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Abstract. In the present paper we characterize a type of spacetimes, called almost pseudo Z-symmetric
spacetimes A(PZS),. At first, we obtain a condition for an A(PZS), spacetime to be a perfect fluid spacetime
and Roberson-Walker spacetime. It is shown that an A(PZS), spacetime is a perfect fluid spacetime if
the Z tensor is of Codazzi type. Next we prove that such a spacetime is the Roberson-Walker spacetime
and can be identified with Petrov types I, D or O[3], provided the associated scalar ¢ is constant. Then
we investigate A(PZS); spacetimes satisfying divC = 0 and state equation is derived. Also some physical
consequences are outlined. Finally, we construct a metric example of an A(PZS), spacetime.

1. Introduction

The basic difference between the Riemannian and semi-Riemannian geometry is the existence of a null
vector, that is, a vector v satisfying g(v,v) = 0, where g is the metric tensor. The signature of the metric
g of a Riemannian manifold is (+, +, +, ...+, +, +) and of a semi-Riemannian manifold is (-, —, —, ...+, +, +).
Lorentzian manifold is a special case of semi-Riemannian manifold. The signature of the metric of a
Lorentzian manifold is (-, +, +, ...+, +, +). In a Lorentzian manifold three types of vectors exist such as time-
like, spacelike and null vector. In general , a Lorentzian manifold (M, g) may not have a globally timelike
vector field. If (M, g) admits a globally timelike vector field, it is called time orientable Lorentzian mani-
fold, physically known as spacetime. The foundations of general relativity are based on a 4-dimensional
spacetime manifold.

Perfect fluid play a crucial role in general relativity being the natural sources of Einstein’s field equation
compatible with the Bianchi’s identities. A spacetime is called perfect fluid if the energymomentum tensor
is of the form[27]

T(X,Y) = (u + )AXAY) + pg(X, Y),

where  is the energy density, p is the isotropic pressure, p is a unit timelike vector field (g(p, p) = —-1)
metrically equivalent to the 1-form A. The fluid is called perfect because of the absence of heat conduction
terms and stress terms corresponding to viscosity[18].
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In addition, p and p are related by an equation of state governing the particular sort of perfect fluid under
consideration. In general, this is an equation of the form p = p(u, Ty), where Tj is the absolute temperature.
However, we shall only be concerned with situations in which Ty is effectively constant so that the equation
of state reduces to p = p(u). In this case, the perfect fluid is called isentropic[18]. Moreover, if p = y, then
the perfect fluid is termed as stiff matter(see [32] , page 66).

The notion of an almost pseudo Ricci symmetric manifold was introduced by Chaki and Kawaguchi[9].
It was a generalization of the notion of pseudo Ricci symmetric manifolds[8] and was defined as follows:

A non-flat semi-Riemannian manifold (M",g), (n > 2) is called an almost pseudo Ricci symmetric
manifold if its Ricci tensor S of type (0,2) is not identically zero and satisfies

(VxS)(Y, U) = [A(X) + BX)]S(Y, U) + A(Y)S(X, U) + A(U)S(Y, X), 1)

where A and B are two 1-forms. In such a case A and B are called the associated 1-forms and an n-
dimensional manifold of this kind is denoted by A(PRS),. If B = A, then the (1) takes the following
form:

(VxS)(Y, U) = 2A(X)S(Y, U) + A(Y)S(X, U) + A(U)S(Y, X), ()

which is called a pseudo Ricci symmetric manifold introduced by Chaki. Let g(X, P) = A(X) and g(X, Q) =
B(X), for all X. Then P, Q are called the basic vector fields of the manifold corresponding to the associated
1-forms A and B, respectively.

Tamassy and Binh[33] introduced the notion of weakly Ricci symmetric manifolds which are the general-
izations of pseudo Ricci symmetric manifolds.

