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Abstract. In this paper, we prove existence of fixed and coincidence points for a general class of multivalued
mappings satisfying a new generalized contractive condition in incomplete metric spaces which generalize
a number of published results in the last decades. In addition, this article not only brings a new approaches
on the subject and but also involves several non-trivial examples which demonstrate the significance of the
motivation. Finally, the obtained results of this paper provide a result on the convergence of successive
approximations for certain operators (not necessarily linear) on a norm space (not necessarily a Banach
space). In particular, we conclude that the renowned Kelisky-Rivlin theorem works on iterates of the
Bernstein operators on an incomplete subspace of C[0, 1].

1. Introduction and preliminaries

In 1969, Nadler [22] proved the analog of renowned Banach fixed point results for multivalued mappings
and initiated a trend of researching on fixed point theorems for multivalued mappings. For the sake of
completeness, we recall the main theorem of Nadler [22] here:

Theorem 1.1. Let T be a mapping from a complete metric space (X, d) into the set of all nonempty closed and bounded
subsets of X. Suppose that there exists q ∈ [0, 1) such that H(Tx,Ty) ≤ qd(x, y) for all x, y ∈ X, where H is Hausdorff
metric induced by d, that is,

H(U,V) = max{sup
u∈U

D(u,V), sup
v∈V

D(v,U)}. (1)

D(x,U) = inf{d(x,u); u ∈ U},

for all x ∈ X and for all nonempty closed and bounded subsets U,V of X. Then there exists z ∈ X such that z ∈ T(z).
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A number of generalizations of Nadler’s fixed point theorem in various directions have been examined
and improved by several authors, see e.g. Reich [25], Berinde-Berinde [9], Baghani et al. [4, 5, 16], Mizoguchi
and Takahashi [21], Du [15], Daffer and Kaneko [12], Daffer et al. [13], Pathak et al. [23], Amini-Harandi [1],
Boonsri and Saejung [10] and the related references therein.

We, first, recall the famous Reich’s result in this direction.

Theorem 1.2. Let T be a mapping from a complete metric space (X, d) into the class of all nonempty compact subsets
of X. Suppose that β : [0,∞)→ (0, 1) is a function such that lim sups→t+ β(s) < 1 for each t > 0. Assume that

H(Tx,Ty) ≤ β(d(x, y))d(x, y)

for each x, y ∈ X. Then T possess a fixed point.

Notice that it is in the setting of compact subsets. Mizoguchi and Takahashi [21] refined the result of Reich
for the frameworks of closed and bounded subsets.

Theorem 1.3. Let T be a mapping from a complete metric space (X, d) into the set of all nonempty closed and bounded
subsets of X. Suppose that β : [0,∞) → [0, 1) is a function such that lim sups→t+ β(s) < 1 for each t ≥ 0. Assume
that

H(Tx,Ty) ≤ β(d(x, y))d(x, y)

for each x, y ∈ X. Then Fix(T) , ∅.

In the following, we state Berinde-Berinde’s fixed point theorem [9].

Theorem 1.4. Let T be a mapping from a complete metric space (X, d) into the set of all nonempty closed and bounded
subsets of X. Suppose that β : [0,∞) → [0, 1) is a function such that lim sups→t+ β(s) < 1 for each t ≥ 0. Assume
that

H(Tx,Ty) ≤ β(d(x, y))d(x, y) + LD(y,Tx)

for each x, y ∈ X, where L ≥ 0. Then Fix(T) , ∅.

It is clear that for L = 0 in Theorem 1.4 we deduce Mizoguchi-Takahashi’s fixed point theorem [21].
Also, Du [15] improved the main results of [9] as follows:

Theorem 1.5. Let T be a mapping from a complete metric space (X, d) into the set of all nonempty closed and bounded
subsets of X. Suppose that f : X → X is a continuous self-mapping and β : [0,∞) → [0, 1) be a function such that
lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y : y ∈ Tx} ⊆ Tx;
(a2) there exists a function ĥ : X→ [0,∞) such that

H(Tx,Ty) ≤ β(d(x, y))d(x, y) + ĥ( f y)D( f y,Tx)

for each x, y ∈ X. Then, the intersection of the set of fixed point of T and the set of coincidence points of f and T is
non-empty.

In 2011, Amini-Harandi [1] expanded the well-known quasi-contraction in the setting of set-valued
mappings.

Theorem 1.6. Let T be a mapping from a complete metric space (X, d) into the set of all nonempty closed and bounded
subsets of X. Assume that

H(Tx,Ty) ≤ k max{d(x, y),D(x,Tx),D(y,Ty),D(x,Ty),D(y,Tx)}

for each x, y ∈ X, where 0 < k < 1
2 . Then Fix(T) , ∅.
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Among all, we focus on the very recent result given by Pathak et al. [23].

Theorem 1.7. Let T be a mapping from a complete metric space (X, d) into the set of all nonempty closed and
bounded subsets of X. Suppose that f , 1 are continuous self-mappings and β : [0,∞) → [0, 1) is a function with
lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y = 1y : y ∈ Tx} ⊆ Tx;
(a2) there exist two functions ĥ, k̂ : X→ [0,∞) such that

H(Tx,Ty) ≤ β(d(x, y))
(D(x,Ty) + D(y,Tx)

2

)
+ ĥ( f y)D( f y,Tx) + k̂(1y)D(1y,Tx)

for each x, y ∈ X. Then, the intersection of the set of fixed point of T and the set of coincidence points of f , 1 and T is
non-empty.

On the other hand, Boonsri and Saejung in [10] showed that the conclusion of Daffer and Kaneno[12]
remains true without assuming the lower semicontinuity of the function x 7→ D(x,Tx). In the following, we
state Boonsri-Saejung’s fixed point theorem.

Theorem 1.8. Let T be a mapping from a complete metric space (X, d) into the set of all nonempty closed and bounded
subsets of X. Suppose that

H(Tx,Ty) ≤ k max{d(x, y),D(x,Tx),D(y,Ty),
D(x,Ty) + D(y,Tx)

2
}

for each x, y ∈ X, where 0 < k < 1. Then Fix(T) , ∅.

