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Abstract. Resistance of social graphs to active attacks is a very important feature which must be maintained
in the modern networks. Recently introduced k-metric antidimension graph invariantis used to define anew
measure for resistance of social graphs. In this paper we have found and proved the k-metric antidimension
for generalized Petersen graphs GP(n, 1) and GP(n, 2). Itis proven that GP(2m+1, 1) and GP(8, 2) are 2-metric
antidimensional, while all other GP(n, 1) and GP(n, 2) graphs are 3-metric antidimensional.

1. Introduction

The notion of (k, [)-anonymity was introduced by Trujillo-Rasua and Yero (2016) in [8]. As explained
in that paper the motivation was to establish a new measure for evaluating the resistance of social graphs
against active attacks. This measure uses a new graph invariant: k-metric antidimension.

Let G = (V,E) be a simple connected graph and d(u, v) is the length of the shortest path between the
vertices u and v. The metric representation r(v|S) of vertex v with respect to an ordered set of vertices
S ={uy, ..., us} is defined as r(v|S) = (d(v, uq), ..., d(v, us)). Values d(v, u;) are considered as metric coordinates
of v with respect to vertices u;.

Definition 1.1. ([8]) Let k be the largest positive integer with the property that for every vertex v € V(G) \ S there
exist at least k — 1 different vertices vy, ..., v—1 € V(G) \ S with r(v|S) = r(v1]S) = ... = 1(v4-1|S). In other words, v
and v1, ..., k1 have the same metric representation with respect to S. Then, set S is called a k-antiresolving set for G.

Definition 1.2. ([8]) For fixed k, the minimum cardinality amongst all k-antiresolving sets in G is called the k-metric
antidimension of graph G, and it is denoted by adim(G). A k-antiresolving set of that minimum cardinality adim(G)
is called a k-antiresolving basis of G.

Definition 1.3. ([8]) If k = max{t|adim(G) exists} then graph G is called k-metric antidimensional.

Observation 1.4. ([8]]) If G has maximum degree A and G is k-metric antidimensional then 1 < k < A holds.
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In the sequel we shall use the equivalence relation defined in [1}2]. Let S € V(G) be a subset of vertices
of a connected graph G and let ps be equivalence relation on V(G) \ S defined by

(Ya,b e V(G)\ S) (apsb & r(alS) = r(blS))
and let 5y, ..., S, be the equivalence classes of ps. Then the following property can be proved.

Proposition 1.5. ([1,2]) Let k be a fixed integer, k > 1. Then S is a k-antiresolving set in G if and only if
min |S;] = k.
1<i<m

In [2}[10] it has been proved that the problem of determining the k-metric antidimension of a graph for
a fixed k is NP-complete in general case.

For some graphs with special structures it would be interesting to investigate the privacy measure based
on the k-metric antidimension. Such investigations are considered in the literature:

e In [9] are considered 1-metric antidimensional trees and unicyclic graphs;

e Privacy violation properties of eight real social networks and large number of synthetic networks
generated by both the classical Erdos-Rényi model and the Barbébasi-Albert preferential-attachment
model were analyzed in [4];

e First privacy-preserving graph transformation improving privacy is presented in [6]. Experiments on
random graphs show that the proposed method effectively counteracts active attacks;

o k-metric antidimensions of wheels and grid graphs are given in [1].

In this paper we study the k-metric antidimension of generalized Petersen graphs introduced by Coxeter
[3]. The generalized Petersen graph GP(n, k) (n > 3; 1 < k < n/2) has 2n vertices and 3n edges, where vertex
set V and edge set E are defined as follows: V = {u;,v; | 0 < i < n -1}, E = {{u;, w1}, {ui,vil, {vi, Vil
| 0 < i < n— 1}, with vertex indices taken modulo n. In this notation the well-known Petersen graph
presented on Figure 1 is GP(5, 2).

There are a lot of papers devoted to generalized Petersen graphs and their invariants. Some recent
results include: metric dimension [7], strong metric dimension [5], and power domination [11].