On the other hand, in 2012 Mantica and Molinari[22] defined a generalized (0,2) symmetric Z tensor
given by

Z(X/ Y)=S5(X,Y)+ ¢g(X, Y)r (3)

where ¢ is an arbitrary scalar function. In Refs. ([24], [25]) various properties of the Z tensor were pointed
out. The scalar Z is obtained by contracting (3) over X and Y as follows:

Z=r+no. 4)

A manifold is called almost pseudo Z symmetric and denoted by A(PZS), if the generalized Z tensor is
non-zero and satisfies the condition (1), that is,

(Vx2)(Y, U) = [A(X) + BX)IZ(Y, U) + A(Y)Z(X, U) + AU Z(Y, X). (5)

If B = A in (5) then the manifold reduces to pseudo Z symmetric manifold introduced by Mantica and
Suh[24]. Moreover in [22] Mantica and Molinari studied weakly Z symmetric manifolds.

On the other hand, generalized Robertson-Walker (GRW) spacetimes were introduced in 1995 by Alias,
Romero and Sdnchez ([1],[2]). Generalized Robertson-Walker (GRW) spacetime extends the notion of RW
spacetime by allowing for spatial non-homogeneity. A GRW spacetime M is the warped product —I x f2M",
where [ is an open interval of real line and (M, g*) (the fibre) is a Riemannian manifold of dimension (1 —1);
f > 01is a smooth warping function. If M" is a manifold of constant curvature, then M is a RW spacetime.
Einstein static universe is the simplest example of a RW spacetime. Also RW spacetime is conformally
flat and globally hyperbolic. Robertson-Walker spacetimes have been studied by several authors such as
([11], [12], [19]) and many others. Recently Mantica and Molinari published a survey article on GRW
spacetime[26].

Several authors studied spacetimes in different way such as ([15], [16], [20], [24], [34]) and many others. In
[10] Chaki and Ray studied spacetimes with covariant constant energy momentum tensor.
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Motivated by the above studies in the present paper we characterize almost pseudo Z symmetric
spacetimes A(PZS)j.

The paper is organized as follows:
After introduction and preliminaries, in Section 3, we study A(PZS); spacetimes and prove that if the Z
tensor in an A(PZS), spacetime is of Codazzi type, then the spacetime is a perfect fluid spacetime and such
a spacetime is Yang pure space under certain condition. Section 4 deals with the study of A(PZS), satisfying
divC = 0. In this section we obtain several interesting results. Finally, we construct an example of a A(PZS),
spacetime.

2. Preliminaries

Let S and r denote the Ricci tensor of type (0,2) and the scalar curvature respectively. L denotes the
symmetric endomorphism of the tangent space at each point corresponding to the Ricci tensor S, that is,

g(LX,Y) = S(X,Y), (6)

for any vector fields X, Y . Let A and B are two 1-forms defined by A(LX) = A(X), B(LX) = B(X). Then A
and B are called auxiliary 1-forms corresponding to the 1-forms A and B respectively. We have from (3)

Z(X,Y) = Z(Y, X), )
and

Z(Y,Q) = B(Y) + ¢B(Y). 8)
Also we obtain from (5)

(Vx2)Y, W) = (Vw)(X, Y) = B(X)Z(Y, W) - BIW)Z(X, Y). )
Using (3) in (9) we get

(VxS)(Y, W) + (XP)g(Y, W) = (VwS)(X, Y) = (W)g(X, Y) = B(X)Z(Y, W) — BIW)Z(Y, X). (10)

Now contracting (10) over Y, W and using (4) and (8) we get

dr(X) = (2r + 2(n — ))$}B(X) — 2B(X) — 2(n — 1)(X¢b). (11)

3. An A(PZS), spacetime with Codazzi type of Z tensor

A (1,1)-tensor field T on a Riemannian or a semi-Riemannian manifold (M, g) is said to be of Codazzi
typel[5] if it satisfies the condition
(VxT)Y = (WyD)X,

where V is the Riemannian or semi-Riemannian connection on g and X, Y are arbitrary vector fields on M.
A (0,2)-tensor is said to be of Codazzi type if the metrically associated (1, 1)-tensor is of Codazzi type[5].

