relation

X(t) ∼
∫
∞

t

s − t

p(s)
1
α

(
c +

∫ s

a

∫
∞

r
q(u)X(u)β du dr

) 1
α

ds, t ≥ a. (3.47)

We perform the simultaneous proof for Xi, i = 1, 2, 3 so the subscripts i = 1, 2, 3 will be omitted in the rest
of the proof. By (3.47) there exists T1 > T0 > a such that∫

∞

t

s − t

p(s)
1
α

(
c +

∫ s

T0

∫
∞

r
q(u)X(u)β du dr

) 1
α

ds ≤ 2X(t), t ≥ T0, (3.48)

and ∫
∞

t

s − t

p(s)
1
α

(
c +

∫ s

T0

∫
∞

r
q(u)X(u)β du dr

) 1
α

ds ≥
X(t)

2
, t ≥ T1. (3.49)

It is possible to choose positive constants m and M so that

m ≤
ϕ(t)
X(t)

≤M, T0 ≤ t ≤ T1. (3.50)
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Let k and K be positive constants such that

k ≤ min
{
c

1
α m, 2

α
β−α

}
and K ≥ 2

α
α−β . (3.51)

Define the set

X = {x ∈ C[T0,∞) : kX(t) ≤ x(t) ≤ KX(t), t ≥ T0} , (3.52)

which is a closed, convex subset of the locally convex space C[T0,∞) equipped with the topology of uniform
convergence on compact subintervals of [T0,∞) and define the integral operator G : X → C[T0,∞) by

(Gx)(t) =

∫
∞

t

s − t

p(s)
1
α

(
c +

∫ s

T0

∫
∞

r
q(v)x(v)β dv dr

) 1
α

ds, t ≥ T0. (3.53)

We claim the existence of a solution x ∈ X of the integral equation x(t) = (Gx)(t), t ≥ T0 by the Schauder-
Tychonoff fixed point theorem. For that cause we show thatG is a self-map onX and it sendsX continuously
to a relatively compact subset of C[T0,∞).

(i) G(X) ⊂ X. If x ∈ X, using (3.48), (3.51) and (3.52) we get

(Gx)(t) ≤ K
β
α

∫
∞

t

s − t

p(s)
1
α

(
c

Kβ
+

∫ s

T0

∫
∞

r
q(v)X(v)β dv dr

) 1
α

ds

≤ K
β
α

∫
∞

t

s − t

p(s)
1
α

(
c +

∫ s

T0

∫
∞

r
q(v)X(v)β dv dr

) 1
α

ds ≤ K
β
α · 2X(t) ≤ KX(t), t ≥ T0.

On the other hand, using (3.49), (3.50), (3.51) and (3.52) we have

(Gx)(t) ≥ c
1
α

∫
∞

t

s − t

p(s)
1
α

ds ≥ mc
1
α X(t) ≥ kX(t), T0 ≤ t ≤ T1,

and

(Gx)(t) ≥ k
β
α

∫
∞

t

s − t

p(s)
1
α

(
c
kβ

+

∫ s

T0

∫
∞

r
q(v)X(v)β dv dr

) 1
α

ds

≥ k
β
α

∫
∞

t

s − t

p(s)
1
α

(
c +

∫ s

T0

∫
∞

r
q(v)X(v)β dv dr

) 1
α

ds ≥ k
β
α

X(t)
2
≥ kX(t),

for all t ≥ T1. This shows that Gx ∈ X, that is, Gmaps X into itself.
(ii)G(X) is relatively compact. The inclusion G(X) ⊂ X ensures that G(X) is locally uniformly bounded on

[T0,∞). From the inequality

0 ≥ (Gx)′(t) ≥ −K
β
α

∫
∞

t

1

p(s)
1
α

(
c +

∫ s

T0

∫
∞

r
q(v)X(v)β dv dr

) 1
α

ds, t ≥ T0 ,

holding for all x ∈ X it follows that G(X) is locally equicontinuous on [T0,∞). The relative compactness of
G(X) then follows from the Arzela-Ascoli theorem.

(iii) G is continuous. Let {xn} be a sequence in X converging to x ∈ X uniformly on compact subintervals
of [T0,∞). Then, by (3.53) we have

|(Gxn)(t) − (Gx)(t)| ≤
∫
∞

t

s − t

p(s)
1
α

Fn(s) ds (3.54)



K. Djordjević, J. Manojlović / Filomat 33:13 (2019), 4185–4211 4201

where

Fn(s) =

∣∣∣∣∣∣∣
(
c +

∫ s

T0

∫
∞

r
q(v)xn(v)β dv dr

) 1
α

−

(
c +

∫ s

T0

∫
∞

r
q(v)x(v)β dv dr

) 1
α

∣∣∣∣∣∣∣ , s ∈ [t,∞).

