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Abstract. In this paper, we deal with the study of warped product semi-slant submanifolds isometrically
immersed into a Kenmotsu manifold. We prove two characterization theorems for a warped product
semi-slant submanifold in Kenmotsu manifolds in terms of the tensor fields.

1. Introduction and Motivation

Warped product semi-slant submanifolds are important classes to study in differential geometry. Every
structure on a manifold may not be admited warped product semi-slant submanifolds (for instance, see
[11, 17]). In 1969, R.L. Bishop and B. O’Neil [4] introduced the idea of warped product manifolds to study
manifolds of negative curvature. These manifolds are the generalization of Riemannian product manifolds.
Afterwards, these manifolds were studied by many mathematicians and geometers. In early 20th century
B.-Y. Chen in [7] introduced the notion of warped product submanifolds. Motivated form his idea many
researchers studied warped product submanifolds for different structures on manifolds. Recently, M.
Atceken [1] proved the non-existence of warped product semi-slant submanifolds of Kenmotsu manifold
such that the spherical submanifold is tangential to the characteristic vector field. While, S. Uddin in [18]
showed that the warped product semi-slant submanifold of Kenmotsu manifold exists except in the case
when the structure vector field ξ is tangent to the fiber of warped products. Further, he also obtained a
characterization result in term of shape operator and establish an inequality for the second fundamental form
in terms of warping functions (cf. [23]). On the other hand, V. A. Khan in [13, 14] obtained characterizations
for contact CR-warped product submanifolds of Kenmotsu manifolds and warped product semi-slant
submanifolds of nearly Kaehler manifolds in terms of canonical tensor fields T and F. In this paper, we
extend this study to the warped product semi-slant submanifolds of Kenmotsu manifolds. We obtain two
main theorems for the characterization of warped product semi-slant submanifolds of Kenmotsu manifolds
in terms of the endomorphisms T and F and the projections P1 and P2. We find that the results obtained in
[13] for contact CR-warped products in Kenmotsu manifolds are particular cases of our Theorems 4.6 and
4.9.
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2. Preliminaries

Let M̃ be a (2m + 1)-dimensional almost contact manifold with almost contact structure (ϕ, ξ, η) where
ϕ is a (1, 1) tensor field, ξ a structure vector field, η is a dual 1-form satisfying the following property:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, ϕ(ξ) = 0, η ◦ ϕ = 0. (1)

On an almost contact manifold there exists a Riemannian metric 1which is satisfying the following

1(ϕU, ϕV) = 1(U,V) − η(U)η(V), η(U) = 1(U, ξ), (2)

for any U,V tangent to M̃. Then an almost contact manifold M̃ equipped with Riemannian metric 1 is called
an almost contact metric manifold (M̃, 1). Furthermore, an almost contact metric manifold is known to be
a Kenmotsu manifold [10] if

(∇̃Uϕ)V = 1(ϕU,V)ξ − η(V)ϕU (3)

and

∇̃Uξ = U − η(U)ξ, (4)

for any vector fields U,V on M̃, where ∇̃ denotes the Riemannian connection with respect to 1 and we shall
use the symbol Γ(TM̃) to denote Lie algebra of vector fields on a manifold M̃.

Let M be a submanifold of an almost contact metric manifold M̃ with induced metric 1 and if ∇ and ∇⊥

are induced connections on the tangent bundle TM and normal bundle T⊥M of M, respectively. Then the
Gauss and Weingarten formulas are given by

(i) ∇̃UV = ∇UV + h(U,V), (ii) ∇̃UN = −ANU + ∇⊥UN, (5)

for each U,V ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental form and shape
operator (corresponding to the normal vector field N) respectively for the immersion of M into M̃. They are
related as

1(h(U,V),N) = 1(ANU,V). (6)

In this paper we assume that the structure vector field ξ is tangential to the submanifold M. For any
U ∈ Γ(TM), we have

∇Uξ = U − η(X)ξ, h(U, ξ) = 0. (7)

For any U ∈ Γ(TM) and N ∈ Γ(T⊥M), we may write

ϕU = TU + FU, ϕN = tN + f N, (8)

where TX(tN) and FX( f N) are the tangential and normal components of ϕX (ϕN), respectively. From (1)
and (8), it is easy to observe that