In this section we suppose that the Z tensor in an A(PZS), spacetime is of Codazzi type[5], i.e.,
(Vx2)(Y, W) = (VyZ)(X, W). Then from (5) we get

(VxD)(Y, W) = (Vy D) (X, W) = B(X)Z(Y, W) = B() Z(X, W).
Since Z tensor is of Codazzi type the above equation implies

B(X)Z(Y, W) = BY)Z(X, W). (12)
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Replacing X by Q in (12) and using B(Q) = 9(Q, Q) = -1, we get
Z(Y,W) = -B(MZ(Q,W). (13)

Taking a frame field and putting Y = W = ¢; in (12), 1 < i < 4, where {e;} is an orthonormal basis of the
tangent space at each point of the spacetime, we obtain

B(X)Z = Z(X,Q), (14)

where Z = Z;‘l:l €iZ(ei e), € = glei, e;) = 1.
Using (14) in (13) we infer that

Z(Y, W) = =ZB(Y)B(W),

from which we get

S(Y, W) = ag(Y, W) + BB(Y)B(W), (15)
which implies that the spacetime under consideration is a perfect fluid spacetime, where & = —¢ and
B=-Z.

Thus we can state the following;:

Theorem 3.1. If the Z tensor in an A(PZS)y spacetime is of Codazzi type, then the spacetime is a perfect fluid
spacetime.

By hypothesis the Z tensor is of Codazzi type. Hence from the definition of the Z tensor we obtain
(Vx)Y, W) = (Vw)(X, Y) = (VxS)(Y, W) = (VwS)(X, Y)
+HXP)g(Y, W) = (W)g(X, Y). (16)
If ¢ = constant, then the above equation reduces to
(Vx)Y, W) = (VwZ)(X,Y) = (VxS)(Y, W) = (VwS)(X, Y),

that is, if the Z tensor is of Codazzi type, then the Ricci tensor S is of Codazzi type. In [29] the author proves
that in a perfect fluid spacetime with divergence-free projective curvature tensor the local cosmological
structure of such a spacetime can be identified as Petrov types I, D, or O[3]. It is worth to note that the
discussions about Petrov type is valid only in n = 4 dimensions. Since divergence-free projective curvature
tensor and the Codazzi type of Ricci tensor are equivalent, hence we can conclude the following theorem:

Theorem 3.2. If the Z tensor with the associated scalar ¢ = constant in an A(PZS)4 spacetime is of Codazzi type,
then the spacetime can be identified with Petrov types I, D or O.

It is known[13] that in an n-dimensional Lorentzian manifold

(divC)(X, Y)W = Z—:i[(VxS)(Y, W) = (VyS)(X, W) — {g(Y, Wydr(X) — g(X, W)dr(Y)}]. (17)

1
2(n—-1)
Thus if the Ricci tensor is of Codazzi type, then from (17) we obtain (divC)(X, Y)W = 0, since r = constant.

Now we consider Einstein’s field equation without cosmological constant, that is,

S(X,Y) = 59(X, 1) = KT(X, V), a8)

being x the Einstein’s gravitational constant, T is the energymomentum tensor([32], [27]) describing the
matter content of the spacetime.
From (15) and (18) we infer that

KT(X,Y) = (= = 5)g(X, Y) = ZBOB(Y),
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being Q defined by g(X, Q) = B(X) for all X is a unit timelike vector field.
The above equation is of the form of a perfect fluid spacetime

T(X,Y) = (p + wBX)B(Y) + pg(X,Y),

where kp = —¢ — § and x(p + y) = —Z from which it follows that p = 1(-¢p — S)and u = 1(p + 5 — 2).
Since the scalar Z = r + 4¢), therefore u = —5-(r + 6¢). Hence the state equation is

T+ 29
p_(r+6q5)‘u'

(19)

Since ¢ = constant and r = constant, therefore the state equation is p = cu, c being a constant, that is, p = p(p).
Hence the spacetime is isentropic.