Using the mean value theorem we get

Fn(t) ≤ θ
∫ t

T0

∫
∞

s
q(r)

∣∣∣xn(r)β − x(r)β
∣∣∣drds, t ≥ T0, since 0 < α < 1 , (3.55)

where

θ =
1
α

(
c + Kβ

∫ t

T0

∫
∞

s
q(r)X(r)βdrds

) 1−α
α

.

Thus, using that q(t)
∣∣∣xn(t)β − x(t)β| → 0 as n → ∞ at each point t ∈ [T0,∞) and

q(t)
∣∣∣xn(t)β − x(t)β| ≤ (2K)βq(t)X(t)β for t ≥ T0, while q(t)X(t)β is integrable on [T0,∞), the uniform con-

vergence Fn(t)⇒ 0 as n→ ∞ on compact subinterval of [T0,∞) follows by the application of the Lebesgue
dominated convergence theorem. We conclude that

lim
n→∞

∣∣∣(Gxn)(t) − (Gx)(t)
∣∣∣ = 0,

uniformly on any compact subinterval of [T0,∞), which proves the continuity of G.
Thus, all the hypotheses of the Schauder-Tychonoff fixed point theorem are fulfilled and so there exists

a fixed point x ∈ X ofG, which satisfies integral equation x(t) = (Gx)(t), t ≥ T0. Differentiating this equation
four times shows that x is a solution of (E) on [T0,∞), which due to (3.52) is an intermediate solution of type
(I1). Therefore, the proof of our main results will be completed with the verification that the intermediate
solutions of (E) constructed above are actually regularly varying functions with respect to R. We put

l = lim inf
t→∞

x(t)
J(t; T0,X)

, L = lim sup
t→∞

x(t)
J(t; T0,X)

.

By Lemmas 3.5, 3.6 and 3.7 we have X(t) ∼ J(t; T0,X), t → ∞. Since, x ∈ X, it is clear that 0 < l ≤ L < ∞.
Applying generalized L’Hospital’s rule four times, we obtain

L = lim sup
t→∞

x(t)
J(t; T0,X)

≤ lim sup
t→∞

x′(t)
J′(t; T0,X)

≤ lim sup
t→∞

x′′(t)
J′′(t; T0,X)

= lim sup
t→∞

c +
∫ t

T0

∫
∞

r q(s)x(s)β ds dr∫ t

T0

∫
∞

r q(s)X(s)β ds dr


1
α

≤

lim sup
t→∞

∫ t

T0

∫
∞

r q(s)x(s)β ds dr∫ t

T0

∫
∞

r q(s)X(s)β ds dr


1
α

≤

lim sup
t→∞

∫
∞

t q(s)x(s)β ds∫
∞

t q(s)X(s)β ds


1
α

≤

(
lim sup

t→∞

q(t)x(t)β

q(t)X(t)β

) 1
α

=

(
lim sup

t→∞

x(t)
X(t)

) β
α

= L
β
α .

Since β/α < 1, the inequality L ≤ L
β
α implies that L ≤ 1. Similarly, repeated application of generalized

L’Hospital’s rule to l leads to l ≥ 1, from which it follows that L = l = 1, that is, x(t) ∼ J(t; T0,X) ∼ X(t), t→∞.
Therefore it is concluded that if p ∈ RVR(η) and q ∈ RVR(σ), then solution x of the type (I1) is a member of
RVR(ρ), where

ρ =
σ + 2α + η

α − β
∈ (m1, 0) or ρ = m1 or ρ = 0,

according to whether the pair (η, σ) satisfies (3.12), (3.15) or (3.17), respectively. Any such solution x ∈
RVR(ρ) enjoys one and the same asymptotic behavior (3.14), (3.16) or (3.18) according as ρ ∈ (m1, 0), ρ = m1
or ρ = 0. This completes the ”if” parts of Theorems 3.2, 3.3 and 3.4.
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3.2. Regularly varying solutions of type (I2)
Let us turn our attention to the study of intermediate solutions of type (I2) of the equation (E) with

regularly varying coefficients satisfying (3.2), i.e. solutions x such that t ≺ x(t) ≺ ψ(t) as t → ∞. Since
ψ1 ∈ RVR(m2), ψ1(t) = t and ψ ∈ RVR(m3) (see (3.5) and (3.10)), the regularity index ρ of x must satisfy
m2 ≤ ρ ≤ m3. If ρ = m2, then since x(t)/t → ∞, t → ∞, x is a member of RVR(m2) with x/ψ1 ∈ ntr − SVR,
while if ρ = m3, then since x(t)/ψ(t) → 0, t → ∞, x is a member of RVR(m3) with x/ψ ∈ ntr − SVR.
Therefore, the totality of type-(I2) intermediate solutions of (E) is divideed into the following three classes

RVR(m2) or RVR(ρ), ρ ∈ (m2,m3) or RVR(m3). (3.56)

Our purpose is to show that, for each of the above classes, necessary and sufficient conditions for the
membership are established and that the asymptotic behavior at infinity of all members of each class is
determined precisely by a unique explicit formula.