1(TU,V) = −1(U,TV) (9)

for each U,V ∈ Γ(TM). The covariant derivatives of endomorphisms ϕ, T and F are respectively defined as

(∇̃Uϕ)V = ∇̃UϕV − ϕ∇̄UV, ∀ U,V ∈ Γ(TM̄), (10)

(∇̃UT)V = ∇UTV − T∇UV, ∀ U,V ∈ Γ(TM), (11)

(∇̃UF)V = ∇⊥UFV − F∇UV, ∀ U,V ∈ Γ(TM). (12)
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On using (3), (5), (8) and (10)-(12), we obtain

(∇̃UT)V =1(TU,V)ξ − η(V)TU + AFVU + th(U,V), (13)

(∇̃UF)U = f h(U,V) − h(U,TV) − η(V)FU. (14)

A submanifold M of an almost contact metric manifold M̃ is said to be totally umbilical and totally geodesic
if h(U,V) = 1(U,V)H and h(U,V) = 0, for any U,V ∈ Γ(TM), respectively, where H is the mean curvature
vector of M. Furthermore, if H = 0, then M is minimal in M̃.

Let M be a submanifold tangent to the structure vector field ξ of an almost contact metric manifold M̃.
Then the angle θ(U) between ϕU and TpM for each non zero vector U tangent to M at a point p, is called
Wirtinger angle of U. Thus M is said to be a slant submanifold [5], if the angle θ(U) is constant which is
independent the choice of U ∈ (TpM)− < ξ > and p ∈ M. Invariant and anti-invariant submanifolds are
slant submanifolds with the slant angle θ = 0 and θ = π/2, respectively. A slant submanifold is proper slant if
it is neither invariant nor anti-invariant. More generally, a distribution D on M is called slant distribution if
the angle θ(X) between ϕX andDx has the same value θ for each x ∈M and a non zero vector X ∈ Dx. Thus,
for slant submanifold M, tangent bundle TM as well as normal bundle T⊥M are respectively decomposed
by

(i) TM = D⊕ < ξ >, (ii) T⊥M = F(TM) ⊕ ν, (15)

where ν is an invariant normal bundle with respect to ϕ orthogonal to F(TM).
Recently, Cabrerizo et.al [5] gave the following characterization result for a slant submanifold in a

contact metric manifold.

Theorem 2.1. Let M be a submanifold of an almost contact metric manifold M̃ such that ξ ∈ TM. Then M is slant
if and only if there exists a constant λ ∈ [0, 1] such that

T2 = δ(−I + η ⊗ ξ). (16)

Furthermore, in such a case, if θ is slant angle, then it satisfies that δ = cos2 θ.

Hence, for a slant submanifold M of an almost contact metric manifold M̃, the following relations are
consequences of Theorem 2.1, we have

1(TU,TV) = cos2 θ
(
1(U,V) − η(U)η(V)

)
, (17)

1(FU,FV) = sin2 θ
(
1(U,V) − η(U)η(V)

)
, (18)

for any U,V ∈ Γ(TM).

3. Semi-slant submanifolds of a Kenmotsu manifold

Semi-slant submanifolds were defined and studied by N. Papaghiuc [16] as a natural generalization of
CR-submanifolds of almost Hermitian manifolds in terms of slant distribution and were later extended to
the setting of contact manifolds by Cabrerizo et al. [6]. They defined these submanifolds as follows:

Definition 3.1. A submanifold M of an almost contact metric manifold M̃ is said to be a semi-slant submanifold if
there exists a pair of orthogonal distributions D and Dθ such that

(i) TM = D ⊕Dθ⊕ < ξ > where < ξ > is a 1-dimensional distribution spanned by ξ,
(ii) D is invariant, i.e., ϕ(D) ⊆ D,

(iii) Dθ is a proper slant distribution with slant angle θ , 0, π/2.
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Let d1 and d2 are the dimensions of invariant distributionD and slant distributionDθ of semi-slant subman-
ifold of an almost contact metric manifold M̃. Then M is invariant if d2 = 0 and it is slant if d1 = 0. It is
proper semi-slant if d1 , 0 and the slant angle is different from 0 and π/2.

