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and Fourier Series

Şebnem Yıldıza

aAhi Evran University, Department of Mathematics, Arts and Science Faculty
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Abstract. Quite recently, Bor [Quaest. Math. (doi.org/10.2989/16073606.2019.1578836, in press)] has proved
a new result on weighted arithmetic mean summability factors of non decreasing sequences and application
on Fourier series. In this paper, we establish a general theorem dealing with absolute matrix summability
by using an almost increasing sequence and normal matrices in place of a positive non-decreasing sequence
and weighted mean matrices, respectively. So, we extend his result to more general cases.

1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). We denote by uαn the nth Cesàro mean of order
α, with α > −1, of the sequence (sn), that is (see [15])

uαn =
1

Aα
n

n∑
v=0

Aα−1
n−vsv, (1)

where

Aα
n =

(α + 1)(α + 2)....(α + n)
n!

= O(nα), Aα
−n = 0 for n > 0. (2)

Let a1, a2, ..., an be n arbitrary real numbers; their arithmetic mean A is defined to be

A =
a1 + a2 + ... + an

n
. (3)

A series
∑

an is said to be summable |C, α|k, k ≥ 1, if (see [17])

∞∑
n=1

nk−1
|uαn − uαn−1|

k < ∞. (4)
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Email address: sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com (Şebnem Yıldız)
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If we take α = 1, then we have |C, 1|k summability. Let (pn) be a sequence of positive numbers such that
Pn =

∑n
v=0 pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1). The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv (5)

defines the sequence (wn) of the weighted arithmetic mean or simply the
(
N̄, pn

)
mean of the sequence (sn),

generated by the sequence of coefficients (pn) (see [18]). The series
∑

an is said to be summable |N̄, pn|k,
k ≥ 1, if (see [4])

∞∑
n=1

(
Pn

pn

)k−1

|wn − wn−1|
k < ∞. (6)

In the special case when pn = 1 for all n (respect. k = 1), then |N̄, pn|k summability is the same as |C, 1|k
(respect. |N̄, pn| (see [23]) summability. Also if we take pn = 1

n+1 and k = 1, then we obtain |R, log n, 1|
summability (see [3]).

Let
∑

an be a given series with partial sums (sn). Let A = (anv) be a normal matrix, i.e., a lower triangular
matrix of nonzero diagonal entries. Then A defines a sequence-to-sequence transformation, mapping of
the sequence s = (sn) to As = (An(s)), where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ... (7)

A series
∑

an is said to be summable |A, θn|k, k ≥ 1, if

∞∑
n=1

θk−1
n |An(s) − An−1(s)|k < ∞, (8)

where (θn) is any sequence of positive constants (see [20] and [21]). If we put θn = Pn
pn

, we have
∣∣∣A, pn

∣∣∣
k

summability (see [22]). When A is the matrix of weighted mean (N̄, pn), and θn = Pn
pn

, for all n, then |A, θn|k

summability reduces to
∣∣∣N̄, pn

∣∣∣
k, k ≥ 1 summability. Further, If θn = n for n ≥ 1 and A is the matrix of Cesàro

mean (C, α), then it is the same as summability |C, α|k in Flett’s notation. By a weighted mean matrix we
state

anv =

{ pv

Pn
, 0 ≤ v ≤n

0 v > n,

where (pn) is a sequence of positive numbers with Pn = p0 + p1 + p2 + ... + pn →∞ as n→∞.
A positive sequence (bn) is said to be almost increasing if there exists a positive increasing sequence (zn)

and two positive constants A and B such that Azn ≤ bn ≤ Bzn (see [2]). It is known that every increasing
sequences is an almost increasing sequence but the converse need not be true. Many papers concerning
almost increasing sequences have been done (see [7]-[14], [24]-[28]). Quite recently, Bor has proved the
following theorems concerning on summability factors of the absolute weighted mean using a positive
non-decreasing sequence. In Section 2 we give the main results of paper and we generalize Theorem 1.2
for more general matrix summability method by using almost increasing sequences in place of positive
non-decreasing sequence. So, we extend Theorem 1.2 to more general cases. In Section 3 we give a theorem
dealing with application of absolute matrix summability to Fourier series.

