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Abstract. In this paper we present a new algorithm for the computation of the minimal Geršgorin set
that can be considered an extension of the results from [5]. While the general approach to calculation of
the boundary of the minimal Geršgorin set is kept, the core numerical calculation is changed. Namely, the
problem is formulated in such a way that the eigenvalue computations are replaced by LU decompositions,
allowing the algorithm to be used for larger matrices more efficiently. To illustrate the benefits, we compare
both algorithms on several test matrices.

1. Introduction

While the research on minimal Geršgorin set (MGS) provided many interesting (theoretical) results, [7],
one can not find in the literature many algorithms for computing this localization of the matrix spectrum.
The reason for this probably lies in the fact that the boundary of the MGS is itself defined as an eigenvalue
problem (of the same size as the given matrix). Thus, one may well ask why one would need to compute
many eigenvalues in order to obtain (sometimes very crude) approximation of the spectrum. Nevertheless,
the usefulness of the MGS is not solely based on the fact that it contains the spectrum of the matrix.
It can be used for determining the stability of time dependent dynamical systems, [5]. In addition, it
represents the optimality of the result on the set of extended family of equimodular matrices. Taking into
account the previous argument, in this paper we wish to reformulate the boundary of the MGS in order
to avoid the unnecessary eigenvalue computations and in such a way decrease the numerical cost of the
computation of the MGS. To that end, we start with the algorithm eMGS from [5] that is summarized with
some preliminaries in Section 2. Then, in Section 3, we provide the main results and we conclude the paper
with numerical tests in Section 4.

2. Preliminaries

Given any matrix A = [ai j] ∈ Cn,n, i, j ∈ {1, 2, . . . ,n}, let σ(A) denote its spectrum, i.e.,

σ(A) := {λ ∈ C : det(λI − A) = 0}, (1)
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where I is the identity matrix of a size n, n ∈N. For any λ ∈ σ(A), there exists i ∈ {1, 2, . . . ,n} such that

λ ∈ Γi(A) :=
{
z ∈ C : |z − aii| ≤ ri(A) :=

n∑
j,i

|ai j|
}
. (2)

The set Γ(A) :=
n⋃

i=1

Γi(A) is called the Geršgorin set, [7].

Given a positive vector x = [x1, x2, . . . , xn] > 0 and a diagonal matrix X := dia1(x) ∈ Rn,n, the Geršgorin disks
for the matrix X−1AX are given by

Γrx

i (A) :=
{
z ∈ C : |z − aii| ≤ rx

i (A) :=
n∑

j,i

|ai j|x j

xi

}
, for i ∈ {1, 2, . . . ,n}. (3)

Moreover, the associated Geršgorin set is defined as

Γrx
(A) :=

n⋃
i=1

Γrx

i (A). (4)

The set

ΓR(A) :=
⋂

x∈Rn, x>0

Γrx
(A) (5)

is called the minimal Geršgorin set and σ(A) ⊆ ΓR(A) ⊆ Γ(A).

The set ΓR(A) is interesting because it gives, in a certain sense, the sharpest inclusion set for σ(A) among
all Geršgorin-type sets [4]. As it was mentioned in Introduction, some motivations for constructing the
minimal Geršgorin set are provided in [5]. In the same paper, the numerical procedures for its computation
are derived, the most advanced being the algorithm called eMGS based on the following characterization
of the minimal Geršgorin set and the properties of its boundary.

Definition 2.1. Given a matrix A = [ai j] ∈ Cn,n and a scalar z ∈ C, an essentially non-negative matrix QA(z) =
[qi j(z)] is given by:

qii(z) := −|z − aii| and qi j(z) := |ai j|, for i, j ∈ {1, 2, . . . ,n}, i , j. (6)

The real valued function

νA(z) := inf
x>0

max
i∈{1,2,...,n}

(rx
i (A) − |z − aii|), (7)

can be obtained as the right-most eigenvalue of QA(z).

Using the function νA(z), the set ΓR(A) can be characterized by the following theorem.

Theorem 2.2. ([7, Proposition 4.3]) For any A = [ai j] ∈ Cn,n, n ≥ 2, then z ∈ ΓR(A) if and only if νA(z) ≥ 0. If
z ∈ ∂ΓR(A), then νA(z) = 0.