Moreover, if ν is an invariant normal subbundle under ϕ in the normal bundle T⊥M, then in case of
semi-slant submanifold, the normal bundle T⊥M can be decomposed as T⊥M = FDθ ⊕ ν. Furthermore, let
us denotes the orthogonal projections on D and Dθ by P1 and P2 respectively. then we can write

U = P1U + P2U + η(U)ξ, (19)

for any U ∈ Γ(TM), where P1U ∈ Γ(D) and P2U ∈ Γ(Dθ). From (8) and (19), we obtain

ϕP1U ∈ Γ(D), FP1U = 0, (20)

and

TP2U ∈ Γ(Dθ), FP2U ∈ Γ(T⊥M). (21)

Then (20) and (21) imply that

TU = ϕP1U + TP2U,

for all U ∈ Γ(TM). On a semi-slant submanifold M of an almost contact metric manifold M̃, the following
are straightforward observations

(i) FD = 0, (ii) TD = D,

(iii) t(T⊥M) = Dθ, (iv) TDθ ⊂ Dθ.

 (22)

It is easy to deduce from the (13) and (14) of semi-slant submanifold M of a Kenmotsu manifold M̃,

(i) (∇̃ξT)U = 0, (ii) (∇̃UT)ξ = −TU,

(iii) (∇̃ξF)U = 0, (iv) (∇̃UF)ξ = −FU.

 (23)

We refer [23] for the integrability conditions of distributions involved in the definition semi-slant sub-
manifold and the examples of semi-slant submanufold in a Kenmotsu manifold. Now, we give some useful
results for later use.

Theorem 3.2. Let M be a semi-slant submanifold of a Kenmotsu manifold M̃. Then the invariant distribution
D⊕ < ξ > defines a totally geodesic foliation if and only if

h(X, ϕY) ∈ Γ(ν)

for all X,Y ∈ Γ(D⊕ < ξ >).

Proof. Let for any X,Y ∈ Γ(D⊕ < ξ >) and Z ∈ Γ(Dθ), we have

1(∇XY,Z) = 1(∇̃XY,Z) = 1(ϕ∇̄XY, ϕZ).

Using (10) and (8), we obtain

1(∇XY,Z) = 1(∇̃XϕY,TZ) + 1(∇̃XϕY,FZ) − 1((∇̃Xϕ)Y, ϕZ)

From (5), (4) and the definition of totally geodesic foliation, we achieve the required result.
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Theorem 3.3. On a semi-slant submanifold M of a Kenmotsu manifold M̃, the slant distributionDθ defines a totally
geodesic foliation if and only if

1(h(X,Z),FTW) = 1(h(Z, ϕX),FW) + η(X)1(Z,W)

for any X ∈ Γ(D⊕ < ξ >) and Z ∈ Γ(Dθ).

Proof. For any Z ∈ Γ(Dθ) and X ∈ Γ(D⊕ < ξ >), we have

1(∇ZW,X) = 1(ϕ∇̄ZW, ϕX) − η(X)1(Z,W).

Thus, on using (10) and (8), we derive

1(∇ZW,X) = 1(∇̃ZTW, ϕX) + 1(∇̃ZFW, ϕX) − 1((∇̃Zϕ)W, ϕX) − η(X)1(Z,W).

From (4), (8) and (5) (ii), we obtain

sin2 θ1(∇ZW,X) = 1(h(X,Z),FTW) − 1(h(Z, ϕX),FW) − η(X)1(Z,W).

Hence, by definition Dθ defines a totally geodesic foliation if and only if the given condition holds, which
proves the lemma completely.

4. Warped product semi-slant submanifolds

In 1969, R. L. Bishop and B. O’Neill [4] initiated the idea of warped product manifolds to construct
examples of Riemannian manifolds with negative curvature. These manifolds are natural generalizations
of Riemannian product manifolds. They defined these manifolds as follows: Let (M1, 11) and (M2, 12) be
two Riemannian manifolds and f : M1 → (0,∞), a positive differentiable function on M1. Consider the
product manifold M1 ×M2 with it’s canonical projections π1 : M1 ×M2 →M1, π2 : M1 ×M2 →M2 and the
projection maps given by π1(p, q) = p. and π2(p, q) = q for every t = (p, q) ∈ M1 ×M2. The warped product
M = M1 × f M2 is the product manifold M1 ×M2 equipped with the Riemannian structure such that

||U||2 = ||π1∗(U)||2 + ( f ◦ π1(p))2
||π2∗(U)||2.