Theorem 1.1. ([6]) Let (Xn) be a positive non-decreasing sequence and suppose that there exists sequences (βn) and
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(λn) such that

|∆λn| ≤ βn, (9)
βn → 0 as n→∞ (10)
∞∑

n=1

n|∆βn|Xn < ∞, (11)

|λn|Xn = O(1). (12)

If

m∑
n=1

|tn|
k

n
= O(Xm) as m→∞, (13)

and (pn) is a sequence that

Pn = O(npn), (14)
Pn∆pn = O(pnpn+1), (15)

then the series
∑
∞

n=1 an
Pnλn
npn

is summable |N̄, pn|k, k ≥ 1.

Later on, Bor has proved the following theorem under weaker conditions.

Theorem 1.2. ([14]) Let (Xn) be a positive non-decreasing sequence. If the sequences (Xn) , (βn), (λn), and (pn)
satisfy the conditions (9)-(12), (14)-(15), and

m∑
n=1

|tn|
k

nXk−1
n

= O(Xm) as m→∞, (16)

then the series
∑
∞

n=1 an
Pnλn
npn

is summable |N̄, pn|k, k ≥ 1.

2. Main Results

Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ... ∆̄anv = anv − an−1,v, a−1,0 = 0 (17)

and

â00 = ā00 = a00, ânv = ∆̄ānv, n = 1, 2, ... (18)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series trans-
formations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (19)

and

∆̄An(s) =

n∑
v=0

ânvav. (20)

With this notation we have the following theorem.
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Theorem 2.1. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (21)
an−1,v ≥ anv, for n ≥ v + 1, (22)

ann = O(
pn

Pn
), (23)

nann = O(1), (24)
ân,v+1 = O(v|∆vânv|). (25)

Let (Xn) be an almost increasing sequence and (θnann) be a non-increasing sequence. If the sequences (Xn), (βn), (λn),
and (pn) satisfy the conditions (9)-(12) and (14)-(15) of Theorem 1.1, and the condition

m∑
n=1

(θnann)k−1 |tn|
k

nXk−1
n

= O(Xm) as m→∞, (26)

is satisfied, then the series
∑
∞

n=1 an
Pnλn
npn

is summable |A, θn|k, k ≥ 1.

We need the following lemmas for the proof of Theorem 2.1

Lemma 2.2. ([19]) Under conditions on (Xn), (βn), and (λn) as expressed in the statement of Theorem 1.1, we have
the following:

nXnβn = O(1), (27)
∞∑

n=1

βnXn < ∞. (28)

Lemma 2.3. ([6]) If the conditions (14) and (15) of Theorem 1.1 are satisfied, then ∆
(

Pn
n2pn

)
= O

(
1
n2

)
.

Remark 2.4. Under the conditions on the sequence (λn) of Theorem 1.1, we have that (λn) is bounded and
∆λn = O(1/n) (see [5]).

Proof of Theorem 2.1. Let (Vn) denotes the A-transform of the series
∑

an
Pnλn
npn

. Then, by the definition, we
have that

Vn − Vn−1 =

n∑
v=1

ânvav
Pvλv

vpv
.

Applying Abel’s transformation to this sum, we have that

∆̄Vn =

n−1∑
v=1

∆v

(
ânvPvλv

v2pv

) v∑
r=1

rar +
ânnPnλn

n2pn

n∑
r=1

rar

∆̄Vn =

n−1∑
v=1

∆v

(
ânvPvλv

v2pv

)
(v + 1)tv +

ânnPnλn

n2pn
(n + 1)tn,

by the formula for the difference of products of sequences (see [18]) we have

∆̄Vn =
annPnλn

n2pn
(n + 1)tn +

n−1∑
v=1

Pvλv

v2pv
∆v(ânv)tv(v + 1) +

n−1∑
v=1

ân,v+1λv+1∆

(
Pv

v2pv

)
(v + 1)tv

+

n−1∑
v=1

ân,v+1
Pv

v2pv
∆λvtv(v + 1)

∆̄Vn = Vn,1 + Vn,2 + Vn,3 + Vn,4.
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To complete the proof of Theorem 2.1, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

θk−1
n | Vn,r |

k< ∞, for r = 1, 2, 3, 4. (29)