Very recently, Eshaghi Gordji et al. [17] and Baghani et al. [3] introduced the notation of the orthogonal
sets and gave a real generalization of the Banach fixed point theorem in incomplete metric spaces. The
notion helps them to find the solution of a integral equation in incomplete metric spaces, see e.g.[2, 4, 6–8, 24].

As motivated by these works, we define a new type of monotone multivalued mappings and prove
some coincidence point and fixed point theorems under a new generalized contractive condition which is
different not only from Nadler’s fixed point theorem but also the other results in the literature, e.g. [23],
[15], [9], [21], [25]. The presented results extend and improve several well-known fixed point theorems for
multivalued contractive mappings.

To set up our results, we need to collect some basic definitions and fundamental results that will be
used in further sections. Throughout the paper, we shall use the standard notations in the literature, see
e.g. [23]. In particular, we shall denote nonnegative real number by R+

0 .
Let (X, d) be a metric space. We denote the set of all nonempty subsets of X by P∗(X). Further, we

shall reserve the letters K(X) (respectively, CB(X)) to denote the class of all nonempty compact (respectively,
closed and bounded) subsets of X.

We shall say that x ∈ X is a coincidence point of f , 1 : X→ X and T : X→ CB(X) whenever f x = 1x ∈ Tx.
Moreover, if f = 1 = id, the identity mapping, then x = f x = 1x ∈ Tx, that is, x a fixed point of T. We shall
use the letters Fix(T) and COP( f , 1,T) for the set of fixed points of T and the set of coincidence points of f , 1
and T, respectively.

Let A,B be subset of a nonempty set X and< be an arbitrary binary relation on X. We say that A and B
has a strong relation (briefly,<S) if a< b for all a ∈ A and b ∈ B. In this case, we write A (<S) B. Moreover,
We say that A and B has a weak relation (briefly,<W) if for each a ∈ A there exists b ∈ B such that a< b and
we write A <W B. It is clear that the relation <S implies the relation <W . Example 1.10 shows that the
converse of the statement is not true in general.

In what follows, we introduce a new type monotone multivalued mapping by using the relation<S.

Definition 1.9. Let T be a mapping from a metric space (X, d) into the set of all nonempty closed and bounded subsets
of X. Let< be a relation on X. We say that T is a monotone mapping of type<S if

x, y ∈ X, x< y =⇒ Tx (<S) Ty.
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Example 1.10. Let X = { 12 ,
1
4 , · · · ,

1
2n , · · · }∪ {0, 1} be equipped with the standard metric d(x, y) = |x− y| for x, y ∈ X.

Consider a relation< on X that is defined as

x < y ⇐⇒

 y
x ∈N,

or x = y = 0.

Define a multivalued mapping T : X→ CB(X) as follows

Tx =


{

1
2n , 1

2n+1 }, x = 1
2n ,n = 1, 2, · · · ,

{0}, x = 0,
{1, 1

4 }, x = 1.

Note that T is not monotone of type<S.

Example 1.11. Let X = [0, 1) be equipped with the standard metric d(x, y) = |x− y| for x, y ∈ X. Consider a relation
< on< on X that is defined by

x<y if and only if either x = 0 or y = 0.

Define a multivalued mapping T : X→ CB(X) as follows

T(x) =

{x2, 1
4 ex
}, x ∈ Q ∩ X,

{0}, x ∈ Qc
∩ X.

Note that T is monotone of type<S.

Definition 1.12. Let Φ denote the class of those functions φ(~t5
1) : R5

+ → R
+
0 that satisfy:

(Φ1) φ is increasing in t2, t3, t4 and t5;
(Φ2) t < φ(s, s, t, s + t, 0) implies that t < s for each s, t ∈ R+

0 ;
(Φ3) if tn, sn → 0 and un → γ > 0, as n→∞, then lim supn→∞ φ(tn, sn, γ,un, tn+1) ≤ γ;
(Φ4) φ(s, s, s, 2s, 0) ≤ s for each s ∈ R+

0 .

The class Φ is very wide class as it is shown by the following examples.

Example 1.13. Let (~t5
1) := (t1, t2, t3, t4, t5) ∈ (R+

0 )5 for simplicity. Then, we express the following functions:

(I) φ1(~t5
1) = α̂t1 + β̂t2 + γ̂t3 + δ̂t4 + Lt5, where γ̂ , 1, α̂ + β̂ + γ̂ + 2δ̂ = 1 and α̂, β̂, γ̂, δ̂,L ≥ 0.

(II) φ2(~t5
1) = 1

2 max{t1, t2, t3, t4, t5} + Lt5, L ≥ 0.

(III) φ3(~t5
1) = max{t1, t2, t3, 1

2 (t4 + t5)} + Lt5, L ≥ 0.

Definition 1.14. Let Λ denote the class of those functions λ(~t5
1) : (R+

0 )5
→ R+

0 which satisfy the following conditions:
(Λ1) λ is increasing in t2, t3, t4 and t5;
(Λ2) λ(s, s, t, s + t, 0) ≤ t for all s, t ∈ R+

0 ;
(Λ3) λ is continuous at (0, 0, t, t, 0) for all t ∈ R+

0 .

The class Λ is also very rich class as shown by the following examples.

Example 1.15. (I)

λ1(~t5
1) =

t3(1 + t2)(1 + t5)
1 + t1

.



H. Baghani et al. / Filomat 33:14 (2019), 4493–4508 4497

(II)

λ2(~t5
1) =

t3(1 + t2)
1 + t1

.

(III)
λ3(~t5

1) = t3 + Lt5, L ≥ 0.

(IV)

λ4(~t5
1) =


t2t3
t1
, t1 > 0,

0, t1 = 0.

Definition 1.16. [4] Let X be a non-empty set. Let< be a relation on a metric space (X, d). A sequence {xn} is called
an<-sequence if xn < xn+1 for every n ∈N. If a Cauchy sequence {xn} forms an<-sequence, then, we say that it is
a Cauchy<-sequence.

Moreover, X is called<-regular if for each convergent<-sequence {xn}, there exists n0 ∈N such that xn < x for
all n ≥ n0. In this case, the triple (X, d,<) is called an<-regular metric space. Furthermore, a metric space (X, d) is
called<-complete if every Cauchy<-sequence is convergent.