for any tangent vector U ∈ Γ(TtM), where ∗ is the symbol for the tangent maps and we have 1 = 11 + f 212.
Thus the function f is called the warping function on M. We recall the following result of [4] for later use:

Lemma 4.1. Let M = M1 × f M2 be a warped product manifold. Then for any X,Y ∈ Γ(TM1) and Z,W ∈ Γ(TM2),
we have

(i) ∇XY ∈ Γ(TM1),
(ii) ∇ZX = ∇XZ = (X ln f )Z,

(iii) nor(∇ZW) = −1(Z,W)∇ ln f ,

where ∇ denotes the Levi-Civita connection on M and ∇ ln f is the gradient of ln f which is defined as 1(∇ ln f ,U) =
U ln f .

A warped product manifold M = M1 × f M2 is said to be trivial if the warping function f is constant.
Moreover, if M = M1 × f M2 is a warped product manifold, then M1 is totally geodesic and M2 is totally

umbilical in M, respectively [4, 7].
In this paper, we study warped product semi-slant submanifold of the form MT × f Mθ, where MT and

Mθ are ϕ−invariant and proper slant submanifold of a Kenmotsu manifold M̃, respectively.
First, we recall the following lemma of [18]] for late use.

Lemma 4.2. Let M = MT × f Mθ be a warped product semi-slant submanifold of a Kenmotsu manifold M̃ such that
ξ is tangent to MT, where MT and Mθ are invariant and proper slant submanifolds of M̃, respectively. Then, we have
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(i) ξ ln f = 1,
(ii) 1(h(X,Z),FTZ) = 1(h(X,TZ),FZ) = (X ln f − η(X)) cos2 θ||Z||2,

(iii) 1(h(X,Z),FZ) = −(ϕX ln f )||Z||2,

for any X ∈ Γ(TMT) and Z ∈ Γ(TMθ).

Further, we derive the following results which are useful to our main theorems.

Lemma 4.3. On a warped product semi-slant submanifold M = MT × f Mθ of a Kenmotsu manifold M̃, we have

(i) (∇̃XT)Z = 0,
(ii) (∇̃ZT)X = (ϕX ln f )Z − (X ln f )TZ,

(iii) (∇̃TZT)X = (ϕX ln f )TZ + cos2 θ(X ln f )Z,

for all X ∈ Γ(TMT) and Z ∈ Γ(TMθ).

Proof. For any X ∈ Γ(TMT) and Z ∈ Γ(TMθ), from (11) and Lemma 4.1 (ii), it is easy to see that

(∇̃XT)Z = ∇XTZ − T∇XZ = (X ln f )TZ − (X ln f )TZ = 0,

which is the first part of the lemma. Again, from (11) and Lemma 4.1 (ii), we obtain

(∇̃ZT)X = ∇ZTX − T∇ZX = (ϕX ln f )Z − (X ln f )TZ,

which proves second part of the lemma. Interchanging Z by TZ in (ii) and using (16), we get (iii). Hence,
the proof is complete.

Lemma 4.4. Let M = MT × f Mθ be a warped product semi-slant submanifold of a Kenmotsu manifold M̃. Then

(i) (∇̃UT)X = (ϕX ln f )P2U − (X ln f )TP2U + 1(TP1U,X)ξ − η(X)TU,
(ii) (∇̃UT)Z = 1(P2U,Z)ϕ∇ ln f − 1(P2U,TZ)∇ ln f ,

(iii) (∇̃UT)TZ = 1(P2U,TZ)ϕ∇ ln f + cos2 θ1(P2U,Z)∇ ln f ,

for any U ∈ Γ(TM), X ∈ Γ(TMT) and Z,W ∈ Γ(TMθ).

Proof. For any X,Y ∈ Γ(TMT), using (13), it follows that

(∇̃XT)Y = th(X,Y) + 1(TX,Y)ξ − η(Y)TX. (24)

Since for a warped product manifold M = MT × f Mθ, MT is totally geodesic in M, using this fact and then
equating the tangential components to MT, we get th(X,Y) = 0, which implies that h(X,Y) ∈ Γ(ν). Thus the
equation (24) can be modified as:

(∇̃XT)Y = 1(TX,Y)ξ − η(Y)TX. (25)

Now, from the relation (19), for any U ∈ Γ(TM), we derive

(∇̃UT)X = (∇̃P1UT)X + (∇̃P2UT)X + η(U)(∇̃ξT)X.

