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Abstract. Quite recently, Bor [Quaest. Math. (doi.org/10.2989/16073606.2019.1578836, in press)] has proved
anew result on weighted arithmetic mean summability factors of non decreasing sequences and application
on Fourier series. In this paper, we establish a general theorem dealing with absolute matrix summability
by using an almost increasing sequence and normal matrices in place of a positive non-decreasing sequence
and weighted mean matrices, respectively. So, we extend his result to more general cases.

1. Introduction

Let )’ a, be a given infinite series with partial sums (s,). We denote by u§ the nth Cesaro mean of order
a, with @ > -1, of the sequence (s,;), that is (see [15])

n

1 _
uy = — ZAZ_},SU, 1)

Aa
n v=0

where

(a+ 1D)(a+2)...»a+n)
- n!

A5 =0(n*), A%,=0 for n>0. (2)

Let aj, a, ..., a, be n arbitrary real numbers; their arithmetic mean A is defined to be

A:a1+a2+...+an. (3)
n
A series ) a, is said to be summable |C, al, k > 1, if (see [17])
Z nk‘lluﬁ — Uy [ < co. 4)
n=1

2010 Mathematics Subject Classification. Primary: 26D15; Secondary: 40D15, 40F05, 40G99, 42A24

Keywords. Riesz mean, absolute matrix summability, summability factors, infinite series, Fourier series, Holder inequality,
Minkowski inequality, sequence space

Received: 18 February 2019; Revised: 02 August 2019; Accepted: 02 September 2019

Communicated by Ljubisa D.R. Ko¢inac

Email address: sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com (Sebnem Yildiz)



S. Yildiz / Filomat 33:14 (2019), 4343-4351 4344

If we take @ = 1, then we have |C, 1|, summability. Let (p,) be a sequence of positive numbers such that
Py=Y1 gpo—> asn — oo, (P_;=p_; =0, i>1). The sequence-to-sequence transformation

1<
Wy = P_n ; PoSv (5)

defines the sequence (w;) of the weighted arithmetic mean or simply the (N, p,) mean of the sequence (s,),
generated by the sequence of coefficients (p,) (see [18]). The series )4, is said to be summable |N, p,lx,
k > 1, if (see [4])

) k-1
Py
Z (p_) |w, — wn—1|k < 00. (6)

n=1

In the special case when p, = 1 for all n (respect. k = 1), then [N, p,|x summability is the same as |C, 1|
(respect. |N,p,| (see [23]) summability. Also if we take p, = nlj and k = 1, then we obtain |R,logn, 1]
summability (see [3]).

Let }’ a, be a given series with partial sums (s,). Let A = (a,,) be a normal matrix, i.e., a lower triangular
matrix of nonzero diagonal entries. Then A defines a sequence-to-sequence transformation, mapping of
the sequence s = (s,,) to As = (Ax(s)), where

n

An(s) = Zanvsw n=0,1,.. 7)

v=0

A series ) a, is said to be summable |A, 0,|, k > 1, if

i eﬁ_llAn(s) - A (S)|k < o0, (8)

n=1

A
summability (see [22]). When A is the matrix of weighted mean (N, p,), and 0, = 1;—:, for all n, then |A, 6,

where (0,) is any sequence of positive constants (see [20] and [21]). If we put 0, = %, we have 'A, Pn

summability reduces to |N /Pl k > 1 summability. Further, If 0, = n for n > 1 and A is the matrix of Cesaro
mean (C, a), then it is the same as summability |C, a|¢ in Flett’s notation. By a weighted mean matrix we
state

{ B, 0<v<n

A = g

0 v>n,

where (p,) is a sequence of positive numbers with P, = pg + p1 + p2 + ... + py = 0 asn — co.

