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Abstract. In this paper, we present some extensions of Banach contraction principle for multi-valued
maps. Corresponding convergence theorems for the Picard iteration associated to a class of multi-valued
operators are obtained in the setting of modular metric spaces. The presented results improve many recent
fixed points results in the setting of modular metric spaces and also generalize some classical known results.
Moreover, some examples are given.

1. Introduction

In 1969, Nadler [21] introduced the notion of multi-valued Lipschitz mappings as a generalization of
the Banach contraction principle in the setting of complete metric spaces. Since then, several authors
investigated fixed point results in this direction, see [5–7, 9, 10, 13, 14, 20, 28]. In 2010, Chistyakov [11, 12]
introduced the concept of modular metric spaces. There are different approaches for this concept. The class
of modular metric spaces is viewed as the nonlinear version of the classical modular spaces introduced in
[18, 19, 24] (see also [8, 16]). Recently, Abdou and Khamsi [1] investigated the fixed point property in the
setting of modular spaces and introduced the analog of the Banach contraction principle theorem in the
setting of modular metric spaces. In 2014, Abdou and Khamsi [2] established some fixed point theorems
for multi-valued Lipschitzian mappings defined on some subsets of modular metric spaces. In 2012, Samet
et al. [27] introduced the notion of α − ψ−contractive mappings and α−admissible mappings in metric
spaces and obtained many fixed point results. Recently, Ali et al. [3] generalized and extended the notion
of α − ψ−contractive mappings by introducing the notion of (α,ψ, ξ)−contractive multi-valued mappings
and gave fixed point theorems for such type mappings in metric spaces.

Motivated by [2], the purpose of this paper is to extend the results of Abdou and Khamsi [1] by using
the concept of α−admissible contractive mappings. We will establish some fixed point theorems involving
such contractions in the setting of modular metric spaces.
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2. Preliminaries

Throughout the paper, N and R denote the set of positive integers and the set of all real numbers,
respectively. In what follows, we recall some definitions and results we will need in the sequel.

Let X be a nonempty set. For a function ω : (0,∞) × X × X→ (0,∞), we denote by

ωλ(x, y) := ω(λ, x, y) for all λ > 0 and x, y ∈ X.

Definition 2.1. [11] A function ω : (0,∞) × X × X → [0,∞] is said to be a modular metric on X (or simply a
modular if no ambiguity arises) if for all x, y, z ∈ X, the following three axioms hold:

(i) x = y if and only if ωλ(x, y) = 0 for all λ > 0;

(ii) ωλ(x, y) = ωλ(y, x) for all λ > 0;

(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0.

The pair (X, ω) is then called a modular metric space.

Definition 2.2. [11] Let (X, ω) be a modular metric space.
(1) ω is said regular if the axiom (i) in Definition 2.1 is replaced by the following axiom:

x = y if and only if ωλ(x, y) = 0 for some λ > 0.

(2) ω is said convex if for λ, µ > 0 and x, y, z ∈ X, the following inequality is satisfied:

ωλ+µ(x, y) ≤
λ

λ + µ
ωλ(x, z) +

µ

λ + µ
ωµ(z, y).

Definition 2.3. [11] Let (X, ω) be a modular metric space and x0 ∈ X an arbitrarily element. Let

Xω = Xω(x0) = {x ∈ X : lim
λ→∞

ωλ(x, x0) = 0}

and

X?
ω = X?

ω(x0) = {x ∈ X : ∃λ = λ(x) such that ωλ(x, x0) < ∞}.

The sets Xω and X?
ω are called modular spaces (around x0).

Note that if ω is a convex modular metric on X, then X?
ω = Xω.

Proposition 2.4. [11] If (X, ω) is a modular metric space, then the modular set Xω is a metric space with metric
given by

dω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ λ}, x, y ∈ Xω.

Proposition 2.5. [11] Given a convex modular space (X, ω). Define

d?ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1}, x, y ∈ X?
ω.

Then (X?
ω, d?ω) is a metric space.

Definition 2.6. [11, 12](Topological concepts)
Let (X, ω) be a modular metric space.
(1) The sequence {xn} in Xω is said ω−convergent to an element x ∈ Xω if and only if

lim
n→∞

ω1(xn, x) = 0.

We say then that x is an ω−limit of {xn}.
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(2) The sequence {xn} in Xω is said ω−Cauchy if

lim
n,m→∞

ω1(xn, xm) = 0.

(3) We say that a subset M of Xω is ω−closed if for any sequence {xn} in M such that lim
n→∞

ω1(xn, x) = 0, then,
x ∈M.

(4) We say that a subset M of Xω is ω−complete if any ω−Cauchy sequence in M is ω−convergent in M.
(5) We say that a subset M of Xω is ω−bounded if

δω(M) = sup{ω1(x, y) : x, y ∈M} < ∞.

(6) We say that a subset M of Xω is ω−compact if any sequence in M has a subsequence ω−convergent in M.
(7) We say that ω satisfies the Fatou property if for every sequence {xn} in Xω and all x, y ∈ Xω, we have

lim
n→∞

ω1(xn, x) = 0⇒ ω1(x, y) ≤ lim inf
n→∞

ω1(xn, y).

Definition 2.7. [2] We say that ω satisfies the ∆2−condition, if lim
n→∞

ωλ(xn, x) = 0, for some λ > 0 implies
limn→∞ ωλ(xn, x) = 0, for all λ > 0.