The third term of right hand side in above equation is identically zero by using (23) (i). Thus, using (25) in
first term and Lemma 4.3 (ii) in the second term, we get first part of the lemma. Again from using (19), we
arrive at

(∇̃UT)Z = (∇̃P1UT)Z + (∇̃P2UT)Z + η(U)(∇̃ξT)Z,

for any Z ∈ Γ(TMθ) and U ∈ Γ(TM). The first and last terms of above equation are identically zero by using
(23)(i) and Lemma 4.3 (i). Taking the inner product with X ∈ Γ(TMT) and using (11), we obtain

1((∇̃UT)Z,X) = 1(∇P2UTZ,X) − 1(T∇P2UZ,X).
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As X and Z are orthogonal, then by the property of Riemannian connection, we obtain

1((∇̃UT)Z,X) = 1(∇P2UZ, ϕX) − 1(∇P2UX,TZ).

Again by the property of Riemannian connection, we derive

1((∇̃UT)Z,X) = −1(∇P2UϕX,Z) − 1(∇P2UX,TZ).

From Lemma 4.1 (ii), we get

1((∇̃UT)Z,X) = −(ϕX ln f )1(P2U,Z) − (X ln f )1(P2U,TZ) = 1(P2U,Z)1(ϕ∇ ln f ,X) − 1(P2U,TZ)1(∇ ln f ,X),

which implies that

(∇̃UT)Z = 1(P2U,Z)ϕ∇ ln f − 1(P2U,TZ)∇ ln f .

This is the second result of lemma. Interchanging Z by TZ and using relation (16), thus above equation
takes the form

(∇̃UT)TZ = 1(P2U,TZ)ϕ∇ ln f + cos2 θ1(P2U,Z)∇ ln f ,

which is the last relation. Hence, the lemma is proved completely.

Lemma 4.5. Assume that M be a warped product semi-slant submanifold of a Kenmotsu manifold M̃. Then

(i) (∇̃UF)X = −(X ln f )FP2U,
(ii) (∇̃UF)Z = f h(U,Z) − h(U,TZ),

(iii) (∇̃UF)TZ = f h(U,TZ) + cos2 θh(U,Z),

for any U ∈ Γ(TM), X ∈ Γ(TMT) and Z ∈ Γ(TMθ).

Proof. By virtue of (19) with (∇̃UF)X, we have

(∇̃UF)X = (∇̃P1UF)X + (∇̃P2UF)X + η(U)(∇̃ξF)X,

for any U ∈ Γ(TM) and X ∈ Γ(TMT). The first term of above equation is identically zero by using the fact
that MT is totally geodesic on M and last term is zero by using the relation (23) (iii). Then, from (12) and
Lemma 4.1 (ii), we obtain

(∇̃UF)X = −F∇P2UX = −(X ln f )FP2U,

which is first part of lemma. Since η(Z) = 0, for any Z ∈ Γ(Dθ), then by relation (14), we derive

(∇̃UF)Z = f h(U,Z) − h(U,TZ).

This is the second part of lemma. Now replacing Z by TZ in above equation and using (16), we get the third
relation, which proves the lemma completely.

Now, we prove the main theorem as a characterization theorem in term of∇T for warped product semi-slant
submanifold.

Theorem 4.6. Let M be a semi-slant submanifold of a Kenmotsu manifold M̃ with slant distributionDθ is integrable.
Then M is locally a warped product submanifold if and only if

(∇̃UT)V =(ϕP1Vλ)P2U − (P1Vλ)TP2U + 1(P2U,P2V)ϕ∇λ − 1(P2U,TP2V)∇λ
+ 1(P1V,TP1U)ξ − η(V)TP1U, (26)

for each U,V ∈ Γ(TM) and a C∞-function µ on M with Zλ = 0, for each Z ∈ Γ(Dθ), where P1 and P2 are orthogonal
projections on D and Dθ, respectively.
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Proof. Let M be a warped product semi-slant submanifold of a Kenmotsu manifold M̃. Then for any
U,V ∈ Γ(TM) and using (19), we obtain

(∇̃UT)V = (∇̃UT)P1V + (∇̃UT)P2V + η(V)(∇̃UT)ξ.