A positive sequence (b,) is said to be almost increasing if there exists a positive increasing sequence (z,,)
and two positive constants A and B such that Az, < b, < Bz, (see [2]). It is known that every increasing
sequences is an almost increasing sequence but the converse need not be true. Many papers concerning
almost increasing sequences have been done (see [7]-[14], [24]-[28]). Quite recently, Bor has proved the
following theorems concerning on summability factors of the absolute weighted mean using a positive
non-decreasing sequence. In Section 2 we give the main results of paper and we generalize Theorem 1.2
for more general matrix summability method by using almost increasing sequences in place of positive
non-decreasing sequence. So, we extend Theorem 1.2 to more general cases. In Section 3 we give a theorem
dealing with application of absolute matrix summability to Fourier series.

Theorem 1.1. ([6]) Let (X,,) be a positive non-decreasing sequence and suppose that there exists sequences (B,) and
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(Ay) such that
AV ©)
pn—0 as n—oo (10)
i 1A | Xy < oo, (11)
Ij\;lan = 0. (12)
If

)

n=1

(Xin) as m — oo, (13)

and (py) is a sequence that
Py = O(npn), (14)
PnApn = O(pnpn+l)/ (15)

Pﬂ/\)l
1Pn

then the series Y., 4 ay is summable N, pyle, k > 1.

Later on, Bor has proved the following theorem under weaker conditions.

Theorem 1.2. ([14]) Let (X,,) be a positive non-decreasing sequence. If the sequences (X,) , (Bn), (An), and (pn)
satisfy the conditions (9)-(12), (14)-(15), and

w2k
Z i =0X,) as m— oo, (16)
n=1

PyAy

then the series Y, q a, == " 2 js summable N, pulx, k > 1.

2. Main Results

Given a normal matrix A = (a,,,), we associate two lower semimatrices A = (@,,) and A = (4,,) as follows:

n

Ay = Z Ayi, N,0= 0/ 1/ Aanv =lpy — Ap-1pv, @A-10= 0 (17)

i=v
and
doo = Ao = Ag0, Ano = Ay, n=12,.. (18)

It may be noted that A and A are the well-known matrices of series-to-sequence and series-to-series trans-
formations, respectively. Then, we have

An(s) = Zanvsv = Z Anylly (19)
v=0 v=0
and
n
AA n(8) = Aoty (20)
v=0

With this notation we have the following theorem.
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Theorem 2.1. Let A = (a,,) be a positive normal matrix such that

Go=1n=01,.., 1)
Ap-1p = Ap, for n>v+1, (22)
. =0, (23)

Ny, = O( )/ (24)
ﬁn,v+1 = O(U|Avﬁnv|)- (25)

Let (X,,) be an almost increasing sequence and (0,a,,) be a non-increasing sequence. If the sequences (X,), (Bx), (An),
and (p,) satisfy the conditions (9)-(12) and (14)-(15) of Theorem 1.1, and the condition

Z(e ) = 00,) a5 m e, 26)

is satisfied, then the series ), ay Pn"p L s summable |A, Oy, k > 1.

We need the following lemmas for the proof of Theorem 2.1

Lemma 2.2. ([19]) Under conditions on (X,), (Bn), and (A,) as expressed in the statement of Theorem 1.1, we have
the following:

nXufn = O(1), (27)
iﬁnxn < 0o. (28)
n=1

Lemma 2.3. ([6]) If the conditions (14) and (15) of Theorem 1.1 are satisfied, then A (%) =0 (l) .

n2
Remark 2.4. Under the conditions on the sequence (1,) of Theorem 1.1, we have that (1,) is bounded and
AL, = O(1/n) (see [5]).
Proof of Theorem 2.1. Let (V,;) denotes the A-transform of the series )’ a,, %. Then, by the definition, we
have that

n

. P,A
Vi=Vua = Zanvav ; =,

v=1 v

Applying Abel’s transformation to this sum, we have that

n—1 n

] P,A, AP

AV, = Av(”””z )Zmrﬂm; L)
v=1 Py r=1 " pn r=1
n—1

_ P, P,

AV, = Av(””” Ao )( o+ 1)k +M(n+1)tn,
=\ opy "2,

by the formula for the difference of products of sequences (see [18]) we have

P.uA, P,A
AV, = 20, +Z v ”A )0 + 1) +Za” v+1/\v+1A( )(v+ t,
n2p, L vp,
n-1 X Pv
+ ) Ao ——Adpto(v +1)
v=1 v Pv
AVn = Vn,1 + Vn,2 + Vn,3 + Vn,4.
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To complete the proof of Theorem 2.1, by Minkowski’s inequality, it is sufficient to show that

gk

51|V, [F< oo, for r=1,2,3,4. (29)