Following [2, 11, 12], the ω−convergence and dω−convergence are equivalent if and only if ω satisfies the
∆2−condition. Furthermore, if ω is a convex modular, then dω and d?ω are equivalent.

Definition 2.8. [2] Let (X, ω) be a modular metric space. We say that ω satisfies the ∆2−type condition, if for every
µ > 0, there exits Cµ > 0 such that

ωλ/µ(x, y) ≤ Cµωλ(x, y), for allλ > 0, x, y ∈ X, with x , y.

Obviously, if ω satisfies the ∆2−type condition, then it satisfies the ∆2−condition.

Definition 2.9. [2] Let (X, ω) be a modular metric space. Define the function Ω as

Ω(t) = sup
{
ωλ/t(x, y)
ωλ(x, y)

: λ > 0, x, y ∈ Xω, x , y
}

for every t > 0.

Lemma 2.10. [2] Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the
∆2−type condition. Then

(1) Ω(t) < ∞, for each t > 0;
(2) Ω is an increasing function with Ω(1) = 1;
(3) Ω(st) ≤ Ω(s)Ω(t) for each s, t > 0;
(4) Ω−1(s)Ω−1(t) ≤ Ω−1(st), where Ω−1 is the function inverse of Ω;
(5) for each x, y ∈ Xω, with x , y, we have

d?ω(x, y) ≤
1

Ω−1(1/ω1(x, y))
.

We have the useful lemmas.

Lemma 2.11. [2] Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the
∆2−type condition. Let {xn} be a sequence in Xω such that

ω1(xn+1, xn) ≤ Cαn
∀n = 0, 1, 2, . . .

where C is an arbitrary constant and α ∈ [0, 1). Then {xn} is Cauchy for both ω and d?ω.
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Let (X, ω) be a modular metric space and M be a nonempty subset of Xω.
We denote by
(a) K(M) the family of all nonempty and ω−compact subsets of M;
(b) CL(M) the family of all nonempty and ω−closed subsets of M;
(c) CB(M) the family of all nonempty, ω−closed and ω−bounded subsets of M.
For A,B ∈ CB(M) and x ∈ X, set

Hω(A,B) = max
{
sup{ω1(x,B) : x ∈ A}, sup{ω1(y,A) : y ∈ B}

}
where ω1(x,A) = inf{ω1(x, y) : y ∈ A}. Hω is the Hausdorff modular metric on CB(M), induced by the
modular metric ω.

Proposition 2.12. Let (X, ω) be a modular metric space. Consider the metric Dω as

Dω
(
(x, y), (u, v)

)
= dω(x,u) + dω(y, v) for all (x, y), (u, v) ∈ Xω × Xω.

Then (Xω × Xω,Dω) is a metric space.

Definition 2.13. Let (X, ω) be a modular metric space, M be a nonempty subset of Xω and T : M → CL(M) be a
multi-valued mapping. The graph of T denoted by G(T) is the subset {(x, y) : x ∈ M, y ∈ Tx} of M ×M. Then T is
said to be closed if the graph of G(T) is a closed subset of (M ×M,Dω).

Definition 2.14. A function f : Xω → [0,∞) is called lower semi-continuous (l.s.c) if, for any x ∈ Xω and {xn} ⊂ Xω

with lim
n→∞

xn = x in Xω, we have

f (x) ≤ lim
n→∞

f (xn).

For a multi-valued map T : M→ CB(M), let fT : M→ [0,∞) be a function defined by

fT(x) = ω1(x,Tx).

Definition 2.15. [26] Let (X, d) be a metric space and T : X→ CL(X) be a multivalued operator. We say that T is a
multivalued weakly Picard (briefly, MWP ) operator if for all x ∈ X and y ∈ Tx, there exists a sequence {xn} such that

(i) x0 = x and x1 = y;

(ii) xn+1 ∈ Txn for all n = 0, 1, 2, . . . ;

(iii) {xn} is convergent and its limit is a fixed point of T.

A sequence {xn} satisfying conditions (i) and (ii) in Definition 2.15 is said a sequence of successive approxi-
mations of T, starting from x0.

As in [4, 17], we give the following definition.

Definition 2.16. Let (X, ω) be a modular metric space and M be a nonempty subset of Xω. let T : M → CB(M) be
a multi-valued mapping. Such T is called α−admissible if, for each x ∈ M and y ∈ Tx with α(x, y) ≥ 1, we have
α(y, z) ≥ 1 for all z ∈ Ty.

In this paper, we investigate several types of multivalued weakly Picard operators, and so we ensure the
existence of fixed points. Some consequences and examples have been provided.
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3. Fixed point of multi-valued weak contraction mappings

We start with the following useful technical lemmas (corresponding to the ones given in [21] on modular
metric spaces).

Lemma 3.1. Let (X, ω) be a modular metric space, M be a nonempty subset of Xω and B ∈ CB(M). If a ∈ M and
ω1(a,B) < c with c > 0, then there exists b ∈ B such that ω1(a, b) < c.

Lemma 3.2. [2] Let (X, ω) be a modular metric space and M be a nonempty subset of Xω. Let A,B ∈ CB(M), then
for every ε > 0 and x ∈ A, there exists y ∈ B such that

ω1(x, y) ≤ Hω(A,B) + ε.