Firstly, by applying Abel’s transformation and in view of the hypotheses of Theorem 2.1 we have

m∑
n=1

θk−1
n | Vn,1 |

k
≤

m∑
n=1

θk−1
n ak

nn

(
Pn

pn

)k (n + 1
n

)k

|λn|
k |tn|

k

nk

= O(1)
m∑

n=1

(θnann)k−1
|λn||λn|

k−1 |tn|
k

nk
ann

(
Pn

pn

)k

= O(1)
m∑

n=1

(θnann)k−1
|λn||λn|

k−1 |tn|
k

nk

( pn

Pn

) (Pn

pn

)k

= O(1)
m∑

n=1

(θnann)k−1
|λn||λn|

k−1 |tn|
k

nk
nk−1

= O(1)
m∑

n=1

(θnann)k−1
|λn|

1
Xk−1

n

|tn|
k

n

= O(1)
m−1∑
n=1

∆|λn|

n∑
v=1

(θvavv)k−1 |tv|
k

vXk−1
v

+ O(1)|λm|

m∑
n=1

(θnann)k−1 |tn|
k

nXk−1
n

= O(1)
m−1∑
n=1

|∆λn|Xn + O(1)|λm|Xm = O(1)
m−1∑
n=1

βnXn + O(1)|λm|Xm = O(1) as m→∞.

By applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1 and as in Vn,1, we have
that

m+1∑
n=2

θk−1
n | Vn,2 |

k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣∣∣
n−1∑
v=1

Pvλv

v2pv
∆v(ânv)(v + 1)tv

∣∣∣∣∣∣∣
k

= O(1)
m+1∑
n=2

θk−1
n

∣∣∣∣∣∣∣
n−1∑
v=1

∆v(ânv)
λv

v
tv

Pv

pv

∣∣∣∣∣∣∣
k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

|∆v(ânv)||λv||tv|


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

|∆v(ânv)||λv|
k
|tv|

k


n−1∑

v=1

|∆v(ânv)|


k−1

= O(1)
m+1∑
n=2

θk−1
n ak−1

nn

n−1∑
v=1

|∆v(ânv)||λv|
k
|tv|

k

= O(1)
m∑

v=1

|λv|
k
|tv|

k
m+1∑

n=v+1

(θnann)k−1
|∆v(ânv)|

= O(1)
m∑

v=1

(θvavv)k−1
|λv|

k
|tv|

k
m+1∑

n=v+1

|∆v(ânv)|
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= O(1)
m∑

v=1

(θvavv)k−1 vavv
|λv|

k

v
|tv|

k

= O(1)
m∑

v=1

(θvavv)k−1 1
Xk−1

v
|tv|

k
|λv|

1
v

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 2.1. Also, since ∆
(

Pv
v2pv

)
= O

(
1
v2

)
, by Lemma 2.3, we have

m+1∑
n=2

θk−1
n | Vn,3 |

k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣∣∣
n−1∑
v=1

ân,v+1∆

(
Pv

v2pv

)
λv+1tv(v + 1)

∣∣∣∣∣∣∣
k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

|ân,v+1||λv+1||tv|
1
v


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

|∆v(ânv)||λv+1||tv|


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

|∆v(ânv)||λv+1|
k
|tv|

k


n−1∑

v=1

|∆v(ânv)|


k−1

= O(1)
m+1∑
n=2

(θnann)k−1
n−1∑
v=1

|∆v(ânv)|λv+1|
k
|tv|

k

= O(1)
m∑

v=1

|λv+1|
k
|tv|

k
m+1∑

n=v+1

(θnann)k−1
|∆v(ânv)|

= O(1)
m∑

v=1

(θvavv)k−1
|λv+1|

k
|tv|

k
m+1∑

n=v+1

|∆v(ânv)|

= O(1)
m∑

v=1

(θvavv)k−1
|λv+1|

k
|tv|

kavv

= O(1)
m∑

v=1

(θvavv)k−1 1
vXk−1

v
|λv+1||tv|

k = O(1) as m→∞,

by virtue of the hypotheses of Theorem 2.1. Finally, by virtue of the hypotheses of Theorem 2.1, by Lemma
2.2, we have vβv = O( 1

Xv
), then

m+1∑
n=2

θk−1
n | Vn,4 |

k=

m+1∑
n=2

θk−1
n

∣∣∣∣∣∣∣
n−1∑
v=1

ân,v+1(v + 1)
Pv

v2pv
∆λvtv

∣∣∣∣∣∣∣
k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

|ân,v+1||∆λv||tv|


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

v|∆v(ânv)|∆λv||tv|


k

= O(1)
m+1∑
n=2

θk−1
n

n−1∑
v=1

(vβv)k
|tv|

k
|∆vânv|


n−1∑

v=1

|∆v(ânv)|


k−1
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= O(1)
m+1∑
n=2

(θnann)k−1

n−1∑
v=1

(vβv)k
|tv|

k
|∆vânv|


= O(1)