3.2.1. Main results
Theorem 3.8. Let p ∈ RVR(η), q ∈ RVR(σ). Equation (E) has intermediate solutions x ∈ RVR(ρ) with
ρ ∈ (m2,m3) if and only if

m2(α − β) − η − 2α < σ < m3(α − β) − η − 2α. (3.57)

in which case ρ is given by (3.13) and the asymptotic behavior of any such solution x is governed by the unique
formula (3.14).

Theorem 3.9. Let p ∈ RVR(η), q ∈ RVR(σ). Equation (E) has intermediate solutions x ∈ RVR(m2) satisfying (I2)
if and only if

σ = m2(α − β) − η − 2α and J3 = ∞. (3.58)

The asymptotic behavior of any such solution x is governed by the unique formula

x(t) ∼ Y2(t) = t

α − βα
∫ t

a

1

p(s)
1
α

(∫ s

a

∫
∞

r
q(u)uβ du dr

) 1
α

ds


α
α−β

, t→∞. (3.59)

Theorem 3.10. Let p ∈ RVR(η), q ∈ RVR(σ). Equation (E) has intermediate solutions x ∈ RVR(m3) satisfying
(I2) if and only if

σ = m3(α − β) − η − 2α and J4 < ∞. (3.60)

The asymptotic behavior of any such solution x is governed by the unique formula

x(t) ∼ Y3(t) = ψ(t)
(
α − β

α

∫
∞

t
q(s)ψ(s)β ds

) 1
α−β

, t→∞. (3.61)

3.2.2. Preparatory results
Let x be a type-(I2) intermediate solution of (E) defined on [t0,∞). It is known that for such a solution

(2.1) holds and

lim
t→∞

x(t) = ∞, lim
t→∞

x′(t) = ∞, lim
t→∞

x[2](t) = ∞, lim
t→∞

x[3](t) = 0. (3.62)

The three types of generalized RV−intermediate solutions of type (I2) will be constructed in what follows
by solving the integral equation

x(t) = c +

∫ t

t0

t − s

p(s)
1
α

(∫ s

t0

∫
∞

r
q(u)x(u)β du dr

) 1
α

ds, t ≥ t0, (3.63)
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for some constants t0 ≥ a and c > 0. From (3.62) and (3.63) we easily see that all possible solutions x of type
(I1) of (E) satisfy the integral asymptotic relation

x(t) ∼
∫ t

t0

t − s

p(s)
1
α

(∫ s

t0

∫
∞

r
q(u)x(u)β du dr

) 1
α

ds, t→∞. (3.64)

First, we show that the generalized regularly varying functions X1,Y2,Y3 defined in (3.14), (3.59), (3.61)
satisfy the asymptotic relation (3.64). To simplify notation we put

I(t; a,X) =

∫ t

a

t − s

p(s)
1
α

(∫ s

a

∫
∞

r
q(u)X(u)β du dr

) 1
α

ds, t ≥ a.

Lemma 3.11. Suppose that (3.57) holds and let ρ be defined by (3.13). Then, X1 given in (3.14) satisfies the
asymptotic relation (3.64) and X1 ∈ RVR(ρ), where m2 < ρ < m3.

Proof. Let (3.57) holds. Using (3.2) and (3.13), we express X1(t) in the form X1(t) = R(t)ρL1(t), where L1 is
defined in (3.22) and L1 ∈ SVR.With the help of (3.57), we see that ρ defined by (3.13) satisfies m2 < ρ < m3
and so inequalities (3.23) hold. Thus, for X1 we obtain asymptotic relation (3.24). Since

ρ −m1 −
η

α
+ m2 = ρ −m2 > 0,

we integrate (3.24) on [a, t] and obtain with the application of Lemma 3.1∫ t

a

1

p(s)
1
α

(∫ s

a

∫
∞

r
q(u)X1(u)β du dr

) 1
α

ds ∼

m
2+α
α(α+1)

2(
α2(ρ −m1)(m3 − ρ)

) 1
α (ρ −m2)

R(t)ρ−m2
(
lq(t)lp(t)

1
1+α

) 1
α L1(t)

β
α , t→∞,

while integration again over [a, t] gives the desired asymptotic relation (3.64) for X1.

Lemma 3.12. Suppose that (3.58) holds. Then, Y2 given in (3.59) satisfies the asymptotic relation (3.64) and
Y2 ∈ RVR(m2).