Moreover, if B is ω−compact and ω satisfies the Fatou property, then for every x ∈ A there exists y ∈ B such that

ω1(x, y) ≤ Hω(A,B).

Lemma 3.3. [2] Let (X, ω) be a modular metric space. Assume that ω satisfies the ∆2− condition. Let M be a
nonempty subset of Xω and let An be a sequence of sets in CB(M). Suppose that lim

n→∞
Hω(An,A) = 0, for A ∈ CB(M).

Then if xn ∈ An and lim
n→∞

xn = x, it follows that x ∈ A.

3.1. Result-I
In this subsection, we first introduce the notion of ω−quasi-contractions in modular metric spaces.

Definition 3.4. Let (X, ω) be a modular metric space and M be a nonempty subset of Xω. A multi-valued T : M→
CL(M) is said an ω−quasi-contraction if there exists a constant k ∈ [0, 1) such that for any x, y ∈ M with y ∈ Tx,
there exists z ∈ Ty such that

ω1(y, z) ≤ k max{ω1(x, y), ω1(x,Tx), ω1(y,Ty)}. (1)

Now, we state and prove our first result.

Theorem 3.5. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the
∆2−condition. Let M be a nonemptyω−complete subset of Xω. Let T : M→ CL(M) be a closedω−quasi-contraction.
Then T is a MWP operator.

Proof. Let x0 ∈ M and x1 ∈ Tx0. Clearly, if x0 = x1, then x1 is a fixed point of T and so this completes the
proof. Now, we assume that x0 , x1. Since T is ω−quasi-contraction, there exists x2 ∈ Tx1 such that

ω1(x1, x2) ≤ k max{ω1(x0, x1), ω1(x0,Tx0), ω1(x1,Tx1)}.

If x2 = x1, then x2 is a fixed point of T and so the proof is finished.
From now on, we assume that x2 , x1. It follows that

ω1(x1, x2) ≤ k max{ω1(x0, x1), ω1(x0, x1), ω1(x1, x2)} = k max{ω1(x0, x1), ω1(x1, x2)}.

If max{ω1(x0, x1), ω1(x1, x2)} = ω1(x1, x2), then we obtain

ω1(x1, x2) ≤ kω1(x1, x2) < ω1(x1, x2)

which is a contradiction. Then we get

ω1(x1, x2) ≤ kω1(x0, x1).

Continuing in this fashion, we construct a sequence {xn} in M such that xn+1 ∈ Txn, xn+1 , xn and

ω1(xn, xn+1) ≤ kω1(xn−1, xn) ∀n = 1, 2, 3, . . . (2)
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By induction, we get

ω1(xn, xn+1) ≤ knω1(x0, x1) ∀n = 0, 1, 2, . . . (3)

By Lemma 2.11, we conclude that {xn} is ω−Cauchy. By completeness of (M, ω), there exists u ∈M such that
lim
n→∞

xn = u.
We shall prove that i is a fixed point of T. Since T is a closed multi-valued mapping and xn+1 ∈ Txn,

then (xn, xn+1) ∈ G(T). Moreover, we have Dω((xn, xn+1), (u,u)) = dω(xn,u) + dω(xn+1,u). Since ω satisfies the
∆2−condition, we get

lim
n→∞

Dω((xn, xn+1), (u,u)) = 0.

Finally, since G(T) is closed, it follows that (u,u) ∈ G(T). Hence u ∈ Tu, that is, u is a fixed point of T.

3.2. Result II
In this subsection, we give another characterization of MWP operators.

Definition 3.6. Let (X, ω) be a modular metric space and M be a nonempty subset of Xω. A multi-valued T : M→
CB(M) is said an α − ω−weak contraction if there exist a function α : M ×M→ [0,∞) and two constants k ∈ [0, 1)
and L ≥ 0 such that for any x, y ∈M, with α(x, y) ≥ 1, we have

Hω(Tx,Ty) ≤ kω1(x, y) + Lω1(y,Tx). (4)

Definition 3.7. Let (X, ω) be a modular metric space and M be a nonempty subset of Xω. The pair (M, α) is said
ω−regular if the following condition holds: for any sequence {xn} in M with α(xn, xn+1) ≥ 1 for all n ∈ N and
xn → x ∈M as n→∞, then there exists a subsequence {xn(k)} of {xn} such that α(xn(k), x) ≥ 1 for all k ∈N.

Remark 3.8. Definition 3.7 is valid for Result II and Result III.

We provide the following result.

Theorem 3.9. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the
∆2−condition. Let M be a nonempty ω−complete subset of Xω. Let T : M→ CB(M) be an α − ω−weak contraction.
Suppose also that
(1) T is α−admissible;
(2) there exit x0 ∈M and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(3) (M, α) is ω−regular or fT is lower semi-continuous.
Then T is a MWP operator.

Proof. Let r be a real number such that 0 < k < r < 1. By condition (2), there exist x0 ∈ M and x1 ∈ Tx0 such
that

α(x0, x1) ≥ 1.

If x0 = x1, then x1 is a fixed point of T and the proof is finished.
Now, we assume that x0 , x1. Since x1 ∈ Tx0, by (9), we have

ω1(x1,Tx1) ≤ Hω(Tx0,Tx1)
≤ kω1(x0, x1) + Lω1(x1,Tx0) ≤ kω1(x0, x1) + Lω1(x1, x1)
= kω1(x0, x1) < rω1(x0, x1).