Theorem 2.3. ([7, Theorem 4.6]) For any irreducible matrix A = [ai j] ∈ Cn,n, n ≥ 2, then νA(aii) > 0, for every
i ∈ {1, 2, . . . ,n}. Moreover, for each aii and each real θ, 0 ≤ θ ≤ 2π, let ρ̂i(θ) be the smallest ρ > 0 for which

νA(aii + ρ̂i(θ)eiθ) = 0 (8)
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and there is a sequence of complex numbers {z j}
∞

j=1 with lim
j→∞

z j = aii + ρ̂i(θ)eiθ, such that νA(z j) < 0, j ∈ N. Then,

the complex interval [aii + teiθ]ρ̂i(θ)
t=0 is contained in ΓR(A), i.e.,

2π⋃
θ=0

[aii + teiθ]%̂i(θ)
t=0 (9)

is a star-shaped subset of ΓR(A).

Based on the previous theorems, the algorithm eMGS from [5] is obtained by fixing a diagonal entry ξ = aii
of a matrix as a center of the star-shaped subset whose boundary we wish numerically to approximate.
Then, for different values of θ ∈ [0, 2π], the function f ξ,θA : R → R is defined by f ξ,θA (t) := νA(ξ + teiθ), and
the value ρ̂(θ) is computed as a zero of the function f ξ,θA that is the closest to the center ξ via a Newton-like
method. To that end, one needs to repeatedly compute function and derivative values. This is performed
by computing the Perron eigenvalue f ξ,θA (t) with left and right eigenvectors xξ,θA (t) > 0 and yξ,θA (t) > 0,
respectively, i.e.,

QA(ξ + teiθ)xξ,θA (t) = f ξ,θA (t)xξ,θA (t),
QA(ξ + teiθ)T yξ,θA (t) = f ξ,θA (t)yξ,θA (t), and
∂
∂t f ξ,θA (t) =

yξ,θA (t)T ∂
∂t QA(ξ+teiθ)xξ,θA (t)

yξ,θA (t)Txξ,θA (t)
.

(10)

Once for fixed ξ and θ, ρ̂(θ) is computed, eMGS changes the angle θ in appropriate way to move along the
boundary curve of a disjoint component of the minimal Geršgorin set, and, if needed changes the center ξ
so that the whole curve can be passed using the following property.

Lemma 2.4. ([5]) Given an arbitrary irreducible matrix A ∈ Cn,n, for every pointω ∈ ∂ΓR(A) there exists sufficiently
small ε > 0 and an index 1 ≤ i ≤ n such that for all α ∈ [0, 1] and z ∈ C satisfying |z−ω| < ε, ar1(z−aii) > ar1(ω−aii)
and z ∈ ∂ΓR(A), it holds that αz + (1 − α)aii ∈ ΓR(A).

Once a closed boundary curve is constructed as a new polygon in the complex plane, the algorithm continues
by checking if there are diagonal entries included in its exterior. In that case a new polygon is constructed
around such a diagonal entry.

Finally, the important condition of irreducibility needed in the previous theorems can always be guarantied
since, for every A ∈ Cn,n, n ≥ 2, there always exists its normal reduced form

PAPT =


A11 A12 . . . A1m

A22 . . . A2m
. . .

...
Amm

 ,
where P is a permutation matrix and the diagonal blocks Aii ∈ Cni,ni are either 1 × 1 or irreducible ni × ni
matrices, ni ≥ 2, i ∈ {1, 2, ...,m}. Thus, the computation of the minimal Geršgorin set for a general matrix
can be obtained from the computations of the irreducible diagonal parts of its normal reduced form, as
stated in the following theorem.

Lemma 2.5. ([5]) Given an arbitrary matrix A = [ai j] ∈ Cn,n, let Aii ∈ Cni,ni denote the i-th diagonal block of its
normal reduced form, ni ≥ 1, i ∈ {1, 2, ...,m}. Then

ΓR(A) =

m⋃
i=1

ΓR(Aii).
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Here we omit further technical details needed for the full understanding and implementation of the eMGS
algorithm, and refer the reader to [5].