Proof. From (3.7) and (3.58) we have that

σ + m2β + m2 = −α, σ + m2β + 2m2 = α(m2 −m1) . (3.65)

Thus, applying Lemma 3.1, with the help of (3.5) and (3.65) we get

(
1

p(t)

∫ t

a

∫
∞

s
q(r)rβ dr ds

) 1
α

∼

 m
2−αβ
α+1

2

α2(m2 −m1)


1
α

R(t)−m2

(
lp(t)

1−α+β
α+1 lq(t)

) 1
α

(3.66)

which by integration over [a, t] and combined with (3.5) gives the following expression for Y2

Y2(t) ∼ t

α − βα
 m

2−αβ
α+1

2

α2(m2 −m1)


1
α ∫ t

a
R(s)−m2

(
lp(s)

1−α+β
α+1 lq(s)

) 1
α

ds


α
α−β

∼ R(t)m2 l2(t)L2(t) (3.67)

where l2(t) = m−
α
α+1

2 lp(t)
1
α+1 , l2 ∈ SVR, and

L2(t) =

α − βα
 m

2−αβ
α+1

2

α2(m2 −m1)


1
α ∫ t

a
R(s)−m2

(
lp(s)

1−α+β
α+1 lq(s)

) 1
α

ds


α
α−β

, L2 ∈ SVR,
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implying that Y2 ∈ RVR(m2). Next, using (3.65) and the asymptotic relation (3.67), applying Lemma 3.1 we
obtain

(
1

p(t)

∫ t

a

∫
∞

s
q(r)Y2(r)β dr ds

) 1
α

∼

 m
2
α+1
2

α2(m2 −m1)


1
α

R(t)−m2
(
lp(t)

1−α
α+1 lq(t)l2(t)βL2(t)β

) 1
α , t→∞.

Integration of the previous relation on [a, t] gives

I(t; a,Y2) ∼ R(t)m2 l2(t)

 m
2−αβ
α+1

2

α2(m2 −m1)


1
α ∫ t

a
R(s)−m2

(
lp(s)

1−α+β
α+1 lq(s)L2(s)β

) 1
α

ds, t→∞.

Integration by substitution u = L2(s)
α−β
α in the last integral gives the asymptotic relation I(t; a,Y2) ∼ Y2(t), t→

∞.

Lemma 3.13. Suppose that (3.60) holds. Then, Y3 given in (3.61) satisfies the asymptotic relation (3.64) and
Y3 ∈ RVR(m3) .

Proof. From (3.10) we may express ψ with

ψ(t) ∼ R(t)m3 lψ(t), t→∞, where lψ(t) =
m

1
α+1
2

m3
lp(t)

1
α+1 , lψ ∈ SVR . (3.68)

Combining (3.68) with (3.61), we obtain the following asymptotic representation for Y3:

Y3(t) ∼ R(t)m3 lψ(t)L3(t), t→∞, (3.69)

where

L3(t) =

(
α − β

α

∫
∞

t
R(s)−m2 lq(s)lψ(s)β ds

) 1
α−β

, L3 ∈ SVR.

Therefore, Y3 ∈ RVR(m3). Using (3.60) and (3.69), by Lemma 3.1 we obtain

(
1

p(t)

∫ t

a

∫
∞

s
q(r)Y3(r)β dr ds

) 1
α

∼ m−
1
α+1

2 R(t)
m2−η
α lp(t)−

1
α+1 W(t)

1
α , t→∞, (3.70)

where

W(t) =

∫
∞

t
R(s)−m2 lq(s)

(
lψ(s)L3(s)

)β
ds, W ∈ SVR. (3.71)

Integrating (3.70) twice on [a, t] and using (3.68) and (3.71), we have

I(t; a,Y3) ∼
m

1
α+1
2

m3
R(t)m3 lp(t)

1
α+1 W(t)

1
α ∼ ψ(t)

(∫
∞

t
R(s)−m2 lq(s)

(
lψ(s)L3(s)

)β
ds

) 1
α

, t→∞,

leading to the desired conclusion that Y3(t) satisfies the integral asymptotic relation (3.64), with integration
by substitution u = L3(s)α−β in the last integral.
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3.2.3. Proof of main results
Suppose that the equation (E) has a type-(I2) intermediate solution x ∈ RVR(ρ) with ρ ∈ [m2,m3] which

is defined on [t0,∞). In view of (3.62), the integrability of x[3] on [t0,∞) implies (3.29) and that one of the
following two cases can be valid

(a) σ + ρβ + m2 < 0, (b) σ + ρβ + m2 = 0.