By Lemma 3.1, there exists x2 ∈ Tx1 such that

ω1(x1, x2) < rω1(x0, x1).

T is α−admissible and x2 ∈ Tx1, so
α(x1, x2) ≥ 1.
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If x2 = x1, then x2 is a fixed point of T and again the proof is finished. Now, we assume that x2 , x1.
Since x2 ∈ Tx1 and α(x1, x2) ≥ 1, by (9), we have

ω1(x2,Tx2) ≤ Hω(Tx1,Tx2)
≤ kω1(x1, x2) + Lω1(x2,Tx1) ≤ kω1(x1, x2) + Lω1(x2, x2)
= kω1(x1, x2) < rω1(x1, x2).

Iterating this process, we can define a sequence {xn} such that

α(xn, xn+1) ≥ 1, xn+1 , xn, xn+1 ∈ Txn

and

ω1(xn, xn+1) ≤ rω1(xn−1, xn) ∀n = 1, 2, 3, . . . (5)

Hence we obtain

ω1(xn, xn+1) ≤ rnω1(x0, x1) ∀n = 0, 1, 2, . . .

By Lemma 2.11, we deduce that {xn} is ω−Cauchy. Since M is ω−complete, there exists v ∈ M such that
lim
n→∞

xn = v.
We shall prove that v is a fixed point of T. Since α(xn, xn+1) ≥ 1 for all n ∈ N and xn → v, in view of the

fact that (M, α) is ω−regular, there exists a subsequence {xn(m)} of {xn} such that α(xn(m), v) ≥ 1 for all m ∈ N.
We have for any m ≥ 0

Hω(Txn(m),Tv) ≤ kω1(xn(m), v) + Lω1(xn,Txn(m))
≤ kω1(xn(m), v) + Lω1(v, xn(m)+1).

Passing to limit as m→∞,we get lim
m→∞

Hω(Txn(m),Tv) = 0. Since xn(m)+1 ∈ Txn(m), by Lemma 3.3, we conclude
that v ∈ Tv, that is, v is a fixed point of T.

Now, passing to the case where fT is lower semi-continuous, we have

ω1(v,Tv) = fT(v) ≤ lim
n→∞

ω1(xn,Txn) ≤ lim
n→∞

ω1(xn, xn+1) = 0.

Thus, ω1(v,Tv) = 0, and so v ∈ Tv.

We give the following illustrated examples.

Example 3.10. Let X = R+, M = [0, 1] and ωλ(x, y) =
|x − y|
λ

, ∀x, y ∈ X, ∀λ > 0. Mention that ω is a convex
regular modular and satisfies the ∆2−condition. Also, M is an ω−complete subset of Xω. Define a mapping T : M→
CB(M) by

Tx =

{ x3 }, 0 ≤ x ≤ 1
2

[ 5
6 ,

x+2
3 ], 1

2 < x ≤ 1.

Let α : M ×M→ [0,∞) be defined by α(x, y) = 1 for all x, y ∈M.
Condition (2) of Theorem 3.9 is satisfied and (M, α) is ω−regular.
We show that (9) of Theorem 3.9 is satisfied for all x, y ∈M with k ∈ [ 1

3 , 1] and for L ≥ 3.
We consider the following cases:

Case1 : (x, y) ∈ [0, 1
2 ] × [ 1

2 , 1]. In this case, condition (9) reduces

Hω(Tx,Ty) = max{max{ω1(
x
3
, [

y + 2
3

]), sup{ω1(a,
x
3

) :
5
6
≤ a ≤

y + 2
3
}}

= max{|
x
3
−

5
6
|, |

x
3
−

y
3
−

2
3
|} = |

x
3
−

y
3
−

2
3
|

≤ k|x − y| + L|y −
x
3
|.
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We have | x3 −
y
3 −

2
3 | ≤ 1 and |y − x

3 | ≥
1
3 for all x, y ∈ [0, 1

2 ] × [ 1
2 , 1]. In order the previous inequality holds, it suffices

to take L ≥ 3 and k ∈ [0, 1) to be arbitrary. Case2 : (x, y) ∈ ( 1
2 , 1]× [0, 1

2 ]. In this case, condition (9) is reduced to

Hω(Tx,Ty) = |
x
3

+
2
3
−

y
3
| ≤ k|x − y| + L|

5
6
− y|.

We have | x3 + 2
3 −

y
3 | ≤ 1 and | 56 − y| ≥ 1

3 for all x, y ∈ ( 1
2 , 1] × [0, 1

2 ]. Again, in order the previous inequality holds, it
suffices to take L ≥ 3 and k ∈ [0, 1) to be arbitrary. Case3 : x, y ∈ [0, 1

2 ]. In this case, the condition (9) is reduced

Hω(Tx,Ty) = ω1(
x
3
,

y
3

) =
1
3
|x − y| ≤ k|x − y| + L|y −

x
3
|

and so condition (9) is satisfied with k ∈ [ 1
3 , 1) and L ≥ 0.

Case4 : x, y ∈ ( 1
2 , 1]. In this case, condition (9) becomes

Hω(Tx,Ty) = Hω([
5
6
,

x + 2
3

], [
5
6
,

y + 2
3

]) =
1
3
|x − y| ≤ k|x − y| + L|y −

x
3
|.

and so condition (9) is satisfied with k ∈ [ 1
3 , 1) and L ≥ 0. Now, by summarizing all cases, we conclude that the

condition (9) is satisfied with k ∈ [ 1
3 , 1) and L ≥ 3.