Thus, by Lemma 4.4 (i)-(ii) and the relation (23) (ii), we get the desired result (26) with λ = ln f .
Conversely, if M is a semi-slant submanifold of a Kenmotsu manifold M̃ such that the given condition

(26) holds, then we have

(∇̃XT)Y = 1(TX,Y)ξ − η(Y)TX,

for any X,Y ∈ Γ(D⊕ < ξ >). Taking the inner product with Z ∈ Γ(Dθ) and the fact that ξ is tangent to D, we
derive

1(∇̃XϕY,Z) = −1(∇XY,TZ).

From the covariant derivative property of ϕ, we find

1((∇̃Xϕ)Y,Z) − 1(∇̃XY, ϕZ) = −1(∇XY,TZ).

Using the structure equation of a Kenmotsu manifold, we get

1(∇̃XY, ϕZ) = 1(∇XY,TZ).

Then, from (8) and (5) (i), we obtain 1(h(X,Y),FZ) = 0,which implies that h(X,Y) ∈ Γ(ν) for all X,Y ∈ Γ(D⊕ <
ξ >). Then, by Theorem 3.2 it leads to that D⊕ < ξ > defines a totally geodesic foliations and its leaves are
totally geodesic in M. As we have considered that the slant distribution is integrable, then if Mθ be a leaf
of Dθ in M and hθ be the second fundamental form of Mθ in M, then (26) implies that

(∇̃ZT)W = 1(Z,W)ϕ∇λ + 1(TZ,W)∇λ,

for any Z,W ∈ Γ(Dθ). Taking the inner product with X for any X ∈ Γ(D⊕ < ξ >) and using (11), we arrive at

1(hθ(Z,TW),X) + 1(hθ(Z,W), ϕX) = −(ϕXλ)1(Z,W) − (Xλ)1(Z,TW). (27)

Interchanging W by TW and X by ϕX, the above equation takes the form

− cos2 θ1(hθ(Z,W), ϕX) − 1(hθ(Z,TW),X) = (Xλ)1(Z,TW) + cos2 θ(ϕXλ)1(Z,W)
− η(X)(ξλ)1(Z,TW) + η(X)1(Z,TW). (28)

Then (27) and (28), we derive

sin2 θ1(hθ(Z,W), ϕX) = η(X)1(Z,TW) − sin2 θ(ϕXλ)1(Z,W) − η(X)(ξλ)1(Z,TW). (29)

By polarization identity, we find that

sin2 θ1(hθ(Z,W), ϕX) = η(X)1(TZ,W) − sin2 θ(ϕXλ)1(Z,W) − η(X)(ξλ)1(TZ,W). (30)

Since, ξ ln f = 1, then again from relations (29) and (30), we obtain

1(hθ(Z,W), ϕX) = −1(Z,W)1(∇λ,ϕX),

or equivalently,

hθ(Z,W) = −1(Z,W)∇λ,

which means that Mθ is a totally umbilical submanifold of M with mean curvature vector field Hθ = −∇λ.
Now, we can easily show that the mean curvature vector Hθ is parallel corresponding to the normal
connection ∇′ of Mθ in M, which means that Mθ is an extrinsic sphere in M. Hence, a result of Hiepko (cf.
[9]), M is locally a warped product submanifold. Hence, the theorem is proved completely.



A. Ali et al. / Filomat 33:13 (2019), 4033–4043 4041

Remark 4.7. As an immediate consequence of Theorem 4.6 is that if we consider the slant angle θ = π
2 , then TP2U =

TP2V = 0, for anti-invariant submanifold M⊥. Thus a warped product semi-slant submanifold M = MT× f Mθ turns
into contact CR-warped product submanifold M = MT × f M⊥ such that MT and M⊥ are invariant and anti-invariant
submanifolds, respectively.

In other words, Theorem 4.6 is generalizing the characterization theorem for contact CR-warped products
as follows.

Theorem 4.8. Let M̃ be a Kenmotsu manifold and a CR-submanifold M of M̃ is locally a contact CR-warped products
if and only if

(∇̃UT)V =(ϕP1Vλ)P2U + 1(P2U,P2V)ϕ∇λ + 1(P1V,TP1U)ξ − η(V)TP1U, (31)

for each U,V ∈ Γ(TM) and a C∞-function λ on M with Zλ = 0, for each Z ∈ Γ(D⊥). Furthermore, P1 and P2 are
orthogonal projections on D and D⊥, respectively .