Lastly, a mapping f : X→ X is said to be<-continuous at a ∈ X if f (an)→ f (a) whenever {an} is an<-sequence
in X and an → a.

Example 1.17. Consider X = [0, 1
2 ) ∪ ( 1

2 , 2] equipped with the Euclidean metric. Define relation < on X by
< = {(0, 0), (0, 1), (1, 0), (1, 1), (0, 2)}. Here we show that (X, d,<) is an <-regular metric space. Take <-sequence
{xn} such that limn→∞ xn = x. Since {xn} is an <-sequence, for each n ∈ N, (xn, xn+1) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
which gives rise to {xn} ⊆ {0, 1}. As {0, 1} is closed, we have xn < x for all n ∈ N. Similarly, we can show that
(X, d,<) is an<-complete (not complete) metric space.

Example 1.18. Let X be a linear subspace of a Hilbert space (H, ‖.‖). We define a relation< as follows:

x< y if and only if | < x, y > | = ‖x‖‖y‖,

for all x, y ∈ X. We assert that (X, ‖.‖,<) forms an<-complete metric space. Suppose that the sequence {xn} ⊆ X is
Cauchy<-sequence. Accordingly, the sequence {xn} converges to some x ∈ H. We shall show that x is an element of
X. The relation< ensures that for all n ∈N,

∃αn s.t. xn = αnxn+1 or xn+1 = αnxn. (2)

We examine two cases:
Case 1. There exists a subsequence {xnk } of {xn} such that xnk = 0 for all k ∈N. This implies that x = 0 ∈ X.
Case 2. For all sufficiently large n ∈N, xn , 0. Take n0 ∈N such that for all n ≥ no, xn , 0. It follows from (2)

that for all n ≥ n0, there exists αn > 0 such that xn = αnxn0 . In other words,

|αn − αm| ‖xn0‖ = ‖xn − xm‖ → 0 as m,n→∞.

Therefore, {αn} is a Cauchy sequence inR. Assume thatαn → α as n→∞. Then limn→∞ xn = limn→∞ αnxn0 = αxn0 .
This implies that x ∈ X.

Example 1.19. Let {zn} be a bounded increasing sequence inR. Set z = limn→∞ zn , X =
(
z1,∞

)
and< = {(zi, zi+1) :

i ∈N}. We observe that X with the standard metric d(x, y) = |x − y| is<-complete but it is not an<-regular metric
space. To this end, let {xn} be an <-sequence in X. The definition of < implies that {xn} is a subsequence of {zn}.
This shows that every Cauchy<-sequence in X converges to z ∈ X. Moreover, z is not<-relative to elements of the
<-sequence.

Remark 1.20. Every complete metric space is<-complete, but the converse is not need to be true, see e.g. Example
1.18 - Example 1.19 .
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Example 1.21. Let X = [0, 1] = I with the standard metric d(x, y) = |x − y|. We define a relation< as follows:

x< y if and only if xy = 0.

Define f : X→ X by

f (x) =

1, x ∈ I ∩Q,
x, x ∈ I ∩Qc.

Here, f is not continuous but it is<-continuous. If {xn} is an<-sequence in X which converges to x ∈ X Employing
definition<, we find xn = 0 which yields that 1 = f (xn)→ f (x) = 1.

2. Main results

In this section, we express our main theorem in<-complete metric spaces (not need to be complete).

Definition 2.1. Let T be a mapping from a complete metric space (X, d) into CB(X), λ ∈ Λ and φ ∈ Φ. We define
functions MT

λ,M
T
φ : X × X→ [0,∞) as follows

MT
θ(x, y) = θ(d(x, y),D(x,Tx),D(y,Ty),D(x,Ty),D(y,Tx)),

for all x, y ∈ X, where θ = λ or θ = φ.

Theorem 2.2. Let (X, d,<) be an<-complete (not necessarily complete) and<-regular metric space. Let T : X→
CB(X) be a multivalued mapping, f , 1 : X → X be <-continuous self-mappings and α, β : [0,∞) → [0, 1) be
functions such that α is continuous and α(t) + lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y = 1y : y ∈ Tx} ⊆ Tx;
(a2) there exist two functions ĥ, k̂ : X→ [0,∞), λ ∈ Λ and φ ∈ Φ such that

H(Tx,Ty) ≤ α(d(x, y))MT
λ(x, y) + β(d(x, y))MT

φ(x, y) + ĥ( f y)D( f y,Tx) + k̂(1y)D(1y,Tx) (3)

for each x< y, x , y. Suppose that
(i) T is monotone of type<S;
(ii) there exists x0 ∈ X such that {x0} <W Tx0.
Then COP( f , 1,T)

⋂
Fix(T) , ∅.

Proof: By (a1), we note that, for each x ∈ X, D( f y,Tx) = 0 and D(1y,Tx) = 0 for all y ∈ Tx. Also, it is easy to
see that, if x∗ ∈ T(x∗), then x∗ ∈ COP( f , 1,T)

⋂
Fix(T). For this reason we suppose that T has no fixed point,

i.e., D(x,Tx) > 0 for all x ∈ X.
By properties of functions α and β, for each t > 0, there exist k(t) > 0 and δ(t) > 0 such that

β(s)
1 − α(s)

≤ k(t) < 1 for all s ∈ (t, t + δ(t)). (4)

Since {x0} <W Tx0, there exists x1 ∈ Tx0 such that x0 < x1. If x0 = x1, then x0 = x1 ∈ Tx0 and this is a
contradiction. So, we may assume that x0 , x1. Moreover, by monotonicity of T, we have Tx0 (<S) Tx1. Put
t1 = D(x1,Tx1). It is clear that D(x1,Tx1) ≤ d(x1, y) for all y ∈ Tx1. The following cases are considered:

Case 1. D(x1,Tx1) < d(x1, y) for all y ∈ Tx1. Select positive number d(t1) such that

d(t1) < min{δ(t1), (
1

k(t1)
− 1)t1} (5)
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and put

ε(x1) = min{1,
d(t1)

t1
}. (6)

Then there exists x2 ∈ Tx1 such that x1 < x2 and

d(x1, x2) < D(x1,Tx1) + ε(x1)D(x1,Tx1) = (1 + ε(x1))D(x1,Tx1). (7)

By the hypotheses that T no fixed point, we have x1 , x2 and by (a2), we can write

D(x2,Tx2) ≤ H(Tx1,Tx2) ≤ α(d(x1, x2)).MT
λ(x1, x2) + β(d(x1, x2)).MT

φ(x1, x2)

= α(d(x1, x2)).λ(d(x1, x2),D(x1,Tx1),D(x2,Tx2),D(x1,Tx2),D(x2,Tx1))
+ β(d(x1, x2)).φ(d(x1, x2),D(x1,Tx1),D(x2,Tx2),D(x1,Tx2),D(x2,Tx1)).