For a Z-matrix A = [ai j] ∈ Rn,n (ai j ≤ 0, i, j ∈ {1, 2, ...,n}, i , j), the following statements are equivalent:

• A is a nonsingular M-matrix.

• A−1
≥ 0.

• There exists a vector x ∈ Rn, x ≥ 0, such that Ax > 0.

• The real part of each eigenvalue of A is positive.

To end the preliminaries, in the following, we will use the well-known formula for inversion of a block

matrix. Namely, if a matrix M is partitioned into four blocks, i.e., M =

[
A B
C D

]
, where matrices A and D

are square and A and E := D − CA−1B are nonsingular, using the Schur complement, we have

M−1 =

[
A B
C D

]−1

=

[
A−1 + A−1BE−1CA−1

−A−1BE−1

−E−1CA−1 E−1

]
, (11)

and

det(M) = det(A)det (E) . (12)

3. Algorithm iMGS

In this section, we present the original results that are the basis for the construction of a new algorithm
for numerical approximation of the minimal Geršgorin set. This new algorithm will be called an implicit
algorithm, abbreviated iMGS, as the main idea is to avoid explicit computation of Perron eigentriplets
within the algorithm eMGS, from the previous section, by replacing function f ξ,θA with a new function hξ,θA
that reveals Perron eigenvalue implicitly through the solution of a structured system of linear equations.
The motivation for this approach to significantly reduce the overall number of expensive eigenvalue
computations can be found in the idea of the implicit determinant method given in [3] and [6].

Given an arbitrary irreducible matrix A ∈ Cn,n, a complex number ξ and a real 0 ≤ θ < 2π, let us fix a vector
c ∈ Rn, c > 0 and for every t ≥ 0 construct a system of linear equations[

−QA(ξ + t eiθ) −c
−cT 0

]
︸                       ︷︷                       ︸

Mξ,θ
A (t)

[
xξ,θA (t)
1
ξ,θ
A (t)

]
=

[
0
−1

]
, (13)

where QA(ξ + teiθ) is given by Definition 2.1. Assuming that Mξ,θ
A (t) is nonsingular, (13) can be uniquely

solved, and Cramer’s rule provides that

1
ξ,θ
A (t) := −

det(−QA(ξ + t eiθ))

det(Mξ,θ
A (t))

, (14)

defines a function that becomes zero whenever matrix QA(z) becomes singular in a point z = ξ + t eiθ. In
the following we see how 1ξ,θA can be used instead of a νA to characterize the boundary of the minimal
Geršgorin set.
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Theorem 3.1. Given an arbitrary irreducible matrix A ∈ Cn,n, a complex number ξ, a real 0 ≤ θ < 2π and c ∈ Rn,
c > 0 arbitrary positive vector, let t̂ > 0 be maximal such that ξ + t eiθ

∈ ΓR(A), for all t ∈ [0, t̂]. Then, there exists
ε > 0 such that Mξ,θ

A (t) is a nonsingular matrix for all t ∈ [̂t−ε, t̂ +ε]. Consequently, (13) defines an∞-differentiable
functions 1ξ,θA and xξ,θA on [̂t − ε, t̂ + ε].

Proof. First let us show that matrix Mξ,θ
A (̂t) is nonsingular. Assume that Mξ,θ

A (̂t) is singular. As the positions
of zero entries outside the main diagonal of A and QA(ξ + t̂ eiθ) are the same and c > 0, the fact that the
matrix A is irreducible implies the irreducibility of matrices QA(ξ + t̂ eiθ) and Mξ,θ

A (̂t). Let [v α]T be the right
eigenvector of the matrix Mξ,θ

A (̂t) corresponding to the zero eigenvalue, i.e.,[
−QA(ξ + t̂ eiθ) −c

−cT 0

] [
v
α

]
= 0
[

v
α

]
=

[
0
0

]
. (15)

Hence, we obtain

QA(ξ + t̂ eiθ)v + cα = 0 (16)

and

cTv = 0. (17)