In this sense, Theorem 4.4 of [13] is a special case of Theorem 4.6.
Now, we have another characterization theorem in terms of ∇F.

Theorem 4.9. Every proper semi-slant submanifold M of a Kenmotsu manifold M̃ with integrable slant distribution
Dθ is locally a warped product submanifold if and only if

(∇̃UF)V = f h(U,P2V) − h(U,TP2V) − (P1Vλ)FP2U − η(V)FU, (32)

for every U,V ∈ Γ(TM) and a C∞-function λ on M with Zλ = 0, for each Z ∈ Γ(Dθ), where P1 and P2 are the
orthogonal projections on D and Dθ, respectively.

Proof. If M is a warped product semi-slant submanifold in a Kenmotsu manifold M̃, then from (19), we
obtain

(∇̃UF)V = (∇̃UF)P1V + (∇̃UF)P2V + η(V)(∇̃UF)ξ. (33)

Hence, from Lemma 4.5 (i)-(ii) and (23) (iv), we get desired result (32).
Conversely, if M is a semi-slant submanifold of a Kenmotsu manifold M̃ such that (32) holds, then for

any X,Y ∈ Γ(D⊕ < ξ >), it follows from (32) that −F∇XY = 0, which implies that ∇XY ∈ Γ(D⊕ < ξ >), which
means that, the invariant distribution (D⊕ < ξ >) is integrable and its leaves are totally geodesic in M.
Furthermore, by the hypothesis of the theorem that Dθ assumed to be integrable, thus we can consider Mθ

be a leaf of Dθ and hθ be the second fundamental form of Mθ in M. Then from (32), we derive

(∇̃ZF)X = −(Xλ)FZ − η(X)FZ. (34)

for any Z ∈ Γ(Dθ) and X ∈ Γ(D⊕ < ξ >). Taking the inner product in (34) with FW for any W ∈ Γ(Dθ) and
by virtue of (18), the above equation takes the form

1((∇̃ZF)X,FW) = − sin2 θ
(
(Xλ) + η(X)

)
1(Z,W). (35)

Using (12), we obtain

(F∇ZX,FW) = − sin2 θ
(
(Xλ) + η(X)

)
1(Z,W).

Thus from (18), we arrive at

− sin2 θ1(∇ZX,W) = − sin2 θ
(
1(∇λ,X) + 1(ξ,X)

)
1(Z,W),
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which implies that

1(hθ(Z,W),X) = −1(X,∇λ + ξ)1(Z,W). (36)

Since, in a Kenmotsu manifold ξ ln f = 1, which implies that 1(∇ ln f , ξ) = 1, i.e., ξ = ∇ ln f , using this
relation in (36), we get

1(hθ(Z,W),X) = −21(Z,W)1(∇λ,X),

equivalently, we find

hθ(Z,W) = −21(Z,W)∇λ.

The above relation shows that Mθ is totally umbilical in M with mean curvature vector Hθ = −2∇λ.
Moreover, the condition Zλ = 0, for any Z ∈ Γ(Dθ) implies that the leaves of Dθ are extrinsic spheres in M.
Hence , by a result of Hiepko (cf. [9]) M = MT × f Mθ is locally a warped product submanifold, where MT

and Mθ are integral manifolds of D⊕ < ξ > and Dθ, respectively. Hence, the proof is complete.

Remark 4.10. In particular if M is a contact CR-submanifold, then Dθ turn into anti-invariant distribution, i.e,
θ = π

2 , in this case, TP2V = 0, thus characterization Theorem 4.9 is generalized the characterization theorem obtained
for contact CR-warped product submanifolds in Kenmotsu manifold which was proved by V. A. Khan for contact
CR-warped products in [13].

Theorem 4.11. Every proper CR-submanifold M of a Kenmotsu manifold M̃ is locally a warped product submanifold
if and only if

(∇̃UF)V = f h(U,P2V) − (P1Vλ)FP2U − η(V)FU, (37)

for every U,V ∈ Γ(TM) and a C∞-function λ on M with Zλ = 0, for each Z ∈ Γ(D⊥). Moreover, P1 and P2 are
orthogonal projections on D and D⊥, respectively (see [13]).
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