Remark: The general equation of state p = cu provides a variety of physical solutions for a proper Ricci
inheritance vector(RIV) which is a proper conformal Killing vector(CKV), including p = p.

It is well known that a RW spacetime is perfect fluid[27]. We recall Shepley and Taub’s theorem for a
4-dimensional perfect fluid spacetime to be a RW spacetime.
Theorem:[31] A 4-dimensional perfect fluid spacetime with divC = 0 and subject to an equation of state
p = p(u) is conformally flat and the metric is RW, the flow is irrotational, shear free and geodesic.

From the above discussions we can state the following:

Theorem 3.3. If the Z tensor with the associated scalar ¢p = constant in an A(PZS)4 spacetime is of Codazzi type,
then the spacetime is conformally flat, RW spacetime, the flow is irrotational, shear free and geodesic.

In [14] Guilfoyle and Nolan named “Yang pure space” a 4-dimensional Lorentzian manifold (M, g) whose
metric tensor solves Yang’s equations:

(VxS)(Y, W) = (Vy5)(X, W).

This is equivalent to r = constant and divC = 0.

The following theorem was stated[14] as:
A 4-dimensional perfect fluid spacetime (M, g) with p + u # 0 is a Yang pure space if and only if (M, g) is a
RW spacetime.

Thus we have

Theorem 3.4. If in an A(PZS)4 spacetime the Z tensor is of Codazzi type, then the spacetime is a Yang pure space,
provided ¢ = constant.

In [21] the authors proved the following:

Proposition 3.5. [21] A perfect fluid spacetime in dimension n > 4, with differentiable equation of state p = p(u),
p+ u # 0and divC = 0 is a generalized Robertson-Walker spacetime.

Recently in [23] it was proved that a GRW in n = 4 dimensions with divC = 0 is a RW spacetimes.
From the above results we can conclude the following;:

Theorem 3.6. An A(PZS), spacetime with Codazzi type of Z tensor is a RW spacetime, provided ¢ = constant.

4. A(PZS)4 spacetimes satisfying divC = 0

This section deals with an A(PZS), spacetimes satisfying divC = 0, where C denotes the conformal
curvature tensor and ‘div’ denotes divergence.
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Hence we have[13]
(VxS)(Y, W) = (VyS)X, W) = %[9(16 W)dr(X) — g(X, W)dr(Y)].

Using (10) and (11) in (20) yields
BOOZ(, W) = BOVZ(X, W) - (X)g(x, W) + (Y6)g(X, W)
= SIBI(Y, W27 + 69) — 6(X)g(Y, W) — 2B (Y, W)
-B(Y)g(X, W){2r + 6¢} + 6(YP)g(X, W) + 2B(Y)g(X, W)].
Now putting W = Q in (21), we get
B(X)B(Y) = B(X)B(Y).
Again putting X = Q in (22) infers
B(Y) = —tB(Y),

where t = B(Q) is a scalar.
Now using (23) in (11) we obtain

dr(X) = 2{r + t + 3PIB(X) — 6(Xp).

Replacing X by Q in (21) and using (23) yields

~Z0G W)~ BIZ(Q, W) = Z1-(2r + 631g(Y, W) + 2tg(x, W)
—{2r + 60}B(Y)B(W) + 2tB(Y)B(W)].
Using (3), (23) in (24) we get

S0, W) = 20wy + L BBOW),

which implies that the spacetime under consideration is a perfect fluid spacetime.

Therefore we have the following;:

Theorem 4.1. An A(PZS)4 spacetime satisfying divC = 0 is a perfect fluid spacetime.

4256

(20)

(21)

(22)

(23)

(24)

(25)

Remark: The Weyl conformal tensor of a general perfect fluid spacetime M is divergence-free iff M is
shear-free, irrotational and its energy density is constant over the spacelike hypersurface orthogonal to the

4-velocity vector[30].