Hence, all hypotheses of Theorem 3.9 are satisfied and T has fixed points. Note that Fix(T) = {0} ∪ [ 5
6 , 1] where

Fix(T) denotes the set of fixed points of T.
On the other hand, the main result of Abdou and Khamsi [2] is not applicable. In fact, taking x = 0 and y = 1, we

have Hω(Tx,Ty) = 1 > k = kω1(0, 1) for each k ∈ [0, 1).

Example 3.11. Let X = R, M = [0, 2] and ωλ(x, y) =
|x − y|
λ

, ∀x, y ∈ X, ∀λ > 0. Mention that ω is convex
regular modular satisfying the ∆2−condition. Also, M = [0, 2] is an ω−complete subset of Xω. Define a mapping
T : M→ CB(M) by

Tx =


{0, 1+x

2 }, 0 ≤ x ≤ 1
2

{0, 2−x
2 },

1
2 < x ≤ 1

[0, 1], 1 < x ≤ 2.

Let α : M ×M→ [0,∞) be defined by

α(x, y) =

1, 0 ≤ x, y ≤ 1
0, otherwise.

Condition (2) of Theorem 3.9 is satisfied with x0 = 0 and x1 = 1
2 . Obviously, (M, α) is ω−regular.

We show that (9) of Theorem 3.9 is satisfied for all x, y ∈M such that α(x, y) ≥ 1 with k ∈ [ 1
2 , 1] and for all L ≥ 0.

Let x, y ∈M be such that α(x, y) ≥ 1. Then 0 ≤ x, y ≤ 1. We consider the following cases:
case1 : x, y ∈ [0, 1

2 ]. We have

Hω(Tx,Ty) = max{max{ω1(0,Ty), ω1(
1 + x

2
,Ty)},max{ω1(0,Tx), ω1(

1 + y
2

,Tx)}}

= max{ω1(
1 + x

2
,Ty), ω1(

1 + y
2

,Tx)}

= max{min{
1 + x

2
,

1
2
|x − y|},min{

1 + y
2

,
1
2
|x − y|}}

=
1
2
|x − y|.
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case2 : x ∈ [0, 1
2 ], y =∈ [ 1

2 , 1]. We have

Hω(Tx,Ty) = max{max{ω1(0,Ty), ω1(
1 + x

2
,Ty)},max{ω1(0,Tx), ω1(

2 − y
2

,Tx)}}

= max{min{
1 + x

2
,

1
2
|x + y − 1|},min{

2 − y
2

,
1
2
|x + y − 1|}}

=
1
2
|x + y − 1| ≤

1
2
|x − y|.

case3 : x, y ∈ [ 1
2 , 1]. We have

Hω(Tx,Ty) = max{max{ω1(0,Ty), ω1(
1 + x

2
,Ty)},max{ω1(0,Tx), ω1(

2 − y
2

,Tx)}}

= max{min{
2 − x

2
,

1
2
|x − y|},min{

2 − y
2

,
1
2
|x − y|}}

=
1
2
|x − y|.

Thus, all hypotheses of Theorem 3.9 are satisfied and T has two fixed points, that is, Fix(T) = {0, 3
2 }.

We can derive the following results.

Corollary 3.12. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the
∆2−condition. Let M be a nonempty ω−complete subset of Xω. Suppose that T : M → CB(M) is a given mapping.
Suppose that there exist a function α : M ×M → [0,∞) and two constants k ∈ [0, 1) and L ≥ 0 such that for any
x, y ∈M, we have

α(x, y)Hω(Tx,Ty) ≤ kω1(x, y) + Lω1(y,Tx). (6)

Suppose also that
(1) T is α−admissible;
(2) there exit x0 ∈M and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(3) (M, α) is ω−regular or fT is lower semi-continuous.

Then T is a MWP operator.

Proof. Let x, y ∈M be such that α(x, y) ≥ 1. Then if (7) holds, we have

Hω(Tx,Ty) ≤ α(x, y)Hω(x, y) ≤ kω1(x, y) + Lω1(y,Tx).

The proof is concluded from Theorem 3.9.

Corollary 3.13. ([2], Theorem 4.1) Let (X, ω) be a modular metric space. Assume thatω is a convex regular modular
satisfying the ∆2−condition. Let M be a nonempty ω−complete subset of Xω. Given T : M→ CB(M). Suppose that
there exists a constant k ∈ [0, 1) such that for any x, y ∈M, we have

Hω(Tx,Ty) ≤ kω1(x, y). (7)

Then T is a MWP operator.

Corollary 3.14. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the
∆2−condition. Let M be a nonempty ω−complete subset of Xω. Given T : M → M. Suppose that there exist two
constants k ∈ [0, 1) and L ≥ 0 with 0 ≤ k + L < 1 such that for any x, y ∈M, we have

ω1(Tx,Ty) ≤ kω1(x, y) + Lω1(y,Tx). (8)

Then T has a unique fixed point in Xω.