Assume that (b) holds. Then, as previously we obtain (3.30) and (3.31). Using that (m2 − η)/α + m2 = 1,
integration of (3.31) twice on [t0, t], with Lemma 3.1 gives

x′(t) ∼ R(t)
(∫

∞

t
R(s)−m2 lq(s)lx(s)β ds

) 1
α

, t→∞, (3.72)

and

x(t) ∼
m

1
α+1
2

m3
R(t)m3 lp(t)

1
α+1

(∫
∞

t
R(s)−m2 lq(s)lx(s)β ds

) 1
α

, t→∞. (3.73)

Thus, in this case, x ∈ RVR(m3).
Assume that (a) holds and as previously we obtain (3.33) and (3.34). As a consequence of the divergence

of the integral in (3.34), we further consider the following two cases separately:

(a.1) σ + ρβ + 2m2 > 0, (a.2) σ + ρβ + 2m2 = 0.

We show that (a.2) can not hold, because otherwise from the asymptotic relation (3.34) we obtain (3.35),
which by integration over [t0, t] yields

x′(t) ∼ m−
1
α+1

2

∫ t

t0

R(s)−
η
α lp(s)−

1
α

(∫ s

t0

R(u)−m2 lq(u)lp(u)
1
α+1 lx(u)β du

) 1
α

ds, t→∞.

But, the last integral is divergent, because x′(t)→∞ as t→∞, leading to the contradiction that m2−η/α > 0.

Therefore only (a.1) can be valid and from (3.34) we obtain (3.37), which integrated over [t0, t], implies

x′(t) ∼M1(ρ)
1
α

∫ t

t0

R(s)
k1(ρ)−η

α

(
lq(s)lp(s)

1−α
α+1 lx(s)β

) 1
α ds, t→∞, (3.74)

where M1(ρ) and k1(ρ) are defined in (3.38). To proceed further, due to divergence of the integral in (3.74),
we consider cases

(a.1.1) k1(ρ) − η + m2α > 0, (a.1.2) k1(ρ) − η + m2α = 0.

Suppose that (a.1.2) holds. Integration of (3.74) on [t0, t] and application of Lemma 3.1 gives

x(t) ∼M1(ρ)
1
α m−

α
α+1

2 R(t)m2 lp(t)
1
α+1

∫ t

t0

R(s)−m2
(
lq(s)lp(s)

1−α
α+1 lx(s)β

) 1
α ds, t→∞, (3.75)

which means that x ∈ RVR(m2).
Suppose that (a.1.1) holds. Then, application of Lemma 3.1 in (3.74) gives

x′(t) ∼M1(ρ)
1
α m

1
α+1
2 α

R(t)
k1(ρ)−η+m2α

α

k1(ρ) − η + m2α

(
lq(t)lp(t)

1
α+1 lx(t)β

) 1
α , t→∞, (3.76)

which by integration on [t0, t] implies the asymptotic relation (3.42), where H1(ρ) is given in (3.43). This
means that

x ∈ RVR

(
k1(ρ) − η + 2m2α

α

)
, with m2 <

k1(ρ) − η + 2m2α

α
<

m2 − η

α
+ 2m2 = m3 .
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Proof of the ”only if” part of theorem 3.8: Let x be an intermediate solution of (E) belonging toRVR(ρ)
for some ρ ∈ (m2,m3). Clearly, the only case when this is possible is (a.1.1) and x must satisfy the asymptotic
relation (3.42). Therefore, it holds (3.44), verifying that the regularity index ρ is given by (3.13). From the
requirement m2 < ρ < m3 it follows that the range of σ is given by (3.57). Since

−(σ + βρ + m2) = α(m3 − ρ), σ + βρ + 2m2 = α(ρ −m1),

the relation (3.42) can be rewritten as (3.45) from which it follows that x enjoys the asymptotic behavior
(3.14). This proves the ”only if” part of the Theorem 3.8.

Proof of the ”only if” part of theorem 3.9: Now, let x be a type-(I2) intermediate solution of (E) belonging
to RVR(m2). Then, from the above observations it is clear that only the case (a.1.2) is admissible, so that
(3.75) holds and ρ = m2 and k1(m2) − η + m2α = 0 implying that σ = m2(α − β) − η − 2α, using (3.7). From
(3.5) and (3.75) we obtain

x(t)
t
∼M1(m2)

1
α m−

β
α+1

2

∫ t

t0

(
x(s)

s

) β
α

R(s)−m2

(
lq(s)lp(s)

1−α+β
α+1

) 1
α

ds = µ(t), t→∞.