Using the Perron-Frobenius Theorem for essentially non-negative irreducible matrices [1], an eigenvalue
νA(ξ + t̂ eiθ) = 0 of matrix QA(ξ + t̂ eiθ) has a positive right and left eigenvector x̂ and ŷ, respectively.
Moreover, every right (left) eigenvector corresponding to the eigenvalue zero will be a scalar multiple of x̂
(ŷ). Multiplying equation (16) by ŷT, we obtain

ŷTQA(ξ + t̂ eiθ)v + ŷTcα = 0 =⇒ ŷTcα = 0 =⇒ α = 0, (18)

which together with (16) implies that QA(ξ + t̂ eiθ)v = 0, i.e., v , 0 is the right eigenvector corresponding to
the eigenvalue zero. Hence, there exists β , 0 that v = βx̂. Then, from (17), we obtain

βcTx̂ = 0 ⇒ cTx̂ = 0, (19)

which is a contradiction. Therefore, Mξ,θ
A (̂t) has to be a nonsingular matrix. Moreover, using the continuity

of Mξ,θ
A (t) in parameter t, we conclude that there exists a sufficiently small ε > 0 such that for all t ∈ [̂t−ε, t̂+ε],

Mξ,θ
A (t) is nonsingular and 1ξ,θA (t) and xξ,θA are∞-differentiable functions for all t ∈ [̂t − ε, t̂ + ε].

Theorem 3.2. Given an arbitrary irreducible matrix A ∈ Cn,n, a complex number ξ, a real 0 ≤ θ < 2π and c ∈ Rn,
c > 0 a positive vector, let t̂ > 0 be maximal such that ξ+ t eiθ

∈ ΓR(A), for all t ∈ [0, t̂]. Then, there exists ε > 0 such
that:

1. For every z = ξ + t eiθ < ΓR(A), 1ξ,θA (t) and xξ,θA (t) are well defined and positive.
2. 1ξ,θA (t) > 0 for all t ∈ (̂t, t̂ + ε].

3. 1ξ,θA (̂t) = 0.

4. 1ξ,θA (t) < 0 for all t ∈ [̂t − ε, t̂).
5. The first and the second derivatives ∂

∂t1
ξ,θ
A , ∂

∂t x
ξ,θ
A and ∂2

∂t2 1
ξ,θ
A , ∂2

∂t2 xξ,θA are defined via the linear systems[
−QA(ξ + t eiθ) −c

−cT 0

] [
∂
∂t x

ξ,θ
A (t)

∂
∂t1

ξ,θ
A (t)

]
=

[
−Dξ,θ

A (t)xξ,θA (t)
0

]
, (20)

[
−QA(ξ + t eiθ) −c

−cT 0

] [
∂2

∂t2 xξ,θA (t)
∂2

∂t2 1
ξ,θ
A (t)

]
=

[
−Sξ,θA (t)xξ,θA (t) − 2Dξ,θ

A (t) ∂∂t x
ξ,θ
A (t)

0

]
, (21)
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where the vector function x(t) is defined as the solution of the linear system (13) and the entries of the diagonal
matrices Dξ,θ

A (t) := dia1([d1(t), d2(t), . . . , dn(t)]) and Sξ,θA (t) := dia1([s1(t), s2(t), . . . , sn(t)]) are given by

di(t) :=
Re[(ξ − aii) e−iθ] + t
|(ξ − aii) e−iθ + t|

, (22)

si(t) :=
(Im[(ξ − aii) e−iθ + t])2

|(ξ − aii) e−iθ + t|3
, (23)

for t , (ξ − aii)ei(π−θ), i ∈ {1, 2, . . . ,n}.

Proof. 1.Let z = ξ+t eiθ < ΓR(A), then−QA(ξ+t eiθ) is a nonsingular M-matrix, implying (−QA(ξ+t eiθ))−1
≥ 0

and det(−QA(ξ + t eiθ)) > 0. So, from (12),

det(Mξ,θ
A (t)) = −det(−QA(ξ + t eiθ))cT(−QA(ξ + t eiθ))−1c < 0 (24)

and we obtain that Mξ,θ
A (t) is nonsingular. Therefore, using a formula for the inversion of a block matrix

(11), we have that

(Mξ,θ
A (t))−1

[
0
−1

]
=

[
(−QA(ξ + t eiθ))−1ccT(−QA(ξ + t eiθ))−1c

cT(−QA(ξ + t eiθ))−1c

]
> 0,

implying that 1ξ,θA (t) and xξ,θA (t) are well defined and positive.