1l
—_

n

Firstly, by applying Abel’s transformation and in view of the hypotheses of Theorem 2.1 we have

m m k k k
_ _ P n+1 |£,:]
Yokt v s Y o2 (St ol

n=1 n=1 Pn

m It |k P k
= 0(1) ) (Ontn) ™ allAnf ™ =y (p—)
n=1 n

Italf (p_) P\
nk \P,/\ pu

Y - bl
=0 By P

m
=0(1) Y (Outn) ™ 1AnlIA,
n=1

n=1
. - 1 |ff

= 1 Gn nn k- /\n

O );( ) Mol

m—1 n k m k

— k-1 |tv| k-1 |tn|

= O(1>;Amn| ), O™ iy + O<1>|Am|;(enann> X
m—1 m—1

= 0(1)2 IA X + O(D) Al X = 0(1)2 BuXy + O Ayl Xy = O(1) as m — .
n=1 n=1

By applying Holder’s inequality with indices k and k', where k > 1 and { + # = 1 and as in V,,;, we have
that

m+1 m+1 n—1 P.A k
k—1 k_ k—1 v/\u N

Y O Vi =Y oY T Aeli)+ D,
n=2 n=2 v=1

m+1 n-1 k

_ A, P

=0() ) 057 Y Al 2t

n=2 v=1 0 Po

m+1 n-1 k
=om) ey |Av(ﬁm>|mv||tv|]

n=2 v=1

m+1 n—1 n—1 k-1
-om ) 6|}, |Av(ﬁw>|mv|k|tv|k} {2 |Av<anv>|]

n=2 v=1 v=1

m+1 n—

1
=0 ) 057t Y @It ff
n=2 v=1

m m+1
=0 Y Al Y (0un) ™ 1Au(@00)
v=1 n=v+1

m+1

= 0(1) ), Bt Aol ltel Y 1Ao(@n0)

v=1 n=v+1
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m 3 A k
=0(1) Z (Gvavv)k ! Uﬂwl ;| |k

v=1

m 3 1 1
=0(1) ), Ouan)™! i lifAel = O() as m— oo,
=1 v

by virtue of the hypotheses of Theorem 2.1. Also, since A (

Uf;v) =0 (Z%), by Lemma 2.3, we have

m+1 m+1 n—1 k
Z 6]:,71 | Vn,3 |k: Z 6ﬁ71 Z‘ dn v+1A( )/\v+1tv(v + 1)
n=2 n=2 v=1

m+1 n—-1 1 k
=om) o'y, |ﬁn,v+1|mv+1||tv|5]

n=2 v=1

m+1 n—-1 k
=0(1) Z Qﬁ_l Z | v(ﬁnv)”/\vﬂntvl]

n=2 v=1

m+1 n—1 n—1 k=1
=0 Y, 01| L delhmlto |k|tv|k] [Z A (%M)

v=1

m+1

= omE (Ontnn)'™ 12 1o @) A FTEol
m+1

= 0(1) Z MoaFltol Y (Onn) ™" 180(no)

v=1 n=v+1

m m+1
= 0(1) ) (0ua) ™ st Fltl Y 18u(@)

v=1 n=v+1

m
= O(l) Z (Gvavv)k_l |/\v+1|k|tv|kavv

v=1

—O<1>Z<evaw>“ oxri ol = 0() s m— o,
v=1

by virtue of the hypotheses of Theorem 2.1. Finally, by virtue of the hypotheses of Theorem 2.1, by Lemma
2.2, we have vf, = O(Xip), then

m+1 m+1 n—1 k
Y O Vs =Y 05N a0+ 1) Aoty
n=2 n=2 v=1 p

m+1 n-1 k
=om)y ey |ﬁn,v+1||AAv||tv|]