Proof. We assume that there exist x, y ∈ X such that x = Tx and y = Ty with x , y. We have

0 < ω1(x, y) = ω1(Tx,Ty) ≤ kω1(x, y) + Lω1(y,Tx) = (k + L)ω1(x, y) < ω1(x, y),

which is a contradiction. Hence x = y.
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3.3. Result III

In this part, we give a general class of MWP operators.

Definition 3.15. Let (X, ω) be a modular metric space and M be a nonempty subset of Xω. A multi-valued T : M→
CB(M) is said an α − ω−generalized weak contraction if there exist a function α : M ×M → [0,∞), a function
θ : [0,∞)→ [0, 1) satisfying lim sup

r→t+

θ(r) < 1, for every t ∈ [0,∞) and a constant L ≥ 0 such that for any x, y ∈ M

with α(x, y) ≥ 1, we have

Hω(Tx,Ty) ≤ θ(ω1(x, y))ω1(x, y) + Lω1(y,Tx). (9)

Theorem 3.16. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the
∆2−condition. Let M be a nonempty ω−complete subset of Xω. Let T : M → CB(M) be a α − ω−generalized weak
contraction.

Suppose that
(1) T is α−admissible;
(2) there exit x0 ∈M and x1 ∈ Tx0 such that α(x0, x1) ≥ 1;
(3) (M, α) is ω−regular or fT is lower semi-continuous.

Then T is a MWP operator.

Proof. The proof is inspired from Theorem 2.1 in [14].
By condition (2), there exist x0 ∈M and x1 ∈ Tx0 such that

α(x0, x1) ≥ 1.

If x0 = x1, then x1 is a fixed point of T and so the proof is finished. Now, we assume that x0 , x1. Select a
positive integer n1 such that

θn1 (ω1(x0, x1)) < [1 − θ(ω1(x0, x1))]ω1(x0, x1).

By Lemma 3.2, we can select x2 ∈ Tx1 such that

ω1(x1, x2) ≤ Hω(Tx0,Tx1) + θn1 (ω1(x0, x1)).

Since α(x0, x1) ≥ 1 then by (9), we have

ω1(x1, x2) ≤ Hω(Tx0,Tx1) + θn1 (ω1(x0, x1))
≤ θ(ω1(x0, x1))ω1(x0, x1) + Lω1(x1,Tx0) + θn1 (ω1(x0, x1))
= θ(ω1(x0, x1))ω1(x0, x1) + θn1 (ω1(x0, x1))
< ω1(x0, x1).

The mapping T is α−admissible and x2 ∈ Tx1, so

α(x1, x2) ≥ 1.

If x2 = x1, then x2 is a fixed point of T and again the proof is finished.
Now, we assume that x2 , x1. We choose a positive integer n2 > n1 such that

θn2 (ω1(x1, x2)) < [1 − θ(ω1(x1, x2))]ω1(x1, x2).

By Lemma 3.2, we may select x3 ∈ Tx2 such that

ω1(x2, x3) ≤ Hω(Tx1,Tx2) + θn2 (ω1(x1, x2)).
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Since α(x1, x2) ≥ 1, by (9), we have

ω1(x2, x3) ≤ Hω(Tx1,Tx2) + θn2 (ω1(x1, x2))
≤ θ(ω1(x1, x2))ω1(x1, x2) + Lω1(x2,Tx1) + θn2 (ω1(x1, x2))
= θ(ω1(x1, x2))ω1(x1, x2) + θn2 (ω1(x1, x2))
< ω1(x1, x2).

Continuing in this process, we may select a positive integer nk such that

θnk (ω1(xk−1, xk)) < [1 − θ(ω1(xk−1, xk))]ω1(xk−1, xk)

where xk−1 , xk and α(xk−1, xk) ≥ 1. By Lemma 3.2, we may select xk+1 ∈ Txk such that

ω1(xk, xk+1) ≤ Hω(Txk−1,Txk) + θnk (ω1(xk−1, xk)).

In view of T is α−admissible and xk+1 ∈ Txk, we have

ω1(xk, xk+1) ≥ 1.

Since α(xk−1, xk) ≥ 1, by (9), we get

ω1(xk, xk+1) < ω1(xk−1, xk) for all k = 1, 2, 3, . . .

It follows that {ak ≡ ω1(xk, xk+1)} is a nonincreasing sequence of nonnegative numbers. Then there exists a
constant c ≥ 0 such that lim

k→∞
ak = c. By assumption, lim sup

t→c+

θ(t) < 1. This implies that there exists a positive

integer N such that for k ≥ N, we have θ(ω1(xk, xk+1)) < h where lim sup
t→c+

θ(t) < h < 1.

Now, by (9), we have for k ≥ N

ak = ω1(xk, xk+1) ≤ θ(ak)ak−1 + θnk (ak−1)
≤ θ(ak)θ(ak−1)ak−2 + θ(ak)θnk−1 (ak−2) + θnk (ak−1)
...

≤

k∏
i=1

θ(ai)a0 +

k−1∑
m=1

k∏
i=m+1

θ(ai)θnm (am) + θnk (ak−1)

≤

k∏
i=1

θ(ai)a0 +

k−1∑
m=1

k∏
i=max{k0,m+1}

θ(ai)θnm (am) + θnk (ak−1)

≤ hk−k0+1
k0−1∏
i=1

θ(ai)a0 + (k0 − 1)hk−k0+1
k0−1∑
m=1

θnm (am)

+

k−1∑
m=k0

hk−mθnm (am) + θnk (ak−1)

≤ C1hk + C2hk + C3hk + hnk ≤ Chk,

where C1,C2,C3,C are appropriate constants.
For k ≥ N, we have

ω1(xk, xk+1) ≤ Chk.