Items 2., 3. and 4. follow from the continuity of det(Mξ,θ
A (t)) and the fact that det(−QA(ξ + t̂ eiθ)) = 0.

5. Finally, we get the expressions for the derivatives. If t , (ξ − aii)ei(π−θ) for i ∈ {1, 2, ...,n}, the entries of
QA(ξ + t eiθ) are∞-differentiable functions in t and their first and second derivatives are given as

∂
∂t

qii(ξ + t eiθ) =
Re[(ξ − aii) e−iθ] + t
|(ξ − aii) e−iθ + t|

,
∂
∂t

qi j(ξ + t eiθ) = 0, for j , i, (25)

and

∂2

∂t2 qii(ξ + t eiθ) =
(Im[(ξ − aii) e−iθ + t])2

|(ξ − aii) e−iθ + t|3
,

∂2

∂t2 qi j(ξ + t eiθ) = 0, for j , i, (26)

for all i, j ∈ {1, 2, ...,n}. By differentiating (13) and using (25) and (26), we obtain (20) and (21).

Definition 3.3. For a fixed ξ ∈ C and 0 ≤ θ < 2π, define the functions:
χξ,θA (t) := min

{
(xξ,θA (t))i : 1 ≤ i ≤ n

}
and hξ,θA (t) := min

{
1
ξ,θ
A (t), χξ,θA (t)

}
, for t ≥ 0.

Then, the following characterization of the minimal Geršgorin set holds.

Theorem 3.4. Let be given an arbitrary irreducible matrix A ∈ Cn,n and its arbitrary diagonal entry ξ = akk, k ∈
{1, 2, ...,n} and z = ξ + t eiθ, where t ≥ 0 and 0 ≤ θ < 2π. Then,

• z < ΓR(A) if and only if hξ,θA (t) > 0,

• z ∈ ∂ΓR(A) such that t = ρ̂k(θ) if and only if

i) hξ,θA (t) = 1ξ,θA (t) = 0,

ii) hξ,θA (s1) ≤ 0 holds for all 0 ≤ s1 ≤ t, and

iii) for every ε > 0 there exists s2 ≥ t such that s2 − t̂ < ε and hξ,θA (s2) > 0,
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• if c is chosen to be a positive normalized (‖c‖2 = 1) eigenvector of the Perron eigenvalue νA(ξ) > 0 of QA(ξ)
and Mξ,θ

A (0) is a nonsingular matrix, then 1ξ,θA (0) < 0 and xξ,θA (0) > 0.

Proof. For the first item, we prove the equivalence. Assume that z < ΓR(A), then, as it is shown in item 1.
of Theorem 3.2, hξ,θA (t) > 0. On the other hand, assume that hξ,θA (t) > 0, then from the system (13), we get
−QA(z)xξ,θA (t) = 1ξ,θA (t)c > 0, while xξ,θA (t) > 0. But, this implies that −QA(z) is a nonsingular M-matrix. So,
z < ΓR(A).

For the second item, first observe that i) − iii) imply that t = ρ̂k(θ) as defined in Theorem 2.3. So, assume
z ∈ ∂ΓR(A) such that t = ρ̂k(θ) and let ε > 0 and 0 ≤ s1 ≤ t ≤ s2 and s2 − t < ε. Then Theorem 3.2, item 3.
gives 1ξ,θA (t) = 0. Item 1. states that xξ,θA (s2) > 0, which with continuity implies xξ,θA (t) ≥ 0. So, we conclude
hξ,θA (t) = 0. Obviously, ii) follows from the previous item and iii) from the definition of ρ̂k(θ).
For the third item, if c is a positive normalized eigenvector of Perron eigenvalue νA(ξ) > 0 of QA(ξ), then
QA(ξ)c = νA(ξ)c and cTc = 1. From the system (13) for t = 0, we obtain −QA(ξ)xξ,θA (0) = c1ξ,θA (0) and
−cTxξ,θA (0) = −1. Because of the nonsigularity of Mξ,θ

A (0), we get 1ξ,θA (0) = −νA(ξ) < 0 and xξ,θA (0) = c > 0.