(8)

Note that by (Λ1) and (Λ2), we have

MT
λ(x1, x2) ≤ λ(d(x1, x2), d(x1, x2),D(x2,Tx2),D(x1,Tx2), 0)

≤ λ(d(x1, x2), d(x1, x2),D(x2,Tx2), d(x1, x2) + D(x2,Tx2), 0)
≤ D(x2,Tx2),

and by (Φ1), we obtain

MT
φ(x1, x2) ≤ φ(d(x1, x2), d(x1, x2),D(x2,Tx2),D(x1,Tx2), 0)

≤ φ(d(x1, x2), d(x1, x2),D(x2,Tx2), d(x1, x2) + D(x2,Tx2), 0).

This implies that

D(x2,Tx2) ≤
β(d(x1, x2))

1 − α(d(x1, x2))
φ(d(x1, x2), d(x1, x2),D(x2,Tx2), d(x1, x2) + D(x2,Tx2), 0)

< φ(d(x1, x2), d(x1, x2),D(x2,Tx2), d(x1, x2) + D(x2,Tx2), 0).

Now by above relation, (Φ2), (Φ1) and (Φ4), we conclude that

D(x2,Tx2) ≤
β(d(x1, x2))

1 − α(d(x1, x2))
d(x1, x2).

Thus,

D(x1,Tx1) −D(x2,Tx2) ≥ D(x1,Tx1) −
β(d(x1, x2))

1 − α(d(x1, x2))
d(x1, x2)

> (
1

1 + ε(x1)
−

β(d(x1, x2))
1 − α(d(x1, x2))

)d(x1, x2).
(9)

By (5), (6) and (7), we have

t1 = D(x1,Tx1) < d(x1, x2) < D(x1,Tx1) + ε(x1)D(x1,Tx1)
≤ t1 + d(t1) < t1 + δ(t1).

This implies by (4) that β(d(x1,x2))
1−α(d(x1,x2)) ≤ k(t1) < 1. Since ε(x1) ≤ d(t1)

t1
< 1

k(t1) − 1, we have

1
1 + ε(x1)

−
β(d(x1, x2))

1 − α(d(x1, x2))
> 0. (10)
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By relations (9) and (10), D(x2,Tx2) < D(x1,Tx1).
Case 2. D(x1,Tx1) = d(x1, x2) for some x2 ∈ Tx1. Since Tx0 (<S) Tx1, we have x1 < x2 and also

D(x1,Tx1) −D(x2,Tx2) ≥ (1 −
β(d(x1, x2))

1 − α(d(x1, x2))
)d(x1, x2) > 0.

Therefore D(x2,Tx2) < D(x1,Tx1).
Next, let t2 = D(x2,Tx2). Then D(x2,Tx2) ≤ d(x2, y) for all y ∈ Tx2. Again we consider the following two

cases:
Case A. D(x2,Tx2) < d(x2, y) for all y ∈ Tx2. For δ(t2) and k(t2), choose d(t2) with

d(t2) < min{δ(t2), (
1

k(t2)
− 1)t2}

and set

ε(x2) = min{
d(t2)

t2
,

1
2
,

t1

t2
− 1}.

By using a similar reason as above, we obtain x3 ∈ Tx2 such that x2 < x3, x2 , x3, d(x2, x3) < (1 +
ε(x2))D(x2,Tx2) and

D(x2,Tx2) −D(x3,Tx3) ≥ (
1

1 + ε(x2)
−

β(d(x2, x3))
1 − α(d(x2, x3))

)d(x2, x3) > 0.

Hence D(x3,Tx3) < D(x2,Tx2). From ε(x2) ≤ t1
t2
− 1, it follows that

d(x2, x3) < (1 + ε(x2))D(x2,Tx2) ≤ D(x1,Tx1) ≤ d(x1, x2).

Case B. D(x2,Tx2) = d(x2, x3) for some x3 ∈ Tx2. Since Tx1 (<S) Tx2, we have x2 < x3 and by using the
same method as above, we can show that

D(x2,Tx2) −D(x3,Tx3) ≥ (1 −
β(d(x2, x3))

1 − α(d(x2, x3))
)d(x2, x3) > 0

and

d(x2, x3) = D(x2,Tx2) < D(x1,Tx1) ≤ d(x1, x2).

Hence, D(x3,Tx3) < D(x2,Tx2) and d(x2, x3) < d(x1, x2). Repeating this process, we find that there exists an
<-sequence {xn} with xn+1 ∈ Txn such that {D(xn,Txn)} and {d(xn, xn+1} are decreasing sequences of positive
numbers and for each n ∈N,

D(xn,Txn) −D(xn+1,Txn+1) ≥ (
1

1 + γ(xn)
−

β(d(xn, xn+1))
1 − α(d(xn, xn+1))

)d(xn, xn+1), (11)

where γ(xn) is a real number with 0 ≤ γ(xn) ≤ 1
n . Since {d(xn, xn+1)} is a decreasing sequence, there exists

t̂ ∈ [0,∞) such that limn→∞ d(xn, xn+1) = t̂.
Let an := 1

1+γ(xn) −
β(d(xn,xn+1))

1−α(d(xn,xn+1)) for all n ∈N, then

lim inf
n→∞

an ≥ lim
n→∞

1
1 + γ(xn)