Using (3.66) we obtain

µ′(t) ∼
(

x(t)
t

) β
α
(

1
p(t)

∫ t

t0

∫
∞

s
q(r)rβ dr ds

) 1
α

∼ µ(t)
β
α

(
1

p(t)

∫ t

t0

∫
∞

s
q(r)rβ dr ds

) 1
α

, t→∞,

which gives us the differential asymptotic relation for µ(t):

µ(t)−
β
αµ′(t) ∼

(
1

p(t)

∫ t

t0

∫
∞

s
q(r)rβ dr ds

) 1
α

, t→∞. (3.77)

Integration of (3.77) on [t0, t] gives

x(t)
t
∼ µ(t) ∼

α − βα
∫ t

t0

(
1

p(s)

∫ s

t0

∫
∞

r
q(v)vβ dv dr

) 1
α

ds


α
α−β

, t→∞, (3.78)

implying the desired asymptotic relation x(t) ∼ Y2(t), t→∞. Since x(t)/t→∞ as t→∞, (3.78) also implies
that J3 = ∞. This completes the ”only if” part of the Theorem 3.9.

Proof of the ”only if” part of theorem 3.10: Let x is a type-(I2) intermediate solution of (E) belonging to
RVR(m3). Since only the case (b) is possible for x, it satisfies (3.73), which implies ρ = m3 and σ = −m2−βm3.
From (3.73), using (3.10) we get(

x(t)
ψ(t)

)α
∼

∫
∞

t
R(s)−m2 lq(s)lx(s)β ds ∼

m
1
α+1
2

m3


β ∫

∞

t

(
x(s)
ψ(s)

)β
R(s)−m2 lp(s)

β
α+1 lq(s) ds

∼

∫
∞

t

(
x(s)
ψ(s)

)β
q(s)ψ(s)β ds = ν(t), t→∞.

Using the relation

ν′(t) = −

(
x(t)
ψ(t)

)β
q(t)ψ(t)β ∼ −ν(t)

β
α q(t)ψ(t)β, t→∞,

we obtain the differential asymptotic relation

−ν(t)−
β
α ν′(t) ∼ q(t)ψ(t)β, t→∞. (3.79)
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Since the left-hand side of (3.79) is integrable on [t0,∞) (note that limt→∞ x(t)/ψ(t) = 0 and so limt→∞ ν(t) = 0),
so is the right-hand side, that is, J4 < ∞. Integrating (3.79) over [t,∞), then yields

x(t)
ψ(t)

∼ ν(t)
1
α ∼

(
α − β

α

∫
∞

t
q(s)ψ(s)β ds

) 1
α−β

, t→∞, (3.80)

which determines the precise asymptotic behavior of x as x(t) ∼ Y3(t), t → ∞. Thus the ”only if” part of
the Theorem 3.10 has been proved.
Proof of the ”if” part of theorems 3.8, 3.9 and 3.10: Suppose that (3.57) or (3.58) or (3.60) holds. From
Lemmas 3.11, 3.12 and 3.13 it is known that X1,Y2,Y3 defined by (3.14), (3.59) and (3.61) satisfy the
asymptotic relation (3.64). We perform the simultaneous proof for X1,Y2,Y3 so in the rest of the proof we
will denote them by Y. By (3.64) there exist T1 ≥ T0 > a such that

I(t; T0,Y) ≤ 2Y(t), t ≥ T0 and
Y(t)

2
≤ I(t; T0,Y), t ≥ T1.

Moreover, since Y ∈ RVR(ρ), with ρ > 0, this function is almost increasing, that is there exist constant A > 1
such that Y(x) ≤ AY(y) for each y ≥ x > a . Choose positive constants k and K such that

k ≤ min
{

2
α
β−α ,

K Y(T0)
2A2Y(T1)

}
, K ≥ 4

α
α−β .

Considering the integral operator

(Hx)(t) = c +

∫ t

T0

t − s

p(s)
1
α

(∫ s

T0

∫
∞

r
q(v)x(v)β dv dr

) 1
α

ds, t ≥ T0,

where c > 0 is a constant such that AkY(T1) ≤ c ≤
K

2A
Y(T0), we may verify thatH is continuous self-map on

the setY = {x ∈ C[T0,∞) : kY(t) ≤ x(t) ≤ KY(t), t ≥ T0} and thatH sendsY into relatively compact subset of
C[T0,∞). Thus,H has a fixed point x ∈ Y, which generates a solution of equation (E) of type (I2) satisfying
above inequalities and thus yields that

0 < lim inf
t→∞

x(t)
Y(t)

≤ lim sup
t→∞

x(t)
Y(t)

< ∞.

We put

l = lim inf
t→∞

x(t)
I(t; T0,Y)

, L = lim sup
t→∞

x(t)
I(t; T0,Y)

.