Proceeding as in proof of Theorem 3.9, we may prove that xn is ω−Cauchy in M. By completeness of (M, ω),
there exists a u ∈M such that lim

n→∞
xn = u. We shall prove that u is a fixed point of T. Since α(xn, xn+1) ≥ 1 for

all n ∈ N, xn → u and (M, α) is ω−regular, there exists a subsequence {xn(k)} of {xn} such that α(xn(k),u) ≥ 1
for all k ∈N.
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We have for any k ≥ 0

Hω(Txn(k),Tu) ≤ θ(ω1(xn(k),u))ω1(xn(k),u) + Lω1(xn,Txn(k))
≤ ω1(xn(k),u) + Lω1(u, xn(k)+1).

Passing to limit as k→∞, we get lim
k→∞

Hω(Txn(k),Tu) = 0.

Since xn(k)+1 ∈ Txn(k), by Lemma 3.3, we conclude that u ∈ Tu, that is, u is a fixed point of T.
Now, passing to the case where fT is lower semi-continuous, we get again u ∈ Tu.

3.4. Result IV
In [15], Edelstein proved that if X is a complete ε−chainable metric space and f : X → X is an

(ε, λ)−uniformly locally contractive mapping, then f has a fixed point. Nadler [21] extended this result to
multi-valued mappings and he proved that if (X, d) is a complete ε−chainable metric space and F : X→ 2X

is an (ε, λ)−uniformly locally contractive multi-valued mapping, then F has a fixed point. We generalize
this result to α − ω−weak contractions in the setting of modular metric spaces.

Definition 3.17. Let (X, ω) be a modular metric space. A nonempty subset M of Xω is called to be finitely ε−chainable
(where ε > 0 is fixed) if and only if given x, y ∈ M, there is an ε−chain from x to y (that is, a finite set of points
x0, x1, . . . , xp ∈M such that x0 = x, xp = y, and ω1(xi−1, xi) < ε for all i = 1, 2, . . . , p).

Definition 3.18. Let (X, ω) be a modular metric space and M be a nonempty subset of Xω. A multi-valued T : M→
CB(M) is called to be an (ε, k,L)−ω−uniformly locally weak contraction if there exist two constants k ∈ [0, 1), L ≥ 0
such that for any x, y ∈M, we have

Hω(Tx,Ty) ≤ kω1(x, y) + Lω1(y,Tx), whenever ω1(x, y) < ε. (10)

Theorem 3.19. Let (X, ω) be a modular metric space. Assume that ω is a convex regular modular satisfying the
∆2−type condition and the Fatou property. Let M be a nonempty ω−complete and ω−compact subset of Xω, which is
finitely ε−chainable, for some ε > 0. Let T : M→ CB(M) be an (ε, k,L) − ω−uniformly locally weak contraction.

Then T is a MWP operator.

Proof. Let (x, y) ∈M ×M. Take

ωε(x, y) = inf{Σp
i=1ω1(xi−1, xi) : x0 = x, x1, . . . , xp = y is an ε − chain from x to y}.

It is clear that ωε(x, y) < ∞ for every x, y ∈ M and ωε(x, y) = ω1(x, y) for all x, y ∈ M such that ω1(x, y) < ε.
Moreover, by definition of ω, we have for all x, y ∈M

ωn(x, y) ≤ inf{ω1(x, x1) + ω1(x1, x2) + . . . + ω1(xn−1, y)} = ωε(x, y).

Let z0 ∈M and z1 ∈ Tz0. Letting x0, x1, . . . , xp be a ε−chain from z0 to z1. Since Tx1 is ω−compact, by Lemma
3.2, there exists y1 ∈ Tx1 such that

ω1(z1, y1) ≤ Hω(Tz0,Tx1).

Similarly, there exists y2 ∈ Tx2 such that

ω1(y1, y2) ≤ Hω(Tx1,Tx2).

Continuing in this fashion, we can find y3, . . . , yn such that yi ∈ Txi and

ω1(yi, yi+1) ≤ Hω(Txi,Txi+1) ≤ kω1(xi, xi+1) + Lω1(xi+1,Txi)
≤ kω1(xi, xi+1) + Lω1(xi+1, xi+1) = kω1(xi, xi+1).

Obviously, z0, y1, . . . , yp is a ε−chain from z0 to yp with yn ∈ Tz1. Take z2 = yp.
Since T is an (ε, k,L) − ω−uniformly locally weak contraction, we obtain

ωε(z1, z2) ≤ kωε(z0, z1).
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Proceeding as above, we may construct a sequence {zn} in M such that for all n ≥ 1, we have zn+1 ∈ Tzn and

ωε(zn, zn+1) ≤ kωε(zn−1, zn).

By induction, we get

ωε(zn, zn+1) ≤ knωε(z0, z1).

Considering that ω satisfies the ∆2−type condition, so there exists a constant C > 0 such that for all n ≥ 1

ω1(zn, zn+1) ≤ Cωn(zn, zn+1) ≤ Cωε(zn, zn+1) ≤ Cknωε(z0, z1).