− lim sup
n→∞

β(d(xn, xn+1))
1 − α(d(xn, xn+1))

= 1 − lim sup
s→t̂+

β(s)
1 − α(s)

> 0.
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This implies that from (11) there exists b > 0 such that

D(xn,Txn) −D(xn+1,Txn+1) ≥ bd(xn, xn+1)

for large enough n. Since {d(xn, xn+1)} is a decreasing sequence, it is convergent. On the other hand, for each
n < m, we have

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1)

≤
1
b

m−1∑
i=n

{D(xi,Txi) −D(xi+1,Ti+1)}

=
1
b
{D(xn,Txn) −D(xm,Txm)} → 0

as n,m → ∞. Hence {xn} is a Cauchy <-sequence. So {xn} converges to some x∗ ∈ X. Since xn+1 ∈ Txn, it
follows from (a1) that f xn+1 = 1xn+1 ∈ Txn for each n ∈ N. Since f , 1 are<-continuous and limn→∞ xn = x∗,
we have

lim
n→∞

f xn+1 = lim
n→∞
1xn+1 = f x∗ = 1x∗.

By<-regularity assumption of X, since xn < xn+1 for all n ∈ N and xn → x∗ as n→ ∞, xn < x∗ for each
n ∈N. On the other hand, by continuity of λ in (0, 0,D(x∗,Tx∗),D(x∗,Tx∗), 0), (Φ1) and (Φ3), we obtain

D(x∗,Tx∗) = lim sup
n→∞

D(xn+1,Tx∗)

≤ lim sup
n→∞

H(Txn,Tx∗)

≤ lim sup
n→∞

(
α(d(xn, x∗)).MT

λ(xn, x∗) + β(d(xn, x∗)).MT
φ(xn, x∗)+

ĥ( f x∗)d( f x∗, f xn+1) + k̂(1x∗)d(1x∗, 1xn+1)
)

≤ α(0).λ(0, 0,D(x∗,Tx∗),D(x∗,Tx∗), 0)
+ lim sup

n→∞
β(d(xn, x∗))D(x∗,Tx∗)

≤

(
α(0) + lim sup

s→0+

β(s)
)
D(x∗,Tx∗).

Then x∗ ∈ Tx∗ which is a contradiction because it is supposed that T has no fixed point. By (a1), f x∗ = 1x∗ ∈
Tx∗. Hence x∗ ∈ COP( f , 1,T). This completes the proof. �

3. Some extensions of the previous results

Letting
φ1(~t5

1) = α̂t1 + β̂t2 + γ̂t3 + δ̂t4 + Lt5,

where α̂+ β̂+ γ̂+ 2δ̂ = 1, γ̂ , 1, and α̂, β̂, γ̂, δ̂,L ≥ 0, we get a generalization of Theorem 2.2 of [15], Theorem
3.2 of [23], Theorem 4 of [9] and Theorem 5 of [21].

Corollary 3.1. Let (X, d,<) be an<-complete (not necessarily complete) and<-regular metric space. Let T : X→
CB(X) be a multivalued mapping, f , 1 : X → X be <-continuous self-mappings and α, β : [0,∞) → [0, 1) be
functions such that α is continuous and α(t) + lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that
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(a1) for each x ∈ X, { f y = 1y : y ∈ Tx} ⊆ Tx;
(a2) there exist two functions ĥ, k̂ : X→ [0,∞) and λ ∈ Λ such that

H(Tx,Ty) ≤ α(d(x, y))MT
λ(x, y) + β(d(x, y))

(
α̂d(x, y) + β̂D(x,Tx) + γ̂D(y,Ty)

+ δ̂D(x,Ty) + LD(y,Tx)
)

+ ĥ( f y)D( f y,Tx) + k̂(1y)D(1y,Tx)

for each x < y with x , y, where α̂, β̂, γ̂, δ̂,L ≥ 0 and γ̂ , 1, α̂ + β̂ + γ̂ + 2δ̂ = 1. Suppose that
(i) T is monotone of type<S;
(ii) there exists x0 ∈ X such that {x0} <W Tx0.
Then COP( f , 1,T)

⋂
Fix(T) , ∅.

Proof: The proof follows from Theorem 2.2 and Example 1.13-(I). �
The following corollary for single-valued mappings directly follows from the above Corollary 3.1. This

corollary plays main roles in the future sections.

Corollary 3.2. Let (X, d,<) be an<-complete (not necessarily complete) and<-regular metric space. Let f : X→ X
be a single-valued mapping and β : [0,∞) → [0, 1) be a function such that lim sups→t+ β(s) < 1 for each t ≥ 0.
Assume that

d( f x, f y) ≤ β(d(x, y))
(
α̂d(x, y) + β̂d(x, f x) + γ̂d(y, f y) + δ̂d(x, f y)

)
for each x< y with x , y, where α̂, β̂, γ̂, δ̂ ≥ 0, α̂ + β̂ + γ̂ + 2δ̂ = 1 and γ̂ , 1. Suppose that f is monotone of type
<S and there exists x0 ∈ X such that x0 < f x0. Then, { f n(x0)} converges to a fixed point of f . Moreover, if z1 and z2
are two fixed points of f such that z1 < z2, then z1 = z2.

Letting

φ2(~t5
1) =

1
2

max{t1, t2, t3, t4, t5} + Lt5,

where L ≥ 0, we get a generalization of Theorem 2.2 of [1].

Corollary 3.3. Let (X, d,<) be an<-complete (not necessarily complete) and<-regular metric space. Let T : X→
CB(X) be a multivalued mapping, f , 1 : X → X be <-continuous self-mappings and α, β : [0,∞) → [0, 1) be
functions such that α is continuous and α(t) + lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y = 1y : y ∈ Tx} ⊆ Tx;
(a2) there exist two functions ĥ, k̂ : X→ [0,∞) and λ ∈ Λ such that

H(Tx,Ty) ≤ α(d(x, y))MT
λ(x, y) + ĥ( f y)D( f y,Tx) + k̂(1y)D(1y,Tx)

+ β(d(x, y))
(1
2

max{d(x, y),D(x,Tx),D(y,Ty),D(x,Ty),D(y,Tx)}

+ LD(y,Tx)
)

for each x < y with x , y, where L ≥ 0. Suppose that
(i) T is monotone of type<S;
(ii) there exists x0 ∈ X such that {x0} <W Tx0.
Then COP( f , 1,T)

⋂
Fix(T) , ∅.