By Lemmas 3.11, 3.12 and 3.13 we have Y(t) ∼ I(t; T0,Y), t→ ∞. Since, x ∈ Y, it is clear that 0 < l ≤ L < ∞.
Then, proceeding exactly as in the proof of the ”if” part of Theorems 3.2, 3.3, 3.4, with application of
generalized L’Hospital’s rule, we conclude that x(t) ∼ I(t; T0,Y) ∼ Y(t), t→∞. Therefore, x is a generalized
regularly varying solution of (E) with requested regularity index and the asymptotic behavior (3.14), (3.59),
(3.61) depending on if (σ, η) satisfies, respectively, (3.57) or (3.58) or (3.60). Thus, the ”if part” of Theorems
3.8, 3.9 and 3.10 has been proved.

4. Corollaries

The final section is concerned with equation (E) whose coefficients p and q are regularly varying functions
in the sense of Karamata. Our purpose here is to show that this new problem can be embedded in the
framework of generalized regularly varying functions, so that the results of the preceding section provide
full information about the existence and the precise asymptotic behavior of regularly varying solutions of
(E).
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We assume that p and q are regularly varying functions of indices η and σ, respectively, i.e.,

p(t) = tηlp(t), q(t) = tσlq(t), lp, lq ∈ SV,

and consider regularly varying solutions x of (E) expressed in the from x(t) = tρlx(t), lx ∈ SV. Conditions
(1.1) are satisfied if and only if 2α ≤ η ≤ α+1. In what follows we assume that η < α+1, because if η = α+1,
that is R ∈ SV, the assumption p ∈ RVR(η∗), for some η∗ ∈ R would imply the contradiction that p ∈ SV.
Then, it is easy to see that

R(t) =

∫ t

a
s

1−η
α lp(s)−

1
α ds ∼

α
1 + α − η

t
1+α−η
α lp(t)−

1
α ,

which means that

R ∈ RV
(
α + 1 − η

α

)
and R−1

∈ RV

(
α

α + 1 − η

)
.

Therefore, any regularly varying function f ∈ RV(λ) is considered as a generalized regularly varying
function of index αλ/(α + 1 − η) with respect to R, and conversely any generalized regularly varying
function f ∈ RVR(λ∗) is regarded as an regularly varying function of index λ = λ∗(α + 1 − η)/α. It follows
that

p ∈ RVR

(
ηα

1 + α − η

)
, q ∈ RVR

(
σα

1 + α − η

)
, x ∈ RVR

(
ρα

1 + α − η

)
.

Put
η∗ =

ηα

1 + α − η
, σ∗ =

σα
1 + α − η

, ρ∗ =
ρα

1 + α − η
.

Three positive constants given by (3.7) are reduced to

m1(α, η∗) =
2α − η

1 + α − η
, m2(α, η∗) =

α
1 + α − η

, m3(α, η∗) =
2α − η − 1
1 + α − η

.

Based on the above observations we are able to apply the theory of generalized regularly varying
functions built in Section 3 to establish necessary and sufficient conditions for the existence of intermediate
regularly varying solutions of (E) and to determine the asymptotic behavior of all such solutions explicitly
and accurately. First, we state the results on type-(I1) intermediate solutions that can be derived as corollaries
of Theorems 3.2, 3.3 and 3.4.

Theorem 4.1. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (E) possess (I1)−type intermediate intermediate
regularly varying solutions belonging to RV(ρ) with ρ ∈

(
2 − η

α , 0
)
, if and only if

η
β

α
− 2β − 2 < σ < η − 2α − 2.

in which case ρ is given by

ρ =
σ + 2α + 2 − η

α − β
(4.1)

and any such solution x enjoys one and the same asymptotic behavior

x(t) ∼
(

t2α+2p(t)−1q(t)
(ρ(ρ − 1))α(αρ − 2α + η)(2α − η + 1 − αρ)

) 1
α−β

, t→∞. (4.2)
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Theorem 4.2. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (E) possess (I1)−type intermediate solutions
belonging to RV

(
2 − η

α

)
if and only if

σ = η
β

α
− 2β − 2 and J1 = ∞.

Any such solution x enjoys one and the same asymptotic behavior x(t) ∼ X2(t), t→∞, where X2 is given by (3.16).

Theorem 4.3. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (E) possess (I1)−type intermediate nontrivial
slowly varying solutions if and only if

σ = η − 2α − 2 and J2 < ∞.

Any such solution x enjoys one and the same asymptotic behavior x(t) ∼ X3(t), t→∞, where X3 is given by (3.18).

Similarly, from Theorems 3.8, 3.9 and 3.10, we are able to completely charaterize existence and asymptotic
behavior of type-(I2) intermediate regularly varying solutions of (E).

Theorem 4.4. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (E) possess (I2)−type intermediate regularly
varying solutions belonging to RV(ρ) with ρ ∈

(
1, 2 − η−1

α

)
if and only if

−α − β + η − 2 < σ <
β

α
(η − 1) − 2β − 1.

in which case ρ is given by (4.1) and the asymptotic behavior of any such solution x is governed by the unique formula
(4.2).