Now from Einstein’s equation (18) and (25) we get as in Section 3 that

r—t
=T

N =

and
r— 4t
Kp+p)=——

From the above relations we get the state equation p = 1y, that is, p = p(u). p = 2 represents a model for

incoherent radiation[32]. Hence from a theorem of Mantica et al[21], we infer the following:

Theorem 4.2. An A(PZS), spacetime satisfying divC = 0 is a GRW spacetime.
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The matter content in general relativity theory is described by a second order symmetric tensor, the energy
momentum tensor. Under limiting processes, one would like to know which energy momentum tensors
might arise. A step in this study is the investigation of the limits of classes of energy-momentum tensors. A
classification of this tensor is known according to its Segre type. It seems, therefore, important to investigate
the relations among the Segre types under limiting processes. Spacetimes are sometimes classified according
to the nature of the Segre’ characteristic [28] of the Ricci tensor. We now investigate the nature of the Segre’
characteristic of the Ricci tensor for perfect fluid A(PZS), spacetime.

Equation (25) yields

S5, Q) = tg(Y, Q). (26)
From (26) it follows that ¢ is an eigen value of the Ricci tensor and Q is an eigen vector corresponding to
this eigen value. For simplicity we assume that t = 7.

Let & be another eigen vector of S different from Q. Then & must be orthogonal to Q. Hence g(Q, &) = 0.
That is,

B(&) = 0. (27)
Putting Y = ¢ in (25) we obtain

S(X,8) = 59X, ). 28)

From (28) it follows that 5 is another eigen value of S and ¢ is an eigen vector corresponding to this eigen
value. Since for a given eigen vector there is only one eigen value and -3 and 5 are different, it follows that
the Ricci tensor has only two distinct eigen values, namely — and 3.

Let the multiplicity of —5 be m. Then the multiplicity of 5 is (4 — m), since the dimension of the spacetime
is 4.

Hence, m(—%) + (4 — m)5 = 0 which gives m = 2. Therefore, the multiplicity of —3 is 2 and the multiplicity
of 5 is 2. m = 4 implies that there is only one eigen value § of multiplicity 4. But we have proved that
there exists two eigen values —5 and 5. So we can not take m = 4. Hence the Segre’ characteristic of S is
[(11),(11)]. This leads to the following result:

Theorem 4.3. An A(PZS), spacetime satisfying divC = 0 is of Segre’ characteristic [(11),(11)].

5. f(r,T)-gravity model

Very recently, Harko et al.[17] proposed the theory of f(r, T)-gravity which is the generalization or
modification of general relativity. In this theory, gravitational Lagrangian is considered as an arbitrary
function of » and T, where 7 is the trace of the Ricci tensor R;; and T is the trace of stress-energy tensor Tj;.
The field equations for this theory are derived from the Hilbert-Einstein type variational by considering the
action

1
A= 1o [0+ LIVEDEs 9)
where L,, is the matter Lagrangian density. The stress-energy tensor of the matter is given by

-2 O(+/(=9)Ln

_— , (30)

e
Let us suppose that the matter Lagrangian density depends only on g;;, then the field equations of f(r, T)-
gravity written as

F5 TRy = 5 £, T)gis + (g ¥sV* = V¥ ) flr,T)
=8nTi; — fr(r, )Tij — fr(r, T)®yj, (31)
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where f, and fr denote the partial derivative of f with respect to r and T respectively and

2
G)ij = —ZTi]' + g,']'Lm - Zglk auLm . (32)
agl]aglk

Here V' represents the covariant derivative. If we consider f(r,T) = f(r), then the equations (29) and
(30) give the field equations of f(r)-gravity[7]. It is to be noted that Buchdahl[4] introduced the notion of
f(r)-gravity in 1970.