Proof: The proof follows from Theorem 2.2 and Example 1.13-(II). �
Letting

φ3(~t5
1) = max{t1, t2, t3,

1
2

(t4 + t5)} + Lt5,

where L ≥ 0, we get a generalization of Theorem 1 of [10], Theorem 2.2 of [15] and Theorem 4 of [9].
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Corollary 3.4. Let (X, d,<) be an<-complete (not necessarily complete) and<-regular metric space. Let T : X→
CB(X) be a multivalued mapping, f , 1 : X → X be <-continuous self-mappings and α, β : [0,∞) → [0, 1) be
functions such that α is continuous and α(t) + lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y = 1y : y ∈ Tx} ⊆ Tx;
(a2) there exist two functions ĥ, k̂ : X→ [0,∞) and λ ∈ Λ such that

H(Tx,Ty) ≤ α(d(x, y))MT
λ(x, y) + ĥ( f y)D( f y,Tx) + k̂(1y)D(1y,Tx)

+ β(d(x, y))
(

max{d(x, y),D(x,Tx),D(y,Ty),
D(y,Tx) + D(x,Ty)

2
}

+ LD(y,Tx)
)

for each x < y with x , y, where L ≥ 0. Suppose that
(i) T is monotone of type<S;
(ii) there exists x0 ∈ X such that {x0} <W Tx0.
Then COP( f , 1,T)

⋂
Fix(T) , ∅.

Proof: The proof follows from Theorem 2.2 and Example 1.13-(III). �
Letting

λ(~t5
1) =


t2t3
t1
, t1 > 0,

0, t1 = 0,

we get a generalized multivalued version of the main results of [18, 19].

Corollary 3.5. Let (X, d,<) be an<-complete (not necessarily complete) and<-regular metric space. Let T : X→
CB(X) be a multivalued mapping, f , 1 : X → X be <-continuous self-mappings and α, β : [0,∞) → [0, 1) be
functions such that α is continuous and α(t) + lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y = 1y : y ∈ Tx} ⊆ Tx;
(a2) there exist two functions ĥ, k̂ : X→ [0,∞) such that

H(Tx,Ty) ≤ α(d(x, y))
D(x,Ty)D(y,Tx)

d(x, y)
+ ĥ( f y)D( f y,Tx) + k̂(1y)D(1y,Tx)

+ β(d(x, y))
(

max{d(x, y),D(x,Tx),D(y,Ty),
D(y,Tx) + D(x,Ty)

2
}

+ LD(y,Tx)
)

for each x < y with x , y, where L ≥ 0. Suppose that
(i) T is monotone of type<S;
(ii) there exists x0 ∈ X such that {x0} <W Tx0.
Then COP( f , 1,T)

⋂
Fix(T) , ∅.

Proof: The proof follows from Theorem 2.2, Example 1.15-(IV) and Example 1.13-(III). �
Letting

λ(~t5
1) =

t3(1 + t2)
1 + t1

,

we get a generalized multivalued version of main results of [11, 14].

Corollary 3.6. Let (X, d,<) be an<-complete (not necessarily complete) and<-regular metric space. Let T : X→
CB(X) be a multivalued mapping, f , 1 : X → X be <-continuous self-mappings and α, β : [0,∞) → [0, 1) be
functions such that α is continuous and α(t) + lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that
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(a1) for each x ∈ X, { f y = 1y : y ∈ Tx} ⊆ Tx;
(a2) there exist two functions ĥ, k̂ : X→ [0,∞) such that

H(Tx,Ty) ≤ α(d(x, y))
D(y,Ty)(1 + D(x,Tx))

1 + d(x, y)

+ β(d(x, y))
(

max{d(x, y),D(x,Tx),D(y,Ty),
D(y,Tx) + D(x,Ty)

2
}

+ LD(y,Tx)
)

+ ĥ( f y)D( f y,Tx) + k̂(1y)D(1y,Tx)

for each x < y with x , y, where L ≥ 0. Suppose that
(i) T is monotone of type<S;
(ii) there exists x0 ∈ X such that {x0} <W Tx0.
Then COP( f , 1,T)

⋂
Fix(T) , ∅.

Proof: The proof follows from Theorem 2.2, Example 1.15-(II) and Example 1.13-(III). �
Letting

λ4(~t5
1) = t3 + Lt5,

where L ≥ 0, we get the following result.

Corollary 3.7. Let (X, d,<) be an<-complete (not necessarily complete) and<-regular metric space. Let T : X→
CB(X) be a multivalued mapping, f , 1 : X → X be <-continuous self-mappings and α, β : [0,∞) → [0, 1) be
functions such that α is continuous and α(t) + lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y = 1y : y ∈ Tx} ⊆ Tx;
(a2) there exist two functions ĥ, k̂ : X→ [0,∞) such that

H(Tx,Ty) ≤ α(d(x, y))
(
D(y,Ty) + LD(y,Tx)

)
+ β(d(x, y))

(
max{d(x, y)

D(x,Tx),D(y,Ty),
D(y,Tx) + D(x,Ty)

2
}

+ LD(y,Tx)
)

+ ĥ( f y)D( f y,Tx) + k̂(1y)D(1y,Tx),

for each x < y with x , y, where L ≥ 0. Suppose that
(i) T is monotone of type<S;
(ii) there exists x0 ∈ X such that {x0} <W Tx0.
Then COP( f , 1,T)

⋂
Fix(T) , ∅.

Proof: The proof follows from Theorem 2.2, Example 1.15-(III) and Example 1.13-(III). �
Letting

λ4(~t5
1) =

t3(1 + t2)(1 + t5)
1 + t1

,

we get the following result.