Theorem 4.5. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (E) possess (I2)−type intermediate regularly
varying solutions belonging to RV (1) if and only if

σ = −α − β + η − 2 and J3 = ∞.

The asymptotic behavior of any such solution x(t) is governed by the unique formula x(t) ∼ Y2(t), t→∞, where Y2
is given by (3.59).

Theorem 4.6. Assume that p ∈ RV(η) and q ∈ RV(σ). Equation (E) possess (I2)−type intermediate regularly
varying solutions belonging to RV

(
2 − η−1

α

)
if and only if

σ =
β

α
(η − 1) − 2β − 1 and J4 < ∞.

The asymptotic behavior of any such solution x is governed by the unique formula x(t) ∼ Y3(t), t→ ∞, where Y3 is
given by (3.61).

5. Basic properties of regularly varying functions

We recall that the set of regularly varying functions of index ρ ∈ R is introduced by the following
definition.

Definition 5.1. A measurable function f : (a,∞)→ (0,∞) for some a > 0 is said to be regularly varying at infinity
of index ρ ∈ R if

lim
t→∞

f (λt)
f (t)

= λρ for all λ > 0.
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The totality of all regularly varying functions of index ρ is denoted by RV(ρ) . In the special case when
ρ = 0, we use the notation SV instead of RV(0) and refer to members of SV as slowly varying functions.

The reader is referred to N.H. Bingham et al. [1] and E. Seneta [19] for the most complete exposition of
theory of regular variation and its application to various branches of mathematical analysis.

Jaroš and Kusano introduced in [2] the class of generalized Karamata functions with the following
definition.

Definition 5.2. Let R be a positive function which is continuously differentiable on (a,∞) and satisfies R′(t) >
0, t > a and lim

t→∞
R(t) = ∞. A measurable function f : (a,∞)→ (0,∞) for some a > 0 is said to be regularly varying

of index ρ ∈ R with respect to R if f ◦ R−1 is defined for all large t and is regularly varying function of index ρ in
the sense of Karamata, where R−1 denotes the inverse function of R.

The symbol RVR(ρ) is used to denote the totality of regularly varying functions of index ρ ∈ Rwith respect
to R(t). The symbol SVR is often used for RVR(0).

We emphasize that there exists a function which is regularly varying in generalized sense, but is not
regularly varying in the sense of Karamata, so that, roughly speaking, the class of generalized Karamata
functions is larger than that of classical Karamata functions.

The following proposition summarizes selected properties of generalized regularly varying functions.

Proposition 5.3. (i) f ∈ RVR(σ) if and only if f (t) = R(t)σ `(t), ` ∈ SVR.

(ii) If 11 ∈ RVR(σ1), then (11)α ∈ RVR(ασ1) for any α ∈ R.

(iii) If 1i ∈ RVR(σi), i = 1, 2, then 11 + 12 ∈ RVR(σ), σ = max(σ1, σ2).

(iv) If 1i ∈ RVR(σi), i = 1, 2, then 11 · 12 ∈ RVR(σ1 + σ2).

(v) If 1i ∈ RVR(σi), i = 1, 2 and 12(t)→∞ as t→∞, then 11 ◦ 12 ∈ RVR(σ1σ2).

(vi) If f ∈ RVR(σ) and f (t) ∼ 1(t) as t→∞, then 1 ∈ RVR(σ).

(vii) If ` ∈ SVR, then for any ε > 0, limt→∞ R(t)ε`(t) = ∞, and limt→∞ R(t)−ε`(t) = 0.

In view of Proposition 5.3-(i), if

lim
t→∞

f (t)
R(t)ρ

= lim
t→∞

`(t) = const > 0

then f is said to be a trivial regularly varying function of index ρ with respect to R and it is denoted by
f ∈ tr − RVR(ρ) . Otherwise, f is said to be a nontrivial regularly varying function of index ρ with respect
to R and it is denoted by f ∈ ntr − RVR(ρ) .

Next, we present a fundamental result (see [2]), called Generalized Karamata integration theorem, which
played a central role in establishing our main results.

Proposition 5.4. (Generalized Karamata integration theorem) Let ` ∈ SVR. Then,

(i) If α > −1, ∫ t

a
R′(s)R(s)α`(s) ds ∼

R(t)α+1 `(t)
α + 1

, t→∞;

(ii) If α < −1, ∫
∞

t
R′(s) R(s)α `(s) ds ∼ −

R(t)α+1 `(t)
α + 1

, t→∞;

(iii) If α = −1, ∫ t

a
R′(s) R(s)−1 `(s) ds ∈ SVR and

∫
∞

t
R′(s) R(s)−1 `(s) ds ∈ SVR.
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