Using Lemma 2.11, we conclude that {zn} isω−Cauchy. By completeness of (M, ω), there exists a point z ∈M
such that lim

n→∞
zn = z.

Proceeding as the above, there exists yn ∈ Tz such that

ω1(xn+1, yn) ≤ Hω(xn, z).

The mapping T is an (ε, k,L) − ω−uniformly locally weak contraction, so

ωε(xn+1, yn) ≤ kωε(xn, z).

Since lim
n→∞

zn = z, there exists N ≥ 1 such that for n ≥ N, we have ω1(xn, z) < ε. It follows that ωε(xn, z) =

ω1(xn, z).
We have for n ≥ N,

ωp+1(yn, z) ≤ ωp(yn, xn+1) + ω1(xn+1, z) ≤ ωε(xn+1, yn) + ω1(xn+1, z)
≤ ω1(xn+1, z) + kω1(xn, z).

Passing to limit as n → ∞, we get lim
n→∞

ωp+1(yn, z). Since ω satisfies the ∆2−type condition and Tz is closed,
we conclude that z ∈ Tz.

4. Fixed point theory in ordered modular metric spaces

The study of fixed points in partially ordered sets was developed in [22, 23, 25]. In this section, we give
some results of fixed point for multi-valued mappings in the concept of partially ordered modular metric
spaces. We say that x, y ∈ Xω are comparable if x � y or y � x holds. Moreover, for A,B ⊆ Xω,we have A � B
whenever for each x ∈ A, there exists y ∈ B such that x � y. Now, we introduce the following concepts.

Definition 4.1. Let (X, ω) be a modular metric space and M be a nonempty subset of Xω. A multi-valued T : M→
CB(M) is called to be weak continuous if the following condition holds: if {xn} is an ω−convergent sequence in M to
x ∈M, then there exists a subsequence {xn(k)} of {xn} such that lim

k→∞
Hω(Txn(k),Tx) = 0.

Definition 4.2. Let (X, ω) be a modular metric space and M be a nonempty subset of Xω. The pair (M,�) is said
to be ω−regular if the following condition holds: for any sequence {xn} in M with Txn � Txn+1, for all n ∈ N and
xn → x ∈M, then there exists a subsequence {xn(k)} of {xn} such that Txn(k) � Tx, for all k ∈N.

We have the following theorem.

Theorem 4.3. Let (X, ω,�) be a partially ordered modular metric space. Assume that ω is a convex regular modular
satisfying the ∆2−condition. Let M be a nonempty ω−complete subset of Xω. Suppose that T : M → CB(M) is a
multi-valued mapping. Assume that there exist a function θ : [0,∞) → [0, 1) satisfying lim sup

r→t+

θ(r) < 1 for every

t ∈ [0,∞) and a constant L ≥ 0 such that

Hω(Tx,Ty)) ≤ θ(ω1(x, y))ω1(x, y) + Lω1(y,Tx) (11)

for all x, y ∈M, with Tx � Ty.
Suppose also that
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1. there exist x0 ∈M and x1 ∈ Tx0 such that Tx0 � Tx1;

2. for each x ∈M and y ∈ Tx with Tx � Ty, we have Ty � Tz for all z ∈ Ty;

3. T is weak continuous.

Then T is a MWP operator.

Proof. Given α : M ×M→ [0,∞) as

α(x, y) =

1 i f Tx � Ty
0 otherwise.

The multi-valued mapping T is α−admissible. In fact, if x ∈ M and y ∈ Ty with α(x, y) ≥ 1, then Tx � Ty.
By condition (2), we have Ty � Tz for all z ∈ Ty, then α(y, z) = 1. Also, by (11), T verifies (9). Proceeding as
in proof of Theorem 3.16, we may construct an ω−convergent sequence {xn} to x ∈ M such that xn+1 ∈ Txn
for all n ∈N. Finally, by condition (3) and Lemma 3.3, we conclude that x is a fixed point of T.

Theorem 4.3 remains true if the continuity hypothesis is replaced by the ω−regularity of (M,�).
This statement is given as follows.

Theorem 4.4. Let (X, ω,�) be a partially ordered modular metric space. Assume that ω is a convex regular modular
satisfying the ∆2−condition. Let M be a nonempty ω−complete subset of Xω. Suppose that T : M → CB(M) is a
multi-valued mapping. Assume that there exist a function θ : [0,∞) → [0, 1) satisfying lim sup

r→t+

θ(r) < 1 for every

t ∈ [0,∞) and a constant L ≥ 0 such that

Hω(Tx,Ty)) ≤ θ(ω1(x, y))ω1(x, y) + Lω1(y,Tx) (12)

for all x, y ∈M, with Tx � Ty.
Suppose also that

1. there exist x0 ∈M and x1 ∈ Tx0 such that Tx0 � Tx1;

2. for each x ∈M and y ∈ Tx with Tx � Ty, we have Ty � Tz for all z ∈ Ty;

3. (M,�) is ω−regular.

Then T is a MWP operator.

Proof. As in proof of the above theorem, we define the function α : M ×M→ [0,∞) as follows

α(x, y) =

1 i f Tx � Ty
0 otherwise.

It is clear that the multi-valued mapping T is α−admissible. Also, by (12), T verifies the contraction (9).
Finally, by condition (3), the sequence (M, α) isω−regular. Thus, all hypotheses of Theorem 3.16 are satisfied
and hence T has a fixed point.
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