Example 1.6. Consider the Petersen graph G given on Figure 1. By total enumeration it is easy to see that G is
3-antidimensional: 1-antiresolving basis is {ug, up}, 2-antiresolving basis is {uo, vy}, while 3-antiresolving basis is

2, k=12

{vo). Therefore, adimy(G) = {1/ k=3

)

iy "

Figure 1: Petersen graph G
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It should be noted that, according to Definition 1.3, if a graph is k-metric antidimensional, it does not
mean that there exists an [-antiresolving set for each | € {2,...,k — 1}. For example, wheel graphs studied
in [1] are n-metric antidimensional, but for 4 < [ < n — 1 there are no /-antiresolving sets in wheel graphs.
Therefore, as mentioned and presented in [2} 4], it is an interesting problem to find families of graphs for
which there exist [-antiresolving sets for all values of /, such that 2 < I < k — 1. In the next two sections we
show that GP(n, 1) and GP(n, 2) satisfy the previous property.

In Section 2 we prove that GP(2m, 1) is 3-metric antidimensional, while GP(2m + 1, 1) is 2-metric antidi-
mensional. In Section 3 it is shown that GP(n, 2) is 3-metric antidimensional, except for n = 8, when it is
2-metric antidimensional.

2. k-metric antidimension of GP(n,1)

ug

us uy

iy uz

Figure 2: Graph GP(6,1)

Theorem 2.1. Graph GP(2m, 1) is 3-metric antidimensional and

(i) adim1(GP(2m,1)) =1
(ii) adimy(GP(2m, 1)) = 4
(iii) adimz(GP(2m, 1)) = 2

Proof. (i) Let us consider set S = {uy}. The equivalence classes of ps are given in Table|l] More precisely,
the first column of Table[1|contains set S, while in the second one the equivalence classes of relation pg are
given, and in the third column the metric representations with respect to S are shown for all their vertices.
Since the minimal cardinality of equivalence classes is one, according to Property[1.5} it follows that S = {1}
is 1-antiresolving set. Since |S| = 1, S = {u} is a 1-antiresolving basis of GP(2m, 1), so adim(GP(2m, 1)) = 1.
(if) Due to symmetry of GP(2m,1) and the fact that set {ug} is 1-antiresolving, it follows that every set S
consisting of only one vertex of GP(2m, 1) is 1-antiresolving. Let us consider sets S of cardinality two. From
symmetry properties of GP(2m, 1), without loss of generality we can assume uy € S. We have two cases.
Case 1. v, ¢ S. Then from Table [I| it follows that v,, is the only vertex with the metric coordinate with
respect to vertex 1y which is equal to m + 1 and, consequently, S is 1-antiresolving.

Case 2. If v, € S then S = {ug,v,,} and the corresponding equivalence classes are given in Table[l] From
Table[T]and Property[1.5)it follows that set {uo, v,,} is 3-antiresolving.

Cases 1 and 2 demonstrate that there does not exist set S of cardinality 2 which is 2-antiresolving for
GP(2m,1).

Next we consider sets S with cardinality three. Again, we can suppose that uy € S. If we v, ¢ S, as in Case
1, we can conclude that S is 1-antiresolving. Suppose that v,, € S and consider cases vy € S or u,, € S. If
vy € S,1.e. S = {ug, vy, vy}, then equivalence class {t,, Vy-1, U1} from Tableis partitioned into 2 classes:
{1y} with metric representation equal to (m,1,m + 1) and {v,,—1, U1} With metric representation equal to
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(m,1,m —1). Similarly, if u,, € S, i.e. S = {ug, Um, v}, then class {u, uy_1,v0} from Table [1| is partitioned
into {u1, u,,—1} with metric representation equal to (1,m,m — 1) and {vo} with metric representation equal to
(1,m,m +1). Hence, if ug,v,, € Sand vy € S or u,, € S set S is 1-antiresolving. Finally, if up, v,, € S and
v € S and u,, ¢ S we consider equivalence class {u,,, V-1, Um+1} from Table[l} Table [2] contains distances
of Uy, V-1, Vm+1 from all possible third elements of S. From Table [2|it follows that in all cases equivalence
class {uy, Um—1, Vm+1} is partitioned with respect to the third coordinate into two classes, one of cardinality 2
and the other of cardinality 1. Consequently, set S is again 1-antiresolving. Therefore, there does not exist
set S of cardinality 3 which is 2-antiresolving for GP(2m, 1).