Let us consider A(PZS), spacetime satisfies divC = 0. Then it is a perfect fluid. In local coordinate
system equation (25) can be written as

R,‘]‘ =agij + bBl‘B]‘, (33)

wherea = 5t and b = 5%, As we know that there is no unique definition of matter Lagrangian, thus we

assume L,, = —p. Then the variation of stress-energy tensor of the fluid takes the form
©ij = —2Ti; — pgij- (34)

Generally the field equations depend on the physical nature of the matter field and therefore for each choice
of f(r,T), we get a theoretical model. For instant, we choose

fr,T)=r+2f(T), (35)

where f(T) is the arbitrary function of the trace of stress-energy tensor of the matter such that f'(T) # —4m.
After considering equation (35), (31) assumes the form

1 ’ ’
R,‘]‘ - Ergij = 87'[T1‘]‘ - Zf (T)T,‘]‘ - 2f (T)@,‘]‘ + f(T)g,‘]‘. (36)
Equations(33) and (36) together yield

_ a5 =2pf/(D) - f(D) b ,
e A TS T

]' .
Thus we can state the following;:

Theorem 5.1. An A(PZS)y spacetime satisfying divC = 0 shows a perfect fluid stress-energy tensor for any f(r,T)-
gravity model.

Remark: Recently, Capozziello et al[6] prove that an n-dimensional GRW spacetime with divergence free
conformal curvature tensor exhibits a perfect fluid stress-energy tensor for any f(r) gravity model. Also in
[23] it was proved that a GRW spacetime in n = 4 dimensions with divC = 0 is a RW spacetime.

Therefore from theorem 4.2, we conclude the following;:

An A(PZS)4 spacetime with divC = 0 demonstrates a perfect fluid stress-energy tensor for any f(r)-gravity
model.

6. Example of an A(PZS), spacetime

In this section we prove the existence of a A(PZS), spacetime by constructing a non-trivial concrete
example.
We consider a Lorentzian manifold (M?*, g) endowed with the Lorentzian metric g given by

ds? = gydx'dx = (dx')? + (x")2(dx®)? + (A)(dx)? - (dxh)?, (37)
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wherei, j=1,2,3,4.
The only non-vanishing components of the Christoffel symbols, the curvature tensor and the Ricci tensor
are

2

X 1 1

1 _ .1 2 _ 2 _ 1 3 1

Iy =—x, I3 = )2’ F12_x1’ r23—x2,
X2 1

Rizzp = ——, Spp=—-——.
xl’ xlx?

We shall now show that this M* is an A(PZS)y i.e., it satisfies the defining relation (5).

In this example we consider the scalar ¢ as follows:

5

37, for non-zero components of the Ricci tensor

¢ =

0, for vanishing components of the Ricci tensor.

Then only the non vanishing component for Z tensor and its covariant derivatives are given by

1 2 b+ a2
Zp = ~ia Zig = L Zip = R
We choose the 1-forms as follows:
2%, for i=1
X
Ai(x) = 2x}_xz’ for i=2
0, for i=3,4
and
—x3—1, for i=1
Bi(x) = —%, for i=2
0, for i=3,4

at any point x € M. In our (M*, g), (5) reduces with these 1-forms to the following equations:
Z11 =(A1+B1)Z1n+ A1l + Ay (38)
and
Zip = (A2 + Bo)Zio + Ay Zio + A1 2. (39)

It can be easily proved that the equations (38) and (39) are true.
So, the manifold under consideration is an A(PZS)4 spacetime.
Thus the following theorem holds.

Theorem 6.1. Let (R*, g) be a 4-dimensional Lorentzian manifold with the Lorentzian metric g given by
ds® = gijdx'dx’ = (dx')? + (x')*(dx?)* + ()P (dx’)? — (dx*)?,
wherei, j=1,2,3,4. Then (R*, g) is an A(PZS)4 spacetime.

Acknowledgement. The authors are thankful to the Referee for his/her valuable suggestions in the
improvement of the paper.
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