Corollary 3.8. Let (X, d,<) be an<-complete (not necessarily complete) and<-regular metric space. Let T : X→
CB(X) be a multivalued mapping, f , 1 : X → X be <-continuous self-mappings and α, β : [0,∞) → [0, 1) be
functions such that α is continuous and α(t) + lim sups→t+ β(s) < 1 for each t ≥ 0. Assume that
(a1) for each x ∈ X, { f y = 1y : y ∈ Tx} ⊆ Tx;
(a2) there exist two functions ĥ, k̂ : X→ [0,∞) such that

H(Tx,Ty) ≤ α(d(x, y))
D(y,Ty)(1 + D(x,Tx))(1 + D(y,Tx))

1 + d(x, y)

+ β(d(x, y))
(

max{d(x, y)D(x,Tx),D(y,Ty),
D(y,Tx) + D(x,Ty)

2
} + LD(y,Tx)

)
+ ĥ( f y)D( f y,Tx) + k̂(1y)D(1y,Tx)
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for each x < y with x , y, where L ≥ 0. Suppose that
(i) T is monotone of type<S;
(ii) there exists x0 ∈ X such that {x0} <W Tx0.
Then COP( f , 1,T)

⋂
Fix(T) , ∅.

Proof: The proof follows from Theorem 2.2, Example 1.15-(I) and Example 1.13-(III). �

4. Some examples

The following simple examples show the generality of our main theorem over Theorem 1 of [10],
Theorem 3.2 of [23], Theorem 2.2 of [15], Theorem 4 of [9], Theorem 5 of [21] and Theorem 2.2 of [1].

Example 4.1. Let X = (−1,∞) be endowed with the Euclidean metric d(x, y) = |x− y| for x, y ∈ X and suppose that
x< y if and only if x = 0. Let T : X→ CB(X) be given by Tx = {2x}whenever x ∈ [0, 1) and Tx = {x, 5|x|}whenever
x < [0, 1). Hence (X, d,<) is an<-complete and<-regular metric space. It is easy to see that T is monotone of type
<S and {0} (<W) T0. On the other hand, for x, y ∈ X with x< y, we have

H(Tx,Ty) ≤ β(d(x, y))
(
α̂d(x, y) + LD(y,Tx)

)
,

where α̂ = 1, L = 12 and β : [0,∞) → [0, 1) is defined by β(t) = 1
2 , t ∈ [0,∞). Hence, by Corollary 3.1, for

arbitrary functions ĥ, k̂ : X → [0,∞) and f , 1 : X → X satisfying conditions of Corollary 3.1, we conclude that
COP( f , 1,T)

⋂
Fix(T) , Ø.

Notice that the mapping T does not satisfy the assumptions of Theorem 3.2 of [23], Theorem 1 of [10], Theorem
2.2 of [15], Theorem 4 of [9], Theorem 5 of [21] and Theorem 2.2 of [1]. For this reason take x = 2 and y = 10.

Example 4.2. Let X = (0, 1] be endowed with the Euclidean metric d(x, y) = |x − y| for x, y ∈ X and suppose that x
< y if and only if y = 1. Let T : X → CB(X) be given by Tx = [ x

2 , x] whenever x ∈ (0, 1
2 ) and Tx = {1} whenever

x ∈ [ 1
2 , 1]. Now we can easily show that

(1) X is an<-complete and<-regular metric space;
(2) there exists x0 ∈ X such that {x0} (<W) Tx0;
(3) T is monotone of type<S;
(4) the inequality

H(Tx,Ty) ≤ α(d(x, y))
(
LD(y,Tx)

)
+ β(d(x, y)) max

{
d(x, y),D(x,Tx),D(y,Ty),

1
2

(
D(x,Ty) + D(y,Tx)

)}
holds for x, y ∈ X with x < y, where α, β : [0,∞) → [0, 1) is defined by α(t) = 1

4 , β(t) = 1
2 , t ∈ [0,∞) and L = 5.

Hence, by Corollary 3.7, for arbitrary functions ĥ, k̂ : X→ [0,∞) and f , 1 : X→ X satisfying conditions of Corollary
3.7, we conclude that COP( f , 1,T)

⋂
Fix(T) , Ø.

Notice that the mapping T does not satisfy the assumptions of Theorem 3.2 of [23], Theorem 1 of [10], Theorem
2.2 of [15], Theorem 4 of [9], Theorem 5 of [21] and Theorem 2.2 of [1]. For this reason take x = 1

4 and y = 1
8 .

5. Application: A generalization of the Kelisky-Rivlin theorem

In this section, as application of Corollary 3.2, we present a generalization of Theorem 4.1 of [20] and
Theorem 6 of [26] in the following.

Theorem 5.1. Let (X, ‖.‖) be a norm space (not necessarily a Banach space) and X0 be a complete subspace of X. Let
f : X → X be a map (not necessarily linear) and β : [0,∞) → [0, 1) be function such that lim sups→t+ β(s) < 1 for
each t ≥ 0. Assume that

d( f x, f y) ≤ β(d(x, y)
(
α̂d(x, y) + β̂d(x, f x) + γ̂d(y, f y) + δ̂d(x, f y)

)
(12)
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whenever x− y ∈ X0 with x , y, where α̂, β̂, γ̂, δ̂ ≥ 0, α̂+ β̂+ γ̂+ 2δ̂ = 1, γ̂ , 1 and the metric d induced by ‖.‖, i.e.,
d(x, y) = ‖x − y‖ for each x, y ∈ X. If (I − f )(X) ⊆ X0, then for each x ∈ X, { f n(x)} converges to a fixed point of f .
Moreover, (x + X0) ∩ Fix f = {limn→∞ f nx} for each x ∈ X.

Proof: Consider the relation< defined on X as follows:

x<y⇐⇒
(
x − y ∈ X0

)
.

We shall separate the proof into several steps.
Step 1. (X, d,<) is an<-complete metric space.
Let {xn} ba a Cauchy<-sequence in (X, d,<). By definition of the relation<, we obtain xn+k − xn ∈ X0

for each n, k ∈ N. Let n0 ∈ N be a fixed element. Since {xn} is a Cauchy sequence, also {yk := xn0+k − xn0 } is
a Cauchy sequence in X0. Let limk→∞ yk = y∗ ∈ X0. This shows that {xn0+k} is a convergent sequence. Let
limk→∞ xn0+k = x∗, for some x∗ ∈ X. On the other hand, {xn} is a Cauchy sequence and has a convergent
subsequence, then it converges to x∗. Hence, x∗ = y∗ + xn0 ∈ X.