Consider now set S = {ug, vo, U, Uy} of cardinality 4 and the corresponding classes in Table Since all
classes have cardinality 2, it follows that S is 2-antiresolving for GP(2m, 1). Since adim,(GP(2m, 1)) > 3, we
conclude adimy(GP(2m, 1)) = 4.

(iii) Let S = {uo, vm}. As we have already concluded in (ii), from Tableit follows that S is 3-antiresolving set
for GP(2m, 1) and consequently adim3(GP(2m, 1)) < 2. Let us prove that there does not exist a 3-antiresolving
set S’ of cardinality one. By symmetry, we can suppose that S’ = {ug}. As proved in (i), S’ is 1-antiresolving
set.

Since GP(2m, 1) is 3-regular, according to Observation it follows that GP(2m, 1) is k-metric antidimen-
sional for some k < 3. From (i)-(iii) it follows that GP(2m, 1) is 3-metric antidimensional. []

Table 1: Equivalence classes of ps on GP(2m, 1)

S Equivalence class Metric representation
{uo} {u1, tn—1, 00} 1)
{ui, un—i, vic1, Vp-is1} (@),2<i<m-1
{um/ Om-1, Z)m-¢—1} (m)
{om} (m+1)
{uo, U} {u1, un-1,v0} (1,m)
{uj, uy—i, vi1,0p—in1} | Gm—i+1),2<i<m-1
{um/ Om—-1, Z)nH—l} (m/ 1)
{uo, vo, Up, U} {uq1, uy—1} 1,2,m—1,m)
{u;, u,_;} Gi+l,m—im—i+1)
{vis1, Un_iz1} Gi-1lm—-i+2,m—i+1)
{1, Vms1} (m,m-1,2,1)

Table 2: Distances of i, 0,1, U1 from the third element of S

Third element

U Um-1 OUm+1
u,l1<i<m-1 m—1i m—i m-—i+2
Ui, 1 <i<m—-1 m—1i m—i+2 m—i
v,1<i<m-1 m—i+1l | m—i—-1|m-i+1
Uy 1<i<m—-1|m—-i+1 | m—-i+1 | m—-i-1

Theorem 2.2. Graph GP(2m + 1, 1) is 2-metric antidimensional and
(i) adim(GPQ2m+1,1)) =2
(ii) adimpy(GPQ2m +1,1)) =1

Proof. (i) Let S = {ug,v1}. It is easy to see that vertex v, has unique metric representation with respect to S
equal to (3,1). According to Property[1.5 S is 1-antiresolving set of GP(2m + 1, 1).
Letus prove that S is 1-antiresolving basis of GP(2m+1, 1). Suppose contrary, that there exists 1-antiresolving
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set S’ of cardinality 1. Without loss of generality, due to the symmetry of GP(2m + 1,1), we can assume
that S’ = {up}. The equivalence classes of pg are given in Table 3| From Table [3|it follows that set S’ is
2-antiresolving, which is a contradiction. Therefore, S = {u, v1} is an 1-antiresolving basis of GP(2m + 1, 1),
i.e. adim(GP2m +1,1)) = 2.

(ii) Let S = {up}. From Table [3|it is evident that set S = {u} is 2-antiresolving set of GP(2m + 1,1). Since
IS| =1, S is a 2-antiresolving basis of GP(2m + 1,1) and hence adimy(GP(2m +1,1)) = 1.

From (i) and (ii) it follows that GP(2m + 1,1) is k-metric antidimensional for k > 2. On the other side,
according to Observation[1.4} k < 3. Let us prove that GP(2m + 1, 1) is not 3-metric antidimensional, i.e. that
in this graph there does not exist a 3-antiresolving set.