The results of the given theorems are the basis for the procedure iSearch which defines the implicit algo-
rithm for computing the minimal Geršgorin set.
We formulate the modified Newton’s method for computing the zeros of the function hA, using an abbre-
viation hA(z) := hξ,θA (t). First we define the sequence {tk}k∈N with

tk+1 := tk + γk∆k, k ∈N0, (27)

where t0 := 0 and ∆k is defined as

∆k :=


−
1
ξ,θ
A (tk)

∂
∂t1

ξ,θ
A (tk)

, if ∂
∂t1

ξ,θ
A (tk) > 0,

∆, otherwise

, (28)

where ∆ > 0 is given parameter and

γk :=


1, if hξ,θA (tk+1) ≤ 0,

τqk , otherwise
, (29)

with parameter τ ∈ (0, 1) arbitrarily fixed and qk ∈N being the smallest number such that

hξ,θA (tk + τqk ∆k) < 0 and hξ,θA (tk + τqk−1 ∆k) > 0. (30)

Additionally, if the convergence is achieved in t̃, then we check if hξ,θA (̃t + ε) > 0 for a small tolerance ε > 0
and if not, we restart the sequence taking t0 := t̃ + ε.

Theorem 3.5. Given an arbitrary irreducible matrix A ∈ Cn,n, a complex number ξ and a real 0 ≤ θ < 2π, a sequence
{tk}k∈N0 defined by (27) is monotonically non-decreasing and it converges to t̂ > 0 such that ξ + t̂eiθ

∈ ∂ΓR(A).

Furthermore, if
∂2

∂t2 1
ξ,θ
A (̂t) > 0, the convergence is locally quadratic and otherwise, the convergence is linear with the

convergence rate lim
k→∞

sup(1 − τk).

Proof. First we show that the sequence {tk}k∈N0 is well defined. From Theorem 3.4 (item 3.) follows
hξ,θA (0) < 0. From the definition of ∆k,we have ∆0 > 0, since ∆0 = 0 implies that 1ξ,θA (t0) = 0. Thus t0 + ∆0 > 0,
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and the continuity of hξ,θA together with (30) implies that there exists 0 < γ0 ≤ 1 such that hξ,θA (t0 + γ0∆0) < 0.
So, we obtain t1 := t0 + γ0∆0 > t0 such that hξ,θA (t1) < 0. By induction, we obtain that the sequence {tk}k∈N is
well defined and that hξ,θA (tk) < 0 with tk > tk−1 for all k ∈N.
To prove the convergence of the monotonically increasing sequence {tk}k∈N, it is enough to show that it is
bounded above. Let’s assume that {tk}k∈N is unbounded. Then for some m ∈N, there exists a subsequence
{tkm } such that lim

m→∞
tkm = ∞. Also, the fact hξ,θA (tkm ) < 0 implies that zm := ξ + tkm eiθ

∈ ΓR(A), for all m ∈ N
and lim

m→∞
|zm| = ∞. This is a contradiction because the minimal Geršgorin set is compact in C. Therefore, the

sequence is convergent and we denote its limit by t̂ = lim
k→∞

tk.

From the construction of the sequence we have that 1ξ,θA (̂t) = 0, when ∂
∂t1

ξ,θ
A (̂t) exists and is positive, or that

hξ,θA (̂t) = 0, otherwise. Finally, due to restarts we obtain that z = ξ + t̂eiθ fulfills the second item of Theorem
3.4, and, therefore z = ξ + t̂eiθ

∈ ∂ΓR(A).
Now, we prove the rate of local convergence. There are two cases.

If
∂2

∂t2 1
ξ,θ
A (̂t) > 0, then 1ξ,θA is a locally convex function, and for sufficiently large k ∈ N, γk = 1. This implies

the quadratic convergence of modified Newton’s method.