Step 2. (X, d,<) is an<-regular metric space.
Take<-sequence {xn} such that limn→∞ xn = x. Since {xn} is an<-sequence, for each n, k ∈N, xn+k − xn ∈

X0 which gives rise to x − xn ∈ X0 for all n ∈ N, i.e., xn < x for all n ∈ N. Hence (X, d,<) is an<-regular
metric space.

Step 3. f is monotone and x< f x for each x ∈ X.
Let x< y. Now, f x − f y = (y − f y) − (x − f x) + (x − y) ∈ X0, since (I − f )(X) ⊆ X0. Hence f x< f y. Also,

since (I − f )(X) ⊆ X0, x< f x for each x ∈ X.
Let x ∈ X be arbitrary. Then by Corollary 3.2, { f n(x)}∞n=0 converges to a fixed point f . Besides, { f n(x)}∞n=0

is an<-sequence, then, for each m ∈ N ∪ {0}, f mx< limn→∞ f nx. Hence x< limn→∞ f nx. This shows that
limn→∞ f nx ∈ (x + X0) ∩ Fix f .

Let z1, z2 ∈ (x + X0)∩ Fix f , then z1< z2. Here, by applying Corollary 3.2, z1 = z2. Therefore, we concede
that (x + X0) ∩ Fix f = {limn→∞ f nx} for each x ∈ X. �

Consider the space of all continuous real functions on the closed unit interval C[0, 1] and X := {x ∈
C[0, 1] :

∣∣∣x(t)
∣∣∣ < 1,∀t ∈ [0, 1]}. We endow X with the sup norm ‖.‖∞. Notice that (X, ‖.‖∞) is not a Banach

space.
We now consider the operator B̂n where n ∈N on X defined by

B̂n(x)(t) =

n∑
k=0

∣∣∣∣x(
k
n

)
∣∣∣∣(nk

)
tk(1 − t)n−k for x ∈ X and t ∈ [0, 1]. (13)

Let x ∈ X and L := max0≤k≤n{x( k
n )}. Then L < 1 and also

∣∣∣∣B̂n(x)(t)
∣∣∣∣ =

∣∣∣∣ n∑
k=0

∣∣∣∣x(
k
n

)
∣∣∣∣(nk

)
tk(1 − t)n−k

∣∣∣∣ ≤ L
n∑

k=0

(
n
k

)
tk(1 − t)n−k = L < 1,∀t ∈ [0, 1].

Hence B̂n : X→ X is a nonlinear self mapping.

Corollary 5.2. Let n ∈ N and B̂n be an operator on X defined by (13). Let X̄ := {x ∈ X : x(0) ≥ 0 and x(1) ≥ 0}.
Then, for each x ∈ X, {B̂ j

n} j∈N converges to a fixed point of B̂n. Moreover, for each x ∈ X̄, we have

lim
j→∞

B̂ j
nx = x(0)(1 − t) + x(1)t for t ∈ [0, 1].
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Proof: Let X0 := {x ∈ X : x(0) = x(1)}. Let x, y ∈ X be elements such that x − y ∈ X0. Then, for each t ∈ [0, 1],∣∣∣∣B̂n(x)(t) − B̂n(y)(t)
∣∣∣∣ =

∣∣∣∣ n∑
k=0

∣∣∣∣x(
k
n

)
∣∣∣∣(nk

)
tk(1 − t)n−k

−

n∑
k=0

∣∣∣∣y(
k
n

)
∣∣∣∣(nk

)
tk(1 − t)n−k

∣∣∣∣
≤

n∑
k=0

∣∣∣∣(x − y)(
k
n

)
∣∣∣∣(nk

)
tk(1 − t)n−k

≤

n−1∑
k=1

‖x − y‖∞

(
n
k

)
tk(1 − t)n−k

≤

(
1 − tn

− (1 − t)n
)
‖x − y‖∞ ≤

(
1 −

1
2n−1

)
‖x − y‖∞.

(14)

Hence, ‖B̂n(x) − B̂n(y)‖∞ ≤ β(‖x − y‖∞)‖x − y‖∞, where β(t) =
(
1 − 1

2n−1

)
for each t ≥ 0. It is easy to see

that (I − B̂n)(X) ⊆ X0. Hence by Theorem 5.1, for each x ∈ X, {B̂ j
nx} j∈N converges to a fixed point of

B̂n and (x + X0) ∩ FixB̂n = {lim j→∞ B̂ j
nx}. Since e0, e1 ∈ FixB̂n, where ei(t) = ti for i = 0, 1 and t ∈ [0, 1],

then x(0)(1 − t) + x(1)t ∈ FixB̂n for each x ∈ X̄. Also, for each x ∈ X̄, x(0)(1 − t) + x(1)t ∈ x + X0. Hence
x(0)(1 − t) + x(1)t ∈ (x + X0) ∩ FixB̂n. �
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Annali delĺ Università di Ferrara, 59 (2013) 251-258.
[12] P.Z. Daffer, H. Kaneko, Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl., 192 (1995) 655-666.
[13] P.Z. Daffer, H. Kaneko, W. Li, On a conjecture of S. Reich, Proc. Amer. Math. Soc., 124 (1996) 3159-3162.
[14] B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational expressions, Indian J. Pure Appl. Math., 6

(1975) 1455-1458.
[15] W. -S. Du, On coincidence point and fixed point theorems for nonlinear multivalued maps, Topology Appl., 159 (2012) 49–56.
[16] M. Eshaghi Gordji, H. Baghani, H. Khodaei, M. Ramezani, Geraghty’s Fixed Point Theorem for Special Multi-Valued Mappings,

Thai Journal of Mathematics, 10 (2012) 225–231.
[17] M. Eshaghi Gordji, M. Ramezani, M. De La Sen, Y.J. Cho, On orthogonal sets and Banach fixed Point theorem, Fixed point theory,

18 (2017) 569–578.
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