Let S be a set of vertices from V. Without loss of generality, we can assume 1 € S. Consider the following
two cases:

Case 1. vy, ¢ S or vy € S. According to Table @ the equivalence class with respect to S” = {1} with metric
coordinate m + 1 is {v,;, Uy+1}. Therefore, the equivalence class with respect to S, S 2 §’, whose members
have distance from uy equal to m + 1 has cardinality less or equal to 2. It follows that S is not a 3-metric
antidimensional set.

Case 2. Suppose that v, € S and v,4+1 € S. Then each vertex u;,i=1,..,n-1,0;,j=0,.,n=1,j#mm+1
has unique metric representation with respect to {1, v, V;+1} € S and therefore S is 1-antiresolving set.
Cases 1 and 2 demonstrate that in GP(2m + 1,1) there does not exist a 3-antiresolving set. Therefore,
GP(2m + 1,1) is 2-metric antidimensional. [

Table 3: Equivalence classes of pss on GP(2m, 1)

s Equivalence class | Metric representation
{10} {ur, up-1, 00} ¢Y)
{ui, Un—i, Vi1, Vp-is1} (), 2<i<m
{Um/ vm+1} (m + 1)

3. k-metric antidimension of GP(n,2)

Figure 3: Graph GP(9,2)

Theorem 3.1. For m # 2 graph GP(4m, 2) is 3-metric antidimensional and
(i) adim,(GP(4m,2)) =2
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(ii) adimy(GP(4m,2)) =1
(iii) adimz(GP(4m,2)) =1

Proof. (i) Let S = {ug, uon}. It is easy to see that vy has unique metric representation (1, + 1) with respect
to S. Therefore, S is 1-antiresolving set. Suppose that there exists 1-antiresolving set S’ of cardinality 1.
Due to the symmetry of GP(4m,2), we can assume that " = {ug} or S’ = {vy}. From Table g] it can be
seen that the equivalence classes in both cases have cardinality at least 2, which is a contradiction. Hence,
adim;(GP(4m,2)) = 2.

(ii) Let S = {vp}. According to Table S is a 2-antiresolving basis of cardinality 1, so adim,(GP(4m, 2)) = 1.
(iii) Let S = {up}. From Table@]we conclude that S is a 3-antiresolving basis of GP(4m, 2), i.e. adims(GP(4m, 2)) =
1.

From (i)-(iii) it follows that GP(4m,2) is k-metric antidimensional for k > 3. Since GP(4m,2) is 3-regular,
according to Observation[I.4} it follows that k = 3, i.e. GP(4m,2) is 3-metric antidimensional. [J

Table 4: Equivalence classes of ps on GP(4m, 2)

S Equivalence class Metric representation
{uo} {u1, ugm-1, 0o} 1)
{Ui, Uam—i, V2i-3, V2i-2, Vam-2i+2, Vam-2i+3} (®),i=2,3,4
{Uni_s, Uoi—4, Usm—2i+4, Wam—2i+5, V2i-3, U2i-2, Vdm—2i+2, Vdm—2i+3} (i),i=5,..,m
{Uom-3, U2, Uom+2, Uom43, V2m—1, V2m, V2m+1} (m+1)
{21, Uom, Uom1) (m+2)
{vo} {0, v2, V4m-2} )
{1, w2, Uay—2, Uam—1, V4, Vam-a} )
{u2i_3, U2i—2, Uam—2i+2, Udm—2i+3, V2i-5, U2i, Vdm—2i, Vdm—2i+5)} (@,i=3,.,m—-1
{U2m-3, Uom—2, Uom+2, U2m+3, V2m—5, V2m, V2m+5) (m)
{U2m—1, Uom, Uoms1, V2m-3, V2m+3} (m+1)
{v2m-1, V2ms1} (m+2)

Theorem 3.2. Graph GP(4m + 1, 2) is 3-metric antidimensional and
(i) adim(GP(4m +1,2)) =2
(ii) adimy(GP(4m +1,2)) =2
(iii) adimz(GP(4m +1,2)) =1

Proof. (i) The proof is similar to the proof of (i) in Theorem Let S = {uo, tz,}. Then vertex vy has unique
metric representation (1, + 1), which implies that S is an 1-antiresolving set. Using Table and the same
argument as in (i) of Theoremwe conclude that {1} and {7y} are not 1-antiresolving sets, and due to the
symmetry of GP(4m + 1, 2) the same holds for all singleton subsets of V. Therefore, adim;(GP(4m +1,2)) = 2.
(ii) Let S = {uo,vo}. According to Table [5| S is a 2-antiresolving set since all equivalence classes are of
cardinality at least 2. Since by Table E]equivalence classes for sets {up} and {vy} are of cardinality at least 3,
similarly as in (i) we conclude adim,(GP(4m + 1,2)) = 2.

(iif) For S = {vo} , directly from Tableit follows that adimz(GP(4m + 1,2)) = 1.

From (i)-(iii) it follows that GP(4m + 1, 2) is k-metric antidimensional for k > 3. By Observationit follows
that k = 3,i.e. GP(4m + 1,2) is 3-metric antidimensional. [
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Table 5: Equivalence classes of ps on GP(4m +1,2)

S Equivalence class Metric representation
{uo} {u1, tgm, vo} 1)
{Ui, Uam—iv1,02i-3, V2i-2, Vam—2i+3, Vam—2i+4} (¥),i=2,3,4
{U2i5, Ui—4, Uam—2i+5, Uam—2i+6, V2i-3, U2i-2, Vdym—2i+3, Vdm—2i+4} (@),i=5,..m+1
{1, Uz, Uomr1, Uoms2) (m+2)
{vo} {0, v2, V4m-1} 1)
{u1, Uz, Ugm-1, Uy, 04, Vam-3} 2)
{U2i_3, Ui—2, Uam—2i+3, Uam—2i+4, V2i-5, U2i, Vdm—2i+1, Vdm—2i+6} (@),i=3,..m
{Uom—1, Uom, Udm+1, UWome2, V2m—3, V2m—1, V2m+2, V2m+4) (m+1)
{uo, vo} {ur, tgm} (1,2)
{02/ v4mfl} (21 1)
{uz, uam—1} 2,2)
{Ull ZJ4m} (21 3)
{04, Vam-3} (3,2)
{us, g2} (3,3)
{03, Vam—2} (3,4)
{ug, g3, V6, Vgm-s5} 4,3)
{2i_5, Ui—4, Uam—2i+5, Uam—2i+6, V2i~2, Vdm—2i4+3)} (4,i-1),i=5,.,m+1
{02i-3, V4m-2is4) (G,i+1),i=4,.,m
{V2m-1, V2m+2} (m+1,m+1)
{Uom—1, U, Uoms1, Uoms2) (m+2,m+1)

Theorem 3.3. For m > 3 graph GP(4m + 2,2) is 3-metric antidimensional and
(i) adimi(GP(4m+2,2)) =1
(ii) adimy(GP(4m +2,2)) =2
(iii) adimz(GP(4m +2,2)) =2

Proof. (i) Let S = {up}. Then vertex uy,.1 has the unique metric representation (m + 3) and therefore,
adim(GP(dm +2,2)) = 1.

(ii) S = {ug, uzm+1}. From Table @ S is a 2-antiresolving set. If we consider singleton subsets of V, due to
symmetry it is sufficient to analyze cases {up} and {vo}. By (i), {uo} is 1-antiresolving and since v,+1 has
unique metric representation (m + 3) with respect to {vp}, set {vp} is also 1-antiresolving. It means that all
singleton subsets of V are not 2-antiresolving. This implies that adim,(GP(4m + 2,2)) = 2.

(iii) For S = {vg, v2;p+1} from Table E]it follows that S is a 3-antiresolving set. Since all singleton vertices are
1-antiresolving sets it follows that adimz(GP(4m + 2,2)) = 2.