m∑
v=1

(vβv)(vβv)k−1
|tv|

k
m+1∑

n=v+1

(θnann)k−1
|∆v(ânv)|

= O(1)
m∑

v=1

(θvavv)k−1(vβv)(vβv)k−1
|tv|

k
m+1∑

n=v+1

|∆v(ânv)|

= O(1)
m∑

v=1

(θvavv)k−1(vβv)(vβv)k−1
|tv|

kavv

= O(1)
m∑

v=1

(θvavv)k−1 1
Xk−1

v
βv|tv|

k v
v

= O(1)
m−1∑
v=1

∆(vβv)
v∑

r=1

(θrarr)k−1 |tr|
k

rXk−1
r

+ O(1)mβm

m∑
v=1

(θvavv)k−1 |tv|
k

vXk−1
v

= O(1)
m−1∑
v=1

v|∆βv|Xv + O(1)
m−1∑
v=1

Xvβv + O(1)mβmXm = O(1) as m→∞,

This completes the proof of Theorem 2.1.

If we take (Xn) as a positive non-decreasing sequence, θn = Pn
pn

, then we have a result concerning the
|A, pn|k summability factors (see [1]).

3. An Application of Absolute Matrix Summability to Fourier Series

Let f be a periodic function with period 2π and integrable (L) over (−π, π). Without any loss of generality
the constant term in the Fourier series of f can be taken to be zero, so that

f (t) ∼
∞∑

n=1

(an cos nt + bn sin nt) =

∞∑
n=1

Cn(t). (30)

where

a0 =
1
π

∫ π

−π
f (t)dt, an =

1
π

∫ π

−π
f (t) cos(nt)dt, bn =

1
π

∫ π

−π
f (t) sin(nt)dt.

We write

φ(t) =
1
2
{
f (x + t) + f (x − t)

}
, (31)

φα(t) =
α
tα

∫ t

0
(t − u)α−1φ(u) du, (α > 0). (32)

It is well known that if φ(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the sequence
(nCn(x)) (see [16]).

The Fourier series play an important role in many areas of applied mathematics and mechanics. Using
these series, Bor has obtained the following result.

Theorem 3.1. ([14]) Let (Xn) be a positive non-increasing sequence. If φ1(t) ∈ BV(0, π), and the sequences (pn),
(λn), (βn) and (Xn) satisfy the conditions of Theorem 1.2, then the series

∑ Cn(x)Pnλn
npn

is summable |N̄, pn|k, k ≥ 1.
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Similarly to Theorem 2.1 we can prove the following result.

Theorem 3.2. Let A be a positive normal matrix satisfying the conditions of Theorem 2.1 Let Let (Xn) be an almost
increasing sequence. If φ1(t) ∈ BV(0, π), and the sequences (pn), (λn), (βn), and (Xn) satisfy the conditions of
Theorem 1.2, then the series

∑ Cn(x)Pnλn
npn

is summable |A, θn|k, k ≥ 1.

We now apply the above theorems to the weighted mean in which A = (anv) is defined as anv =
pv

Pn
when

0 ≤ v ≤ n, where Pn = p0 + p1 + ... + pn. Therefore, it is well known that

ānv =
Pn − Pv−1

Pn
and ân,v+1 =

pnPv

PnPn−1
.

If we take θn = Pn
pn

in Theorem 3.2, then we have a result concerning the |A, pn|k summability factors of the
trigonometric Fourier series, and if we take anv =

pv

Pn
Theorem 3.2, then we have another result dealing with∣∣∣N̄, pn, θn

∣∣∣
k summability factors of the trigonometric Fourier series. Also, if we put anv =

pv

Pn
and pn = 1 for

all n in Theorem 3.2, then we obtain a result concerning |C, 1, θn|k summability factors of the trigonometric
Fourier series. Moreover, if we take θn = Pn

pn
, k = 1 and anv =

pv

Pn
in Theorem 3.2, then we have a result

dealing with
∣∣∣N̄, pn

∣∣∣ summability factors of the trigonometric Fourier series ,and if we take θn = n, anv =
pv

Pn
and pn = 1 for all n in Theorem 3.2, then we obtain a result concerning the |C, 1|k summability factors of the
trigonometric Fourier series.
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[20] H.S. Özarslan, T. Kandefer, On the relative strength of two absolute summability methods, J. Comput. Anal. Appl. 11 (2009)

576–583.
[21] M.A. Sarıgöl, On the local properties of factored Fourier series, Appl. Math. Comp. 216 (2010) 3386–3390.
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