If
∂2

∂t2 1
ξ,θ
A (̂t) ≤ 0, then for sufficiently large k ∈N,

∂
∂t
1
ξ,θ
A (tk) > 0, and, thus, from (27) and (28), we obtain:

t̂ − tk+1 = t̂ − tk − γk∆k = t̂ − tk + γk
1
ξ,θ
A (tk)

∂
∂t1

ξ,θ
A (tk)

.

Using quadratic Taylor expansion for 1ξ,θA , there exists t∗ ∈ (̂t − tk, t̂) such that

0 = 1ξ,θA (̂t) = 1ξ,θA (tk) +
∂
∂t
1
ξ,θ
A (tk)(̂t − tk) +

1
2
∂2

∂t2 1
ξ,θ
A (t∗)(̂t − tk)2.

So,

t̂ − tk+1 = t̂ − tk − γk

∂
∂t1

ξ,θ
A (tk)(̂t − tk) + 1

2
∂2

∂t2 1
ξ,θ
A (t∗)(̂t − tk)2

∂
∂t1

ξ,θ
A (tk)

=

(̂t − tk)(1 − γk −

1
2γk

∂2

∂t2 1
ξ,θ
A (t∗)(̂t − tk)

∂
∂t1

ξ,θ
A (tk)

),

and consequently,

lim
k→∞

sup t̂−tk+1

t̂−tk
= lim

k→∞
sup(1 − τk).

Now, one can easily adapt the algorithm eMGS from [5] using Theorem 3.5 and compute t̂ using the
sequence defined by (27)-(30) instead of using the procedure eSearch given there. In such a way, we obtain
the approximation of the points of the boundary of the minimal Geršgorin set with {ωi, j}

mi
j=1, i ∈ {1, 2, ..., k},

where k is a number of components of ΓR(A) for the fixed maximal distance between the approximation and
the boundary of the minimal Geršgorin ε1 > 0 and the distance between successive two points bounded by
ε2, i.e., dist(ωi, j, ∂ΓR(A)) < ε1 and |ωi, j − ωi, j+1| < ε2, where ωi,mi+1 := ωi,1.

4. Numerical examples

In this section we test the iMGS algorithm on three examples and compare results with the results of the
eMGS algorithm. We notice that the performance of iMGS is significantly faster. Both algorithms are
implemented in MATLAB version R2015b and tested on 2.7 GHz Intel

R©
Core

TM
i5 machine.
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Example 4.1. In the first example we tested iMGS and eMGS on the cyclic matrix of size n = 4 :

A =


1 1 0 0
0 −1 1 0
0 0 i 1
1 0 0 −i

 ,
setting the parameters of both algorithms to be ε1 = 10−12, ε2 = 0.0254 and τ = 2. The corresponding CPU time
for eMGS vs iMGS is 6.0824s vs 0.4451s, which was needed for (in total) 10902 Perron eigevalue computations for
eMGS and 13934 linear system solves for iMGS. Figure 1(a) shows the minimal Geršgorin set of the matrix A using
iMGS. Its zoomed version is presented in Figure 1(b).
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Figure 1: The minimal Geršgorin set of matrix A from Example 4.1: complete plot (a) and plot zoomed around the origin (b).

Example 4.2. In the second example we used the Tolosa matrix tols340.mtx of size n = 340 from the Matrix Market
repository [2]. This matrix is sparse, highly nonnormal of medium size. Parameters are set as ε1 = 10−12, ε2 = 31.2698
and τ = 2, which produces 3004 Perron eigenpair computations in 160.8012s for eMGS vs 1655 linear system solves
in 3.0205s for iMGS. The result of iMGS is presented in Figure 2.
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Figure 2: The minimal Geršgorin set of the Tolosa matrix of Example 4.2.
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Example 4.3. Our last example is a triangular matrix of the size 20 :

Tµ =



µ 1 0 . . . 0

1 2µ 1
. . .

...

0 1 3µ
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 20µ


.

We tested eMGS and iMGS algorithm using value µ = 2.7. The parameters are set as ε1 = 10−12, ε2 = 0.52 and
τ = 2, which produces 3463 Perron eigenpair computations in 13.8591s for eMGS vs 3890 linear system solves in
0.4415s for iMGS. The result of iMGS is presented in Figure 3.
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Figure 3: The minimal Geršgorin set of matrix T2.7 of Example 4.3.
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