From (i)-(iii) it follows that GP(4m + 2, 2) is k-metric antidimensional for k > 3. According to Observation
[1.4]it follows that k = 3, i.e. GP(4m + 2,2) is 3-metric antidimensional. [J
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Table 6: Equivalence classes of ps on GP(4m + 2,2)

S Equivalence class Metric representation
{10, o1} {1, Uama1, 0o} (1,m+2)
{uil u4m—i+l} (lr m—i+ 2)/ i= 2/ 314

fm—-i+3),i=2,.,m
(im—-i+5),i=5,..,m+1

{02i-3, V2i—2, Vam—2i+a, Vam—2i+5}
{Uoi_5, Uni—a, Usm—2i+6, Uam-2i+7)

{U2i—3, Uoi—2, Usm—2i+4, Wam—2i+5, V2i-5, U2i, Vam—2i+2, Vdm—2i+7)}
{Uom—1, Uom, Uom+2, U2m+3, V2m—3, V2m+5)
{Uome1, V2m-1, Vom+3}

{uam-2, Uom+a} (m+1,3)

{uom-3, Uam+s} (m+1,4)

{uom, wam+2, V2m+1} (m+2,1)

{Uom—1, Uzm3) (m+2,2)

{00, D2m+1) {ug, 02, Vg } (1,m+2)
{u1, Uz, Uy, Usms1, 04, Vam—2} (2,m+1)

G,m—i+3),i=3,..,m

(m+1,2)
(m+2,1)

Theorem 3.4. For m > 2 graph GP(4m + 3,2) is 3-metric antidimensional and
(i) adim;(GP(4m +3,2)) =2
(ii) adimy(GP(4m + 3,2)) =1
(ii1) adimz(GP(4m +3,2)) =1

Proof. (i) Let S = {ug,uz}. Then vertex u; has unique metric representation (1,1) and consequently, S is
1-antiresolving set. Since by Table[7]sets {uo} and {0} are 2-antiresolving and 3-antiresolving, respectively,
then adim,(GP(4m + 3,2)) = 2.

(ii) and (iii) follow directly from Table[7]
Since GP(4m + 3,2) is 3-regular, according to Observation it follows that GP(4m + 3,2) is k-metric

antidimensional for some k < 3. From (i)-(iii) it follows that GP(4m + 3, 2) is 3-metric antidimensional.

Table 7: Equivalence classes of ps on GP(4m + 3,2)

S Equivalence class Metric representation
{uo} {u1, Ugm2, 0o} 1)
(Ui, Uan—is3, V2i-3, V2i—2, Vam—2i+5, Vdm—2i+6} (1),i=2,3,4
{Ui_5, Ui_g, Uam—2i+7, Uam—2i+8, V2i-3, V2i—2, Vam—2i+5, Vam—2is6} | (1), i=D5,.,m+1
{U2m—1, U, Uoms3, Uomsd, V2ms1, V2me2) (m+2)
{Uomi1, Uz} (m+3)
{vo} {ug, V2, Vams1} 1)
{u1, uz, Ugmi1, Wams2, V4, Vam-1} )
{Ui-3, Ui—2, Uam—2i15, Usm—2i+6, V2i-5, U2i, Vam—2i+3, Vdm—2i+8) (@®,i=3,..,m
{U2m—1, U2, Uom+3, Uom+a, V2m-3, V2m+1, V2m+2, V2m+6} (m+1)
{U2m41, Uoms2, V21, V2m+4} (m+2)

O

The values for the metric antidimension of the cases which are not covered by Theorems [3.1] - [3.4] are
obtained by total enumeration and given in the next two observations.

Observation 3.5. Graph GP(8,2) is 2-metric antidimensional and adim;(GP(8,2)) = 1 and adim,(GP(8,2)) = 1.
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Observation 3.6. Graphs GP(6,2), GP(7,2) and GP(10, 2) are 3-metric antidimensional and

1, k=12

adimy(GP(6,2)) =

adimy(GP(7,2)) =

2,

2,

1,
1, k
adimi(GP(10,2)) = {4, k
2, k

k
k=
k

1
2
3

4. Conclusions

In this article the recently introduced k-metric antidimension problem is considered. We have studied

mathematical properties of the k-antiresolving sets and the k-metric antidimension of some generalized
Petersen graphs. Exact formulas for the k-metric antidimension of GP(n, 1) and GP(n, 2) are obtained.

A possible direction of future research could be considering the k-metric antidimension of some other

challenging classes of graphs.
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