n=2 v=1

m+1 n-1 k
=0 ), o5 vav(anv)mvnm]

n=2 v=1

=
|
[y

m+1

n—1 k=1
= O(l)z Qﬁ_l (U,Bv |t | |Auanvl][ | v(anv)l]
n=2

%

I
—_

v=1
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m+1 n—-1
= 0(1) ) (Out)* [Z(vﬁv)k|tv|k|Avam|]

n=2 v=1
m m+1
= 0(1) Y @)@ ol Y (Ontn) 1A (o)l
v=1 n=v+1
m m+1
= 0(1) ) (0uu) " @)@ Il Y 1A0(@u0)
v=1

n=v+1

= O(1) ) (Ootc)* ™ (@Bo) 0Bo) "Il 00
v=1

m
a1 v

=0(1) Z(anw)k ! X1 vlk_

Y | t tolt
- O<1>2A<vﬁv)2(er I+ O(Dﬂlﬁmz(ﬁy e

m=1 m=1
=0(1) ) 0lAB.IX, + O(1) Z Xofo + OV)mpnXy = O(1) as m — oo,

v=1 v=1

This completes the proof of Theorem 2.1. O

If we take (X;) as a positive non-decreasing sequence, 0, = %, then we have a result concerning the
|A, pule summability factors (see [1]).

3. An Application of Absolute Matrix Summability to Fourier Series

Let f be a periodic function with period 2m and integrable (L) over (-7, 7). Without any loss of generality
the constant term in the Fourier series of f can be taken to be zero, so that

e8]

£(t) ~ Z(an cos nt + by sinnt) = i Cal). (30)

n=1 n=1

where

ag = %IZ f®at, a, = %IZ f(t)cos(nt)dt, b, = % I: f(t) sin(nt)dt.
We write
o) = 3 {fCe+ D) + fx 1), 61
t
balt) = % fo (t—w)* ' pu)du, (a>0). (32)

It is well known that if ¢(t) € BV(0, ), then t,(x) = O(1), where t,(x) is the (C, 1) mean of the sequence
(nCp(x)) (see [16]).

The Fourier series play an important role in many areas of applied mathematics and mechanics. Using
these series, Bor has obtained the following result.

Theorem 3.1. ([14]) Let (X,,) be a positive non-increasing sequence. If ¢1(t) € BV(0, n), and the sequences (p,),
(An), (Bn) and (X,,) satisfy the conditions of Theorem 1.2, then the series % is summable IN, pyli, k > 1.
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Similarly to Theorem 2.1 we can prove the following result.

Theorem 3.2. Let A be a positive normal matrix satisfying the conditions of Theorem 2.1 Let Let (X,,) be an almost
increasing sequence. If ¢1(t) € BV(0,n), and the sequences (py), (An), (Bn), and (X,) satisfy the conditions of

Theorem 1.2, then the series Y, M is summable |A, Ok, k > 1.

We now apply the above theorems to the weighted mean in which A = (a,,,) is defined as a,,, = ;—:’1 when
0 <v < n,where P, = pg + p1 + ... + py. Therefore, it is well known that

_ P n = P v-1 A PnP v
= - d ==
Ano Pn an an,v+1 Pnpn—l
If we take 0,, = 2* in Theorem 3.2, then we have a result concerning the |A, p, [« summability factors of the

trigonometric Fourler series, and if we take a,,;, = P_n Theorem 3.2, then we have another result dealing with

(N, Pn, 6n| ‘ summability factors of the trigonometric Fourier series. Also, if we put a,,, = 1@ and p, =1 for
all n in Theorem 3.2, then we obtain a result concerning |C, 1, 0, |, summability factors of the trigonometric

Fourier series. Moreover, if we take 0,, = % k=1anda,, = ;% in Theorem 3.2, then we have a result

Po

dealing with (N pn| summability factors of the trigonometric Fourier series ,and if we take 0, =1, 4,0 = 5~
and p, = 1 for all n in Theorem 3.2, then we obtain a result concerning the |C, 1|y summability factors of the
trigonometric